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FASILL (acronym of “Fuzzy Aggregators and Similarity Intd_agic Language”) is a fuzzy logic
programming language with implicit/explicit truth degraenotations, a great variety of connec-
tives and unification by similarity. FASILL integrates angtends features coming from MALP
(Multi-Adjoint Logic Programminga fuzzy logic language with explicitly annotated rulesidan
Bousi~Prolog (which uses a weak unification algorithm and is welleslifor flexible query an-
swering). Hence, it properly manages similarity and triggreees in a single framework combining
the expressive benefits of both languages. This paper gsdbermmain features and implementations
details of FASILL. Along the paper we describe its syntax apdrational semantics and we give
clues of the implementation of the lattice module and thélaity module, two of the main building
blocks of the new programming environment which enrichesRhOPER system developed in our
research group.
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1 Introduction

The challenging research areakfizzy Logic Programmings devoted to introducéuzzy logiccon-
cepts intologic programmingin order to explicitly treat with uncertainty in a natural yvat has pro-
vided a wide variety of ROLOG dialects along the last three decad@aizzy logic languagesan be
classified (among other criteria) regarding the emphasig #ssign when fuzzifying the original uni-
fication/resolution mechanisms oRBLOG. So, whereas some approaches are able to cope with sim-
ilarity/proximity relations at unification time [9,] 1, 29&ther ones extend their operational principles
(maintaining syntactic unification) for managing a wideiesr of fuzzy connectives and truth degrees
on rules/goals beyond the simpler caséroé or false[16/,[19,24].

The first line of integration, where the syntactic unificatialgorithm is extended with the ability
of managing similarity/proximity relations, is of speci@levance for this work. Similarity/proximity
relations put in relation the elements of a set with a cedpjproximation degree and serve for weakening
the notion of equality and, hence, to deal with vague infdioma With respect to this line, the related
work can be summarized as follows:
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Firstly, the pioneering papets|[4,[8, 9] and [3], where thecept of unification by similarity was first
developed. Note that, we share their objectives, usingaiityi relations as a basis, but contrary to our
proposal, they use the sophisticated (but cumbersome)nsotifclouds systems of cloudsndclosure
operatorsin the definition of the unification algorithm, that may endanthe efficiency of the derived
operational semantics.

More closely tied to our proposal, is the work presented Bj [&y Maria Sessa. She defines an
extension of the SLD-resolution principle, incorporatagimilarity-based unification procedure which
is a reformulation of Martelli and Montanari’s unificatiofgarithm [18] where symbols match if they
are similar (instead of syntactically equal). The resgltaigorithm uses a generalized notion of most
general unifier that provides a numeric value, which giveseasure of the approximation degree, and
a graded notion of logical consequence. Sessa’s approagfhification can be considered our starting
point.

From a practical point of view, similarity-based approachave produced three main experimental
realizations. The first two system prototypes describedhénliterature were: the fuzzy logic language
LIKELOG (LIKEness in LOGIiE [2] (an interpreter implemented inR®LOG using rather direct tech-
nigues and the aforementioned cloud and closure concegtsiloled in [3[ 4] O, 18]) an8iLog [17] (an
interpreter written in Java based on the ideas introduc§29]). NeitherLIKELOG nor SiLog are pub-
licly available, what prevent a real evaluation of thesdays, and they seem immature prototypes. In
this same line of workBousi~Prolog [12,[15], on the other hand, is the first fuzzy logic programgni
system which is a true BOLOG extension and not a simple interpreter able to execute a B&fk
resolution procedure. Also it is the first fuzzy logic pragiraing language that proposed the use of
proximity relations as a generalization of similarity téas [11]. It is worth saying that, in order to deal
with proximity relations,Bousi~Prolog has needed to develop new theoretical [14] and concept8al [2
basis.

A related programming framework, akin to Fuzzy Logic Prognaing, isQualified Logic Program-
ming (QLP) [2€], which is a derivation of van Emder@uantitative Logic Programminf¥] and Anno-
tated Logic Programmingl6]. In QLP a qualification domail is associated to a program and their
rules annotated with qualification values, resulting a petaic framework: QLP(D). In[]5] they in-
troduce similarity relations in their QLP(D) framework bglapting a transformational approach. The
new Similarity-based QLP(D) scheme, named SQLP(D), ttanss a similarity relation into a set of
QLP(D) rules able to emulate a unification by similarity pss. In[[27], 5] they go a step further integrat-
ing constraints and proximity relations in their generibesme, obtaining a really flexible programming
framework named SQCLP.

