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Resumen

Esta tesis presenta una extensión del popular lenguaje XPath, que ofrece una lista de

respuestas ordenadas a una consulta �exible aprovechando las variantes difusas de

los operadores and, or y avg para las condiciones XPath, así como dos restricciones

estructurales, llamadas down y deep, para el que se asocia un cierto grado de relevan-

cia. En la práctica, este grado es muy bajo para algunas respuestas obtenidas con la

consulta original, y por lo tanto, no deberían ser calculadas, con el �n de aliviar la

complejidad computacional del proceso de recuperación de información. Con el �n

de mejorar la escalabilidad de nuestro intérprete para hacer frente a archivos XML

grandes, hacemos uso de la capacidad de la programación lógica difusa para descar-

tar de forma anticipada los cálculos que conducen a soluciones poco signi�cativas

(es decir, con un pobre grado de relevancia según las preferencias expresadas por los

usuarios cuando usan el nuevo comando FILTER). Nuestra propuesta se ha imple-

mentado en un lenguaje lógico difuso, aprovechando los altos recursos expresivos de

este paradigma declarativo para la gestión de �umbrales dinámicos� de una manera

natural y e�ciente. Además de utilizar nuestro entorno FLOPER para desarrol-

lar el intérprete, también proponemos su implementación con el lenguaje estándar

XQuery. Básicamente, de�nimos una biblioteca XQuery capaz de gestionar de forma

difusa expresiones XPath, de tal manera que nuestro FuzzyXPath puede ser codi-

�cado como expresiones XQuery. Las ventajas de nuestro enfoque es que cualquier

interprete XQuery puede manipular una versión borrosa de XPath mediante el uso

de la biblioteca que hemos implementado.

Por otro lado, se presenta un método para depurar consultas XPath, describi-

endo cómo las expresiones XPath puede manipularse para obtener un conjunto de

consultas alternativas que coincidan con un documento XML determinado. Para

cada nueva consulta, damos un �chance degree� que representa una estimación de

su desviación con respecto a la expresión inicial. Nuestro trabajo se centra en pro-
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porcionar a los programadores un repertorio de alternativas (que contienen nuevos

comandos como las etiquetas �JUMP/DELETE/SWAP�) que se pueden utilizar para

obtener mas respuestas. Nuestro depurador es capaz, de la misma manera que el

intérprete, de gestionar grandes documentos XML haciendo uso del comando FIL-

TER que ignora de forma anticipada cálculos que conducen a soluciones no signi-

�cativas (es decir, con un �chance degree� muy rebajado, según las preferencias del

usuario). El punto clave, nuevamente, es la capacidad natural para realizar �um-

bralizacion dinámica� que ofrece el lenguaje lógico difuso usado para implementar

la herramienta, conectando así de alguna manera con el llamado �top-k answer-

ing problem� muy conocido en la lógica difusa y el soft-computing (o computación

�exible).

En cuanto a nuevas aplicaciones no estándares, en el último bloque de esta tesis

reforzamos las sinergias bilaterales entre FuzzyXPath y FLOPER. En particu-

lar, nos ocupamos de fórmulas proposicionales difusas que contienen varios símbolos

proposicionales vinculados con conectivos de�nidos en un retículo de grados de ver-

dad más complejos que Bool. En primer lugar, recordamos un método basado en

SMT (Satis�ability Modulo Theories) difuso para demostrar automáticamente teo-

remas en relevantes lógicas con in�nitos valores (incluyendo a las de �ukasiewicz y

Gödel). A continuación, en lugar de centrarnos en cuestiones de satisfactibilidad

(es decir, demostrar la existencia de al menos un modelo) como normalmente se

hace en un entorno SAT/SMT, nuestro interés se traslada al problema de encontrar

un conjunto de modelos (sobre un dominio �nito) para una fórmula difusa dada.

Reutilizaremos un método anterior basado en la programación lógica difusa donde

la fórmula se concibe como un objetivo de un árbol de derivación, proporcionado

por nuestra herramienta FLOPER, que contiene en sus ramas todos los modelos

de la fórmula original, junto con otras interpretaciones (obtenidas tras interpretar

de forma exhaustiva cada símbolo proposicional de todas las formas posibles con

respecto a un conjunto de valores recogidos en un retículo subyacente de grados-de-

verdad). A continuación utilizamos la capacidad de la herramienta FuzzyXPath

para explorar estos árboles de derivación una vez exportados a formato XML, con el

�n de detectar automáticamente si la fórmula es una tautología, satisfactible o una

contradicción.



