FASILL sandbox

Input

Program

vanguardist(hydropolis) <- 0.9. elegant(ritz) <- 0.8. close(hydropolis, taxi) <- 0.7. good_hotel(X) <- @aver(elegant(X), @very(close(X, metro))).

Lattice

% Elements member(X) :- number(X), 0 =< X, X =< 1. members([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]). % Distance distance(X,Y,Z) :- Z is abs(Y-X). % Ordering relation leq(X,Y) :- X =< Y. % Supremum and infimum bot(0.0). top(1.0). % Binary operations and_prod(X,Y,Z) :- Z is X*Y. and_godel(X,Y,Z) :- Z is min(X,Y). and_luka(X,Y,Z) :- Z is max(X+Y-1,0). or_prod(X,Y,Z) :- U1 is X*Y, U2 is X+Y, Z is U2-U1. or_godel(X,Y,Z) :- Z is max(X,Y). or_luka(X,Y,Z) :- Z is min(X+Y,1). % Aggregators agr_aver(X,Y,Z) :- Z is (X+Y)/2. agr_very(X,Y) :- Y is X*X. % Default connectives tnorm(godel). tconorm(godel).

Similarity Relation

elegant/1 ~ vanguardist/1 = 0.6. metro ~ bus = 0.5. bus ~ taxi = 0.4. ~tnorm = godel.

Max. inferences

1000

Cut value

Goal

good_hotel(X).

 

Test cases

0.4 -> good_hotel(hydropolis). 0.6 -> good_hotel(ritz).

Output

Fuzzy Computed Answers

Derivation tree

Symbolic substitution