Ending this section, it is important to say that our resegrciup has been involved both on the de-
velopment of similarity-based logic programming systemd #nose that extend the resolution principle,
as reveals the design of the Bou§lrolog language[11),[13,[28], where clauses cohabit with similar-
ity/proximity equations, and the development of the FLO Pﬁ/@terﬁ, which manages fuzzy programs
composed by rules richer than clauses [20, 23]. Our unifgipgroach is somehow inspired by [6], but
in our framework we admit a wider set of connectives insidelibdy of programs rules. In this paper,
we make a first step in our pending task of embedding into FLREteweak unificatioralgorithm of
Bousi~Prolog.

The structure of this paper is as follows. Firstly, in Sewsi@ and B we formally define and illustrate
both the syntax and operational semantics, respectively)eoFASILL language. Next, Sectidn 4 is

ITwo different programming environments for Bow$trolog are available afttp://dectau.uclm.es/bousi/|
2The tool is freely accessible from the Web 8itetp: //dectau.ucim.es/floper/.
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concerned with implementation and practical issues. KinalSectior b we conclude by proposing too
further research.

2 TheFASILL language

FASILL is a first order language built upon a signatdrethat contains the elements of a countably
infinite set of variables/, function symbols and predicate symbols with an associatig —usually
expressed as paifs/n or p/n wheren represents its arity—, the implication symbel) and a wide set
of others connectives. The language combines the elemehta®terms, atoms, rules and formulas. A
constant ds a function symbol with arity zero. fermis a variable, a constant or a function symigh
applied ton termsty, ... ,t,, and is denoted a§(t,...,t,). We allow values of a latticé as part of the
signaturex. Therefore, a well-formed formula can be either:

er,ifrelL

e p(ty,...,tn), if t1,... .ty are terms ang/n is an n-ary predicate. This formula is calletbm
Particularly, atoms containing no variables are cafjemind atomsand atoms built from nullary
predicates are callgatopositional variables

o ¢(F1,...,In), If F1,...,F, are well-formed formulas and is an n-ary connective with truth
function¢ :L" — L

Definition 2.1 (Complete lattice) A complete lattice is a partially ordered sft, <) such that every
subset S of L has infimum and supremum elements. Then, it inddxblattice, i.e., it has bottom and
top elements, denoted dyand T, respectively. L is said to be the carrier set of the lattiand < its

ordering relation.
The language is equipped with a setoﬁnectiv&interpreted on the lattice, including

e aggregators denoted by @, whose truth functi@nulfill the boundary conditior@(T,T) = T,
@(L,L1) =L, and monotonicity(x1,y1) < (X2,¥2) = @(X1,y1) < @(X2,Y2).

e t-norms and t-conorms [25] (also named conjunctions andrdions, that we denote by & and
|, respectively) whose truth functions fulfill the followinoperties:

- Commutative: &(xYy)=&(Y,X) [(%y) = (%, %)
. Associative: &(x&(y,2)) = &(&(xY),2) [ 1(%:2)) = [(I(%,Y),2)
- Identity element: &%, T)=x |(X, L) =x

&(zy) <&(ty) &(x2 <&(xt)
zy) <lty  1x2<ixy

Example 1. In this paper we use the lattiqg0, 1], <), where< is the usual ordering relation on real
numbers, and three sets of connectives corresponding téuttay logics of @del, tukasiewicz and
Product, defined in Figurgl 1, where labélsG andP mean respectivelyukasiewicz logi¢ Godel logic
andproduct logic(with different capabilities for modelingessimisticoptimisticandrealistic scenarigs

It is possible to include also other connectives. For ins&rthe arithmetical average, defined by
connective@ayer (With truth function@aver(x,y) = ”Ty), that is a stated, easy to understand connective
that does not belong to a known logic. Connectives withewitdifferent from 2 can also be used, like
the @yery aggregation, defined b@\,ery(x) £ %2, that is a unary connective.

- Monotonicity in each argumenz<t = {

SHere, the connectives are binary operations but we usueiigmlize them with an arbitrary number of arguments.
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&p(Xy) £ Xxxy ]p(x,y) 2 X+y—xy Product
&G(Xv y) 2 min(x,y) JG(X7y) £ ma)(X, y) Godel
&L(x,y) 2 max0,x+y—1) [L(x,y) £ min(x+y,1) tukasiewicz

Figure 1: Conjunctions and disjunctions|[®1] for Product tukasiewiczandGoddelfuzzy logics

Definition 2.2 (Similarity relation) Given a domair#/ and a lattice L with a fixed t-norm, a similarity
relation & is a fuzzy binary relation ofZ, that is a fuzzy subset o x % (namely, a mapping? :
% x % — L), such that fulfils the following propert@s

o ReflexiveZ(x,x) = T,Vxe %
e Symmetric:Z(x,y) = Z(Y,X),VX,y € %
e Transitive: Z(x,z) > Z(X,Y) NZ(Y,2),YX,Y,2 € U

Certainly, we are interested in fuzzy binary relations oryrtactic domain. We primarily define sim-
ilarities on the symbols of a signaturg, of a first order language. This makes possible to treat as
indistinguishable two syntactic symbols which are reldigc similarity relationZ. Moreover, a simi-
larity relationZ on the alphabet of a first order language can be extendeds tgr structural induction

in the usual way/[29]. That s, the extensio#, of a similarity relationZ is defined as:

1. letx be a variableZ(x,x) = Z(x,X) = 1,

2. let f andg be twon-ary function symbols and l&t, ... ,t,, S, ..., S, be terms,
A(f(te, tn). G50, . 5)) = 2(F,9) A (AL Z (8, 5)

3. otherwise, the approximation degree of two terms is zero.