Summary

This thesis presents an extension of the popular XPath language which provides

ranked answers to �exible queries taking pro�t of fuzzy variants of and, or and avg

operators for XPath conditions, as well as two structural constraints, called down

and deep, for which a certain degree of relevance is associated. In practice, this

degree is very low for some answers weakly accomplishing with the original query,

and hence, they should not be computed in order to alleviate the computational

complexity of the information retrieval process. In order to improve the scalability of

our interpreter for dealing with massive XML �les, we make use of the ability of fuzzy

logic programming for prematurely disregarding those computations leading to non

signi�cant solutions (i.e., with a poor degree of relevance according the preferences

expressed by users when using the new command FILTER). Since our proposal has

been implemented with a fuzzy logic language, we have exploited the high expressive

resources of this declarative paradigm for performing �dynamic thresholding� in a

very natural and e�cient way. But apart from using our FLOPER environment

for developing the interpreter, we also propose an implementation coded with the

standard XQuery language. Basically, we have de�ned an XQuery library able to

di�usely handle XPath expressions in such a way that our proposed FuzzyXPath

can be encoded as XQuery expressions. The advantages of our approach is that any

XQuery processor can handle a fuzzy version of XPath by using the library we have

implemented.

On the other hand, we present a method for debugging XPath queries by describ-

ing how XPath expressions can be manipulated for obtaining a set of alternative

queries matching a given XML document. For each new proposed query, we give a

�chance degree� that represents an estimation on its deviation w.r.t. the initial ex-

pression. Our work is focused on providing to the programmers a repertoire of paths

(containing new commands for �JUMP/DELETE/SWAP� tags) which can be used
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to retrieve answers. Our debugger is able to manage big XML documents by making

use of the new command FILTER which is intended to prematurely disregard those

computations leading to non signi�cant solutions (i.e., with a poor �chance degree�

according to the user's preferences). The key point again is the natural capability

for performing �dynamic thresholding� enjoyed by the fuzzy logic language used for

implementing the tool, which somehow connects with the so-called �top-k answering

problem� very well-known in the fuzzy logic and soft computing.

Regarding non standard applications, in the last block of this thesis we rein-

force the bi-lateral synergies between FuzzyXPath and FLOPER. In particular,

we deal with propositional fuzzy formulae containing several propositional symbols

linked with connectives de�ned in a lattice of truth degrees more complex than Bool.

We �rstly recall a fuzzy SMT (Satis�ability Modulo Theories) based method for auto-

matically proving theorems in relevant in�nitely-valued (including �ukasiewicz and

Gödel) logics. Next, instead of focusing on satis�ability (i.e., proving the existence of

at least one model) as usually done in a SAT/SMT setting, our interest moves to the

problem of �nding the whole set of models (with a �nite domain) for a given fuzzy

formula. We re-use a previous method based on fuzzy logic programming where the

formula is conceived as a goal whose derivation tree, provided by our FLOPER tool,

contains on its leaves all the models of the original formula, together with other inter-

pretations (by exhaustively interpreting each propositional symbol in all the possible

forms according the whole set of values collected on the underlying lattice of truth-

degrees). Next, we use the ability of the FuzzyXPath tool for exploring these

derivation trees once exported in XML format, in order to automatically discover

whether the formula is a tautology, satis�able, or a contradiction.
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Chapter 1

Introduction

Now, we will talk �rst about the objectives and structure of the thesis, where a brief

overview of the most important points will be given. Then take a brief look at impor-

tant points on which this thesis is based concepts; �rstly we describe the �eld of fuzzy

logic, that was originated by the works [Zad65b, Zad65a, Gog69, Pav79] and we use

as an extension of the polyvalent logic systems [Pav79, H�98, NPM99]. In this logic

theory it is possible to de�ne a wide variety of operators, like t-norms, t-conorms and

aggregators [DP84, DP85, DP86, FY94, FR92, Yag93a, Yag93b, Yag94b, Yag94a,

CBM99, CKKM02], and there are many de�nitions for implications [TCC00, CF95].

After its description, a historical background is provided [Zad96].

Finally, we detail the main notions of logic programming [Her30, Rob65, Kow74,

War83, Llo87, Apt90, Apt97, JA07], before addressing the area of fuzzy logic pro-

gramming [Hin86, MBP87, LL90, IK85]. We review the more prominent languages

in this �eld; in particular, those based on weighted rules (Prolog-Elf [IK85], FPro-

log [MBP87], Fuzzy Prolog [MSD89], f-Prolog [LL90], RFuzzy and the multi-adjoint

logic programming language MALP [MOV01d, MOV01c, MOV01b, MOV01a]), and

the other based on similarities (Likelog[FGS00], SiLog[LSS01] based on [Ses02],

and Bousi∼Prolog [JRG08, JRG09a, JR09b, JR10a]).

1.1 Objectives and structure of the Thesis

After introducing in the �rst pair of chapters some preliminary concepts regarding

fuzzy logic, logic programming and the �Fuzzy LOgic Programming Environment
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2 Chapter 1. Introduction

for Research" FLOPER, in Chapter 3 we detail the design of our FuzzyXPath

interpreter �which represents a fuzzy variant of the popular XPath query language

for the �exible information retrieval on XML documents� thus providing a repertoire

of operators that o�er the possibility of managing satisfaction degrees by adding

structural constraints and fuzzy operators inside conditions, in order to produce a

ranked sorted list of answers according to user's preferences when composing queries

[ALM11a, ALM11b, ALM12c].

By using the FLOPER system, our proposal has been implemented with a fuzzy

logic language to take pro�t of the clear synergies between both target and source

fuzzy languages [ALM15a]. In Chapter 4 we discuss the advantages of exploiting

the high expressive resources of this declarative paradigm for performing �dynamic

thresholding� when evaluating queries [ALM14a]. Moreover, in Section 4.2 we also

provide an alternative implementation based on XQuery which increases the porta-

bility of the FuzzyXPath interpreter [ALM14b].

In Chapter 5 we recast from [ALM12a, ALM12b, ALM13] our recently designed

method for debugging XPath queries which produces a set of alternative XPath

expressions (where some tags have been �jumped�, �deleted� or �swapped�) with

higher chances for retrieving answers from XML �les. The use of �ltering techniques

in the FLOPER-based implemention of the tool represents once again the key point

for gaining e�ciency and increasing its scalability when managing very large XML

documents [ALM15b].

Regarding applications, in Chapter 6 we describe a new feedback between

FLOPER and FuzzyXPath. In [ALMV13, ALMV15] we focus on the ability of

our interpreter for exploring derivation trees generated by FLOPER once they are

exported in XML format, which somehow serves as a debugging tool for analyzing

computational details such as discovering the set of fuzzy computed answers for

a given goal, performing depth/breadth-�rst traversals of its associated derivation

tree, �nding non fully evaluated branches, etc. Such relationship grows through the

connections we establish with recent (fuzzy) SAT/SMT techniques as explained in

[ABL+15].

Finally, this thesis concludes in Chapter 7 by collecting a brief summary of the

achieved results and by proposing too some lines for future work.
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1.2 Fuzzy logic

Fuzzy logic applies to the �eld of imprecise or vague statements we use to describe

complex systems with unclear boundaries. In this sense, if classical logic was de�ned

as the science that studies the laws, ways and types of reasoning, fuzzy logic could

be de�ned in the same way as the science that studies the laws, ways and types of

approximated reasoning.

Fuzzy logic was �rst formulated by Lofti Zadeh [Zad65b, Zad65a] and widen by

Goguen [Gog69] and Pavelka [Pav79], in order to incorporate to formal logic the

imprecise predicates of the common language, and build an approximated type of

reasoning.

For [Zad96], creator of this discipline and the one who introduced the term

�fuzzy�, there are two meanings for the concept of fuzzy logic. In a broad sense,

as generally understood, fuzzy logic refers to the use of fuzzy sets for manipulat-

ing imprecise knowledge. Therefore, it de�nes a theory of classes with non-sharp

boundaries. This approximation di�ers clearly from ordinary logic in the use of

fuzzy relations, the generalisation of traditional logic connectives such as `¬', `∧'
y `∨' by their fuzzy counterparts, the fuzzy negations, t-norms and t-conorms, as

well as other concepts like truth values, the presence of linguistic modi�ers, etc.

In this wider conception of the fuzzy logic, truth values can be fuzzy themselves,

independently of the vagueness of the predicates. In practice, this means that the

evaluation of a relation does not give a value (e.g., a number between 0 and 1), but

the characteristic function that de�nes the relation itself.

In the other hand, strictly speaking, fuzzy logic refers to a logic system that

formalizes approximated reasoning. In its simplest formulation, it constitutes an

extension of classical bivalent logic to a logic with in�nite truth values in the closed

interval [0, 1] with the usual ordering relation. It is, therefore, an extension of the

polyvalent logic systems that shares with classical logic the search for soundness and

completeness of the systems it studies [Haj06], although with di�erent aims. This

orientation of logic is relatively recent. It dates back to the works of [Pav79], who,

together with [H�98, NPM99], constitutes the fundamental references in this second

de�nition.