Analogously for atomic formulas. Note that, in the sequed, shall not make a notational distintion
between the relatiogZ and its extensior?.

Example 2. A similarity relation.Z on the elements o = {vanguardistelegantmetrataxi, bus} is

defined by the following matrix:
It is easy to check that#

R | vanguardist| elegant| metro | taxi | bus | fulfills the reflexive, symmetric

vanguardist 1 0.6 0 0 0 and transitive properties. Par-

elegant 0.6 1 0 0 0 ticularly, using theGodel con-

metro 0 0 1 04|05 junction as the t-norma, we

taxi 0 0 0.4 1 |04 have that: Z(taxi,metro >

bus 0 0 05 | 04| 1 Z(metra bug A Z (bustaxi) =
0.510.4.

Furthermore, the Aextensioﬂ? of % determines that the terms elegétaixi) and vanguardistmetro
are similar, since % (eleganttaxi), vanguardistmetro)) = % (elegantvanguardisj A Z (taxi, metro =
0.6 A Z(taxi,metro = 0.6 A 0.4 = 0.4.

Definition 2.3 (Rule). A rule has the form A— %, where A is an atomic formula called head aggi
called body, is a well-formed formula (ultimately built froatomic formulas B..., By, truth values of

“4For convenienceZ(x,y), also denoteckZy, refers to both the syntactic expression (that symbolihas the elements
X,y € % are related byZ) and the truth degreg,(x,y), i.e., the affinity degree of the paix,y) €  x % with the verbal
predicateZ.
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L and connective@. In particular, when the body of a rule isg L (an element of lattice L), this rule is
called fact and can be written as<A r (or simply Aifr=T).

Definition 2.4 (Program) A program & is a tuple(ln,#,L) wherell is a set of rulesZ is a similarity
relation between the elements Bf and L is a complete lattice.

Example 3. The set of rules1 given below, the similarity relationZ of ExampldR and lattice &
([0,1], <) of ExampléL, form a program® = (I, %,L).

Ry : vanguardisthydropoliy < 0.9

M Ry: elegantritz) +08
Rs: closdhydropolistaxi) +~ 07
R4 : goodhotel(x) — @aver(elegantx), @very(closex, metro)))

3 Operational Semantics ofFASILL

Rules in a FASILL program have the same role than clausesroLBG (or MALP [19,[10,[22])
programs, that is, stating that a certain predicate rekiase terms (thdead if some conditions (the
body) hold.

As a logic language, FASILL inherits the concepts of substh, unifier and most general uni-
fier (mgy. Some of them are extended to cope with similarities. Gatety, following the line of
Bousi~Prolog [11], the most general unifier is replaced by the cpnoéweak most general unifier
(w.m.g.u.) and a weak unification algorithm is introduceddmpute it. Roughly speaking, tiveak uni-
fication algorithmstates that twexpressiongi.e, terms or atomic formulad)ty, ...,t,) andg(ss, ..., )
weakly unify if the root symbold andg are close with a certain degree (i#(f,g) =r > L) and each
of their argumentg ands weakly unify. Therefore, there is a weak unifier for two exgziens even if
the symbols at their roots are not syntactically equéksz Q).

More technically, the weak unification algorithm we are ggsa reformulation/extension of the one
which appears in [29] for arbitrary complete lattices. Wenfalize it as a transition system supported by
a similarity-based unification relatior=". The unification of the expressior§ andé& is obtained by a
state transformation sequence starting from an initiaés@a = {1 ~ & },id, ap), whereid is the iden-
tity substitution andxg = T is the supreme ofL, <): (G,id, ap) = (G1,61,01) = -+ = (Gp, 6y, an).
When the final statéGy, 6,, an), with G, = 0, is reached (i.e., the equations in the initial state have
been solved), the expressiods and &> are unifiable by similarity with w.m.g.u8, and unification
degreean. Therefore, the final stat@, 6,, an) signals out the unification success. On the other hand,
when expressiong] and&> are not unifiable, the state transformation sequence erttdailure (i.e.,

G, = Fall).