Traditionally, imprecise reasoning has not been appropriately addressed. Accord-

ing to [TAT95], since the beginnings of classical logic there have been only insu�cient

solutions: some has tried to gain precision against the imprecise (Frege or Russel),

and others tried to isolate the imprecise to carefully avoid it (Plato, Hume or some
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contemporary strategies). This limitation in the traditional tools motivates the in-

vestigation on fuzzy sets and, in parallel, fuzzy logic. Classical logic, classical set

theory and probability are not well suited to address the vagueness, imprecision,

uncertainty, lack of speci�city, inconsistency and complexity of the real world.

In the crisp (bivalent) ambit of classical mathematics there is no room for vague-

ness and partial truth. In this framework, all statement has to admit a precise

de�nition that divides the objects of the considered universe into to subsets: one for

those that satisfy it, and the other for those that do not satisfy it; and there is no

possibility of dubious cases.

In frontal opposition to this world of clear borders, the perception of reality is

full of concepts that do not admit a strict categorisation [TT89], as tall, big, many,

slowly, young, healthy, relevant, much greater than, kind, among others. In the

framework of fuzzy logic such concepts determine fuzzy sets, i.e., identify classes of

objects for which the transition of membership to non-membership is gradual and

not crisp.

Furthermore, the e�ort to acquire knowledge relating the real world is giving way

to the e�ort to know aspects of the knowledge itself. Currently the delimitation of

the scope and soundness of the information is as relevant (if not more) as its mere

acquisition: it is necessary to know to which extent do we know something, i.e.,

assign a truth degree to it. Uncertainty is inextricably bounded to information. Even

though there are di�erent types of uncertainty, the one produced by the imprecision

and subjectivity of human thinking is the most relevant [Zad08]. In many occasions

it is convenient to sacri�ce part of the precise information available to have a more

vague but useful information in order to cope e�ciently with the complexity of real

world. Many of the usual concepts share an imprecise nature, i.e., they are not

clearly delimited but they are signi�cant. Fuzzy logic and fuzzy set theory o�er a

natural method to deal with vagueness and imprecision.

In [Zad65b] the author introduces for the �rst time a theory of fuzzy sets, that

are sets with non precise borders and whose membership function gives a degree.

One of the main goals of this theory is to provide a basis for approximate reasoning

that uses vague hypotheses as a tool for formulating knowledge. Although its nature

is di�erent from other logics, in opinion of [TAT95], this logic of in�nite truth values

can be seen as an extension of the bivalent logic, of the trivalent logic de�ned by

�ukasiewicz in 1922 and, in general, of the multivalued logic [Ack67, Cha58].

In other words, fuzzy logic can be seen as a reasoning model that takes into
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account qualitative or approximated aspects and that has a great ability to manage

very complex or poorly de�ned problems. Its natural basis is conformed by the

above mentioned fuzzy sets, that are the mathematical columns that sustain fuzzy

predicates and allow to perform the logic calculations needed to perform inferences.

This logic is one of the most interesting and recent theories to model an abundant

number of systems for which classical logic, multivalent logics and the probability

framework are insu�cient or inappropriate. For this problems, fuzzy logic o�ers

symbols and operators that operates with the notion of vagueness, and inference

rules that preserve, delimit and transmit the truth values from the hypothesis to the

thesis. Next, we de�ne some of the basic notions of fuzzy logic as collected in the

thesis of Jaime Penabad [Pen10].

1.2.1 Fuzzy sets, aggregators and fuzzy implications

[Zad65b] introduces a notion of fuzzy set through which the concepts of fuzzy in-

terpretation, fuzzy logic operations and linguistic modi�ers, among others ([PG98])

are formalized. Consider ordinary sets like

A = {x ∈ Z : x is prime}, A = {x ∈ N : x is even}, A = {x : x is mortal}

for which the membership relation is discrete, i.e., an element (of the corresponding

universe) belongs or does not belong to the set:

∀x ∈ U , x ∈ A ∨ x /∈ A; A ⊂ U ,

In the case of fuzzy sets, the membership is associated to a degree; is the case of

sets like:

A = {x ∈ Z : x is big}

A = {x : x is a warm day}

A = {x : x is a developed country}

in which the nature of the property (predicate) that characterizes them is not clear

(as it is in ordinary sets), but fuzzy. Therefore, we cannot say that the elements of

the universe satisfy or not a certain predicate, but they satisfy it at some degree.

These sets are formalised providing this new notion of membership, as we do next.

A fuzzy set A, in a universe U , is expressed as:

A = {x|µA(x) : µA(x) ̸