The similarity-based unification relatign* =", is defined as the smallest relation derived by the

following set of transition rules (wher€ar(t) denotes the set of variables of a given téjm

<{f(tl>"'7tﬂ) ’%g(slw"vS“l)}UEvevrl> ‘%(fvg) =r>1 1
{irs,...,tha s }UE, 0,11 Arp)

5In order to subsume the syntactic conventions of MALP, inmagrams we also admiteighted rulesvith shape A «;
2 with v, which are internally treated ag\%— (v&;%)” (this transformation preserves the meaning of rules aggat [21]).
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({X~X}UE6r) {X~t}UE,B,r1) X ¢ 7ar(t)
(E,8,r1) (E){X/t}, 6{X/t},r1)
{t~X}UE B.r1) (X~QUEOr)  Xevar(),
({X~t}UE,6,r1) (Fail, 0,r1)
{ft ) ~gs, - S)IUE Or)  2(fg) =1
(Fail, 0,rq)

Rule 1 decomposes two expressions and annotates the médatiween the function (or predicate) sym-
bols at their root. The second rule eliminates spuriousrinétion and the fourth rule interchanges the
position of the symbols to be handled by other rules. Thelthid fifth rules perform an occur check of
variableX in a termt. In case of success, it generates a substitutiost }; otherwise the algorithm ends
with failure. It can also end with failure if the relation keten function (or predicate) symbolsda is

1, as stated by Rule 6.

Usually, given two expressions; and &5, if there is a successful transition sequen¢gsy ~
&},id, T) =* (0, 0,r), then we write thatvmgu &1, &%) = (6,r), being0 theweak most general unifier
of & and&y, andr is theirunification degree

Finally note that, in general, a w.m.g.u. of two expressighsand &> is not unique[[20]. Cer-
tainly, the weak unification algorithm only computes a repraative of a w.m.g.u. class, in the sense
that, if 8 = {x1/t1,...,%/t} is a w.m.g.u., with degreg, then, by definition, any substitutiof’ =
{x1/s1,..., %/}, satisfyingZ(s,t;) > L, for any 1<i <n, is also a w.m.g.u. with approximation
degreep’ = B A (A1 Z(s,t)), where ‘A” is a selected t-norm. However, observe that, the w.m.g.u.
representative computed by the weak unification algorithronie with an approximation degree equal
or greater than any other w.m.g.u. As in the case of the clalssyntactic unification algorithm, our
algorithm always terminates returning a success or a @ilur

Next, we illustrate the weak unification process in the folly example.

Example 4. Consider the lattice |= ([0,1],<) of Exampld]L and the relatio® of ExampléR. Given
terms elegar{taxi) and vanguardigimetro, it is possible the following weak unification process:

({eleganttaxi) ~ vanguardistmetro },id, 1) :1><{taxi ~ metra},id, 0.6) £
({},id,0.6A0.4) = ({},id,0.4)

Also it is possible the unification of the terms eledganti) and vanguardistX), since:

({elegarftaxi) ~ vanguardis{X)},id, 1) = ({taxi ~ X},id,0.6) =
(IX ~ taxi},id,0.6) =({}, {X /taxi},0.6)

and the substitutio X /taxi} is their w.m.g.u. with unification degrée6.

In order to describe the procedural semantics of the FASHrigliage, in the following we denote
by €[A] a formula whereéA is a sub-expression (usually an atom) which occurs in thesiply empty—
context%’[] whereas#’|[A/A'] means the replacement Afby A’ in the context¢’[]. Moreover,? ar(s)
denotes the set of distinct variables occurring in the syittabjects and 87 ar(s)] refers to the sub-
stitution obtained fron® by restricting its domain to”ar(s). In the next definition, we always consider
thatAis the selected atom in a gadl andL is the complete lattice associatedto
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(] FLoPER (=8] % N
File Edit Code Run Transformation Options Help
e et lechRew® ¢ Dbeal
e _[ good_hotelfpl % Tsim.sim * ]
[v [E good_hotel | || 1] vanguardist (nvdropolis) <- 0.9.
v E Fuzzy-Prolog files Z | elegant (ritz) <— 0.8.
f'i; good_hotel fpl 3| close(hydropolis, taxi) <- 0.7.
» (i3 Prolog files &
v E Similarity files _5l good hotel (X) <- @aver (elegant (X), @very(close (X, metra))).
Goal L&J
L ﬁ Scriptfiles
|1 num.lat Enter a new goal (without quotes):
foood_hotel(x
| Aceptar ] | Cancelar |
I I —
Bl Y
>> leaves.
[
& < 0.4, {X/ritz} = ;
| < 0.38, {X/hydropolis} >
. v
l:.lg <« i e

Figure 2: Screen-shot of a work session with FLOPER managirgSILL program

Definition 3.1 (Computational Step)Let 2 be a goal and let be a substitution. The pait?; o) is a
state Given a program([1,%,L) and a t-normA in L, a computationis formalized as a state transition
system, whose transition relatior is the smallest relation satisfying these rules:

1) Successful stefdenoted asis):

(2|Al,0) A« %ell  wmguAA)=(0,r) s
(2|A/# Nr]0,00)

2) Failure stegdenoted asE§ ):

(2IA],0) PN« BN wmguAA)=(0,r),r> 1
(2IA/L],0)

FS

3) Interpretive stefdenoted aslvé):
<°@[@(r1)"'7rn)];a> @rl)"'arn) =TIns1
(‘Q[@(rb sy rn)/rn-lrl] '0>

A derivationis a sequence of arbitrary lengh®;id) ~~*(2’;0). As usual, rules are renamed apart.
When2' =r € L, the statgr; o) is called afuzzy computed answétc.a.) for that derivation.

IS

Example 5. Let &2 = (M, %, L) be the program from Examplé 3, ad®l = good hotel(X) be a goal. It
is possible to perform these two derivations fgrand 2:
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D;: (goodhotel(X),id) §§R4
(@aver(elegantX), @uen(closaX, metra)), (Xa/X}) S5
(@aver(0.8, @very(closeritz, metra))), { Xy /ritz, X /ritz}) FS
(@aver(0.8, @very0)), (X /ritz, X ritz}) 32
(@aver(0.8,0), {Xu/ritz, X /ritz}) B
(0.4,{Xy/ritz,X /ritz})

D,: (goodhotel(X),id) §§R4
(@aver(elegantX), @very(closgX, metro))), { X1 /X}) §§R1
(@aver(& godel(0.9,0.6), @very(closghydropolismetrg)) ), { X1 /hydropolis X /hydropolis ) §§R3
(@aver(& godel(0.9,0.6), @very(& godel(0.7,0.4)) ), { X1/hydropolis X /hydropolis;) 3
(@aver(0.6, @very(0.4)), {Xo/hydropolis X /hydropolig) B
(@aver(0.6,0.16), {Xa/hydropolis X /hydropolig) B

(0.38,{X1/hydropolis X /hydropolis)
with fuzzy computed answe® 4, {X/ritz}) and (0.38,{X /hydropolis), respectivelly.

4 Implementation of FASILL in FLOPER

During the last years we have developed the FLOPER tooialigiintended for manipulating MALP
programl In its current development state, FLOPER has been equipjtechew features in order to
cope with more expressive languages and, in particulah RSILL. The new version of FLOPER
is freely accessible in the URhttp://dectau.uclm.es/floper/7q=sim Where it is possible to
test/download the new prototype incorporating the manageraf similarity relations. In this section
we briefly describe the main features of this tool before gméng the novelties introduced in this work.

FLOPER has been implemented in Sicstus Prolog v.3.12.51diing about 1000 lines of code,
where our last update supposes approximately a 30% of tHe€ida) and it has been recently equipped
with a graphical interface written in Java (circa 2000 linésode). More detailed, the FLOPER system
consists in a JAR (Java archive) file that runs the graphitetface. This JAR file calls aR®LOG file
containing the two main independent blocks: 1) the Parsiagklparses FASILL files into two kinds
of PROLOG code (a high level platform-independent®.0G program and a set of facts to be used by
FLOPER), and 2) the Procedural block performs the evalnaifca goal against the program, imple-
menting the procedural semantics previously describets ddde is completed with a configuration file
indicating the location of the ®oLOG interpreter as well as some other data.

FLOPER provides a traditional command interpreter. Whercdmmand interpreter is executed, it
offers a menu with a set of commands grouped in four submenus:

e “Program Menu”: includes options fquarsinga FASILL program from a file with extension
“.fpl”, savingthe generated ROLOG code to a “pl” file, loading/parsinga pure RROLOG
program listing the rules of the parsed program asidaningthe database.

6 The MALP language is nowadays fully subsumed by the new FAS&hguage just introduced in this paper, since, given
a FASILL programZ = (MN,%,L), if Z is the identity relation (that is, the one where each eleméatsignature is only
similar to itself, with the maximum similarity degree) ahds a complete lattice also containi@agljoint pairs[19], then.Z is
a MALP program too.
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good_hotel(g
it

{10}

[@aver(D.8,@very(close(rnz,metro)))] [@aver(&godeI(D.9,D.B),@ven-'(close(hydropolis,metro)))]

[@aver(elegant(}o,@vew(close(}(,metrn)))]

Lrritz 1 fritz} {¥hydrapolis X1 thydropolis}

@aver(&godel(0.9,0.6),@very{&gadel(0.7 0.4)0
{¥ihydropolis X1 thydropolis?

¢

@averD.B @veryoodel(D.7,0.4)0)
{Hhydrapolis X1 hydropolis)

©

@aver(D.6,@very(D.4))
{hydropolis X hydropolis}

@aver(0.g,0)

{30tz itz

0.4
LRtz iz}

@aver(l.&,0.16)
{¥rhydropolis X1 hydropalis}

0.38
Shydropolis 1 hydropolist

Figure 3: An execution tree as shown by the FLOPER system

e “Lattice Menu”: allows the user to change and show the latfimplemented in ROLOG) associ-
ated to a fuzzy program through optioas andshow respectively.

e “Similarity Menu”: option sim allows the user to load a similarity file (with extensions*im”,
and whose syntax is detailed further in the Similarity M@dalbsection ) anthorm sets the
conjunction to be used in the transitive closure of the i@tat

e “Goal Menu”: by choosing optionintro the user introduces the goal to be evaluated. Option
treedraws the execution tree for that goal wherkssresonly shows the fuzzy computed answer
contained on it, andepthis used for fixing its maximum depth.

The syntax of FASILL presented in Sectibh 1 is easily traeslao be written by a computer. As
usual in logic languages, variables are written as idergifimginning by an upper case character or
an underscore_*, while function and predicate symbols are expressed vdéntifiers beginning by a
lower case character, and numbers are literals. Terms anmtsdtave the usual syntax (the function or
predicate symbol, if no nullary, is followed by its arguneietween parentheses and separated by a
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colon). Connectives are labeled with their name immediaaéter. The implication symbol is written
as <-", and each rule ends with a dot. Additionally it is possildriclude pure ROLOG expressions
inside the body of a rule by encapsuling them between cudghkats {}”, and FROLOG clauses between
the dollar symbol $”, together with FASILL rules.

The graphical interface (written in Java) supports a frigndteraction with the user, as seen in
Figure[3. The graphical interface shows three areas. Thadsf one draws the project tree (grouping
each category of file into its own directory). In the righttpéine upper area displays the selected file of
the tree and the lower one shows the code and the solutionseotfiting a goal. This interface groups
files into projects which include a set fufzzyfiles (. £fpl), PRoOLOGfiles (.pl), similarity files (. sim),
script files -containing a list of commands to be executed consaxiyti(. vEs) and just one lattice file
(-1at). When executing a goal, the tool considers the whole progreerged from the set of files, thus
obtaining only one fuzzy program, one similarity relationg lattice and one#bLOG file.

The lattice module. Lattices are described in.dat file using a language that is a subset efldR0G
where the definition of some predicates are mandatory, amdi¢finition of aggregations follows a
certain syntax. The mandatory predicatesnatieber /1, that identifies the elements of the lattiet /1
andtop/1, that stand for the infimum and supremum elements of thedattindLeq/2, that implements
the ordering relation. Predicaiembers/1, that returns in a list all the elements of the lattice, isyonl
required if it is finite. Connectives are defined as prediatbhose meaning is given by a number of
clauses. The name of a predicate has the fatith |abel, or_label or agr_label depending on whether
it implements a conjunction, a disjunction or an aggregatbierelabel is an identifier of that particular
connective (this way one can define several conjunctiorgurtitions and other kind of aggregators
instead of only one). The arity of the predicatenis- 1, wheren is the arity of the connective that it
implements, so its last parameter is a variable to be unifiddthe truth value resulting of its evaluation.

?— agr.label(rq,...,rp,R). | .

R:rg (1 R }1f @iabel(r1,---,n) =T

Example 6. For instance, the following clauses show fR0OLOG program modeling the lattice of the
real interval [0, 1] with the usual ordering relation and connectives (conjiorciand disjunction of the
Product logi¢ as well as the average aggregator):

member (X) : - number (X), 0=<X, X=<1. leq(X,Y) :- X=<Y.
and_prod(X,Y,Z) :- Z is XxY. bot (0) .
or_prod(X,Y,Z) :- Ul is XxY, U2 is X+Y, Z is U2-U1. top(1).

agr_aver (X,Y,Z) :- Ul is X+Y, Z is U1/2.

The similarity module. We describe now the main novelty introduced in the tool, thdhe ability
to take into account a similarity relation. The similariglation % is loaded from a file with extension
.sim through optiorsim The relation is represented following a concrete syntax:

(Relation) ::= (Sim (Relation | (Sim
(Sim) = (A7 (Inty)] ~" (Idg)[1 (Intp)] =" (r) ) | ‘~"‘tnorm’ ‘=" (tnorm)
The Simoption parses expressions liké <~ g=r", where f andg are propositional variables or con-

stants and is an element of.. It also copes with expressions including arities, like'fi ~ g/n=r"
(then, f andg are function or predicate symbols). In this case, bothearitiave to be the same. lItis
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also possible to explicit, through a line like-“thorm = (label)” the conjunction to be used further in
the construction of the transitive closure of the relatitmiernally FLOPER stores each relation as a
factr in an ad hoc modulsimasr(f/n,g/n,r), wheren = 0 if it has not been specified (that is, the
symbol is considered as a constant). Tken file contains only a small set of similarity equations that
FLOPER completes by performing the reflexive, symmetrictagdsitive closure. The first one simply
consists of the assertion of the fa¢A, A, T). The symmetric closure produces, for each b,r), the
assertion of its symmetric entryb, a, r) if there is not already som&b,a,r’) wherer <r’ (in this case
r(a,b,r) will be rewritten ag (a,b,r’) when considering(b,a,r)). The transitive closure is computed by
the next algorithﬂ whereA stands for the conjunction specified by the directitrtnt, and “assert
and ‘retract’ are self-explainable and defined as IRE.0G:

Transitive Closure
forall r(A,B,r1) in sim
forall r(B,Cr»)in sim
r=riArs
if ((A,Cr')insimandr’ <r
retract r(A,C,r’) from sim
retract r(C,Ar’) from sim
end if
if r(A,C,r') notin sim
assertr(A,C,r) in sim
assertr(C,Ar) in sim
end if
end forall
end forall

It is important to note that, it is not relevant if the usenpdes (apparently) inconsistent similarity equa-
tions, since FLOPER automatically changes the user valydisebappropriate approximation degrees
in order to preserve the properties of a similarity. Foransk, if a user provides a set of equations such
as,a~b=0.8,b~c=0.6 anda~ c= 0.3, after the application of our algorithm for the constranti

of a similarity, results in the set of equatioas- b= 0.8, b ~ ¢ = 0.6 anda ~ ¢ = 0.6, which positively
preserves the transitive prop&ty

Example 7. Let L be the latticg[0, 1], <). To illustrate the enhanced expressivenesBASILL, con-
sider the program(ln,#,L) that models the concept gfood hote| that is, an elegant hotel that is
very close to a metro entrance, as seen in Figdre 3. Here, weansaverage aggregator defined as
@avg(x, y) £ (x+Y)/2, whereasvery is a linguistic modifier implemented as well as an aggregator
(with arity 1) with truth functior@veryx £ x2. The similarity relationZ states thaelegants similar to
vanguardistand metroto busand (by transitivity) tataxi:

“tnorm = godel metro ~ bus 0.5.
elegant/1 ~ vanguardist/1 = 0.6. bus ~ taxi = 0.4.

We also state that the t-norm to be used in the transitiveuckos the conjunction of &del (i.e., the
infimum between two elements). For this program (the setlebraf Figure[B, the lattice L and the
similarity relation, %, just described before), the gogbod hotel (X) produces two fuzzy computed
answers:<0.4, {X/ritz}> and<0.38, {X/hydropolis}>. Each one corresponds to the leaves of

7 It is important to note that this algorithm must be executgbtrafter performing the symmetric, reflexive closure.
8 For simplicity, we have omitted the equations obtainedrduthe construction of the reflexive, symmetric closure.
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the tred depicted in Figuré 3. Note that for reaching these solutiam$ailure step was performed in
the derivation of the left-most branch, whereas in the Hglust one (and this is the crucial novelty w.r.t.
previous versions of theLOPERtool) there exist two successful steps exploiting the aittylrelation
atomclose (hydropolis,metro), which illustrates the flexibility of our system.

Ending this section, it is worthy to say that our approackediffrom the one presented [n [6] since
they employ a combination of transformation techniquesrsb éixtract the definition of a predicate ”,
simulating weak unification in terms of a set of complex pamgrrules that extends the original program.
Finally, this predicate *” is reduced to a built-in proximity/similarity unificatioaperator (in this case
not implemented by rules and very close to the implementadfoour weak unification algorithm) that

highly improves the efficiency of their previous programgqsystems.

4.1 FLOPER online

Aside from the textual and graphical interfaces seen alwediave recently developed a web page aim-
ing at offering the FLOPER system via the Internet, with@gfuiring any further installation. The inter-
action with the system is possible through the UlRltp: //dectau.uclm.es/floper/?q=sim/test.
Under the title ofFLOPER Onlingt shows an interface divided in two areas. Thput area, shown in
Figure 4, is located in the upper part of the window, and Ghgputarea is in the lower part of the
window, and is illustrated by Figure 5.

The Input area shows three boxes. The first one, under the label “FABthram” is intended to
contain a set of FASILL rules, that is, the fuzzy program. $heond one contains the lattice associated
to the previously introduced program. By default it incladbe ([0, 1], <) lattice, obviously expressed
as a RoLoG program following the restrictions previously detailedthathe usual operators. The user
is free to implement here any complete lattice as far as filfuthe syntactic constrains. In the third
box the user can write a set of similarity equations usingptiogram’s signature. After these boxes the
user can introduce a goal in a text box (in Figure 4, the goadégl hotel (X)). Finally, by clicking the
Submitbutton, the fuzzy program, together with its associatetictatind the similarity relation, is sent
to the server with the goal to be executed.

The result appears in tli@utputarea in two ways. In the first place, under the ldbela’s for goal . ..
(including the proper goal), the system shows the fuzzy adetbanswers for the introduced program
and goal. In the figure this correspondst®.4, {X/Ritz} >and< 0.38, {X/hydropolis} >, as
expected. Further, in the box below, the derivation treee@aed in a textual way.

The tool has been implemented as a php page inside the webSi_EA This php document sends
the content of the text boxes (the FASILL program, the laftibe similarity equations and the goal) to
itself via the “post” method. When the php loads again with enpty “post” parameters, it creates files
in the server to host the FASILL program, the lattice and thelarity equations, and calls theR®LOG
interpreter. Then, it consults the FLOPER environmentid¢ahe files and queries the goal. The output
of this task (that is, the corresponding f.c.a’s and exeautiee) are finally shown in the window.

9Each state contains its corresponding goal and substitabmponents and they are drawn inside yellow ovals. Compu-
tational steps, colored in blue, are labeled with the pnograle they exploit in the case sficcessfusteps or the annotation
“R0” in the case ofailure steps (observe that, “R0” is a simple notation and do noespond with any existing rule). Finally,
the blue circles annotated with the word “is”, corresponihterpretivesteps.
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Home

FLOPER Online

Testing:

FASILL program:

vanguardistihydropelis) <- 0.9.

elegantiritz) =- 0.8,

closefhydropolis, taxi) <- 0.7,

good_hotel(X) <- @avenelegant{X), Bvery(closedX, metral)).

Lattice:

:- dynamic agr_very/2, and_godel/3, or_prod/3, or_godel/3, or_lukasd, agr_aver/3, pri_prod/3, pri_div/3,
pri_sub/3, pri_add/3, pri_min/3, pri_max/3.

membear(X)-numbenX), O=<X X=<1.
legiX.Y)-X =< Y.

bot(0).
top(1).

Similarity equations:

elegant/1 ~ vanguardist/1 = 0.8,
metro ~ bus = 0.5.

bus ~ taxi = 0.4.

~tnorm = godel.

Goal: good_hotel{X)
Submit | (Tree depth: 12 )

Figure 4: Screenshot of the FLOPER online tool input

5 Conclusions and Future Work

This paper describes an extension of the FLOPER system ® wih the twofold integrated fuzzy
programming language FASILL, whose procedural princigleentered upon a weak —instead of a
syntactic— unification algorithm based on similarity redas. After a brief introduction of the syntactic
and operational features of FASILL, we describe the impletaigon details of the renewed FLOPER
system which gives support to FASILL. We center our attentim the description of theimilarity
module providing insights of the internal representation of aikinty relation and its automatic con-
struction, via built-in closure algorithms. Also we deberithe new tool oFLOPER onlinethat allows
the execution of FASILL programs thru the web.

On the other hand, in[1L, 10, 22] we provided some advanciéeidesign of declarative semantics
and/or correctness properties regarding the developnidnzny logic languages dealing with similar-
ity/proximity relations (Bousi-Prolog) or highly expressive lattices modeling truth degréMALP).
As a matter of future work we want to establish that analogdug reinforced— formal properties also
hold in the language FASILL.
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Fuzzy computed answers and execution tree:

F.c.a's for goal good_hotel(X)

< 0.4, {Xfritz} >
< 0.38, {E/hydropolis} >

Derivation tree

RO = goed_hotel(X), {} =
R4 < @aver(elegant(X),@verylclose{X.metra))), (X1/X] >
R2 = Raver(0.8,@very{close{ritz. metra))), (X ritz X1/ritz} =
RO = @aver(0.B,@very(0)), {Xfritz, X1/ritz} >
is < @aver(0.8,0), [Kfritz, X1/ritz} =
is = 0.4, {X/ritz,X1/ritz} =
A1 < @aver(&godel(0.9,0.6), 8very{closehydropolis,metra))), (Xhydropelis,X1/mydropolis} >
R3 = @aver{kgodel{0.8,0.6),8very(&godel(0.7,0.4))), {X/hydropolis X1/hydropolis} =
is < @aver(0.5. @very{&godel{0.7,0.4))), (X/hydropolis, X1/hydropalis} >
is <« @aver(0.6, @very(0.4)), {X/hydropelis, X1/Mydropolis} =
is < @aver{0.6,0.16], X/hydropolis, X1/hydropolis} =
is = 0.38, {¥/hydropolis X1/hydropolis} =

4 Top

Figure 5: Screenshot of the FLOPER online tool output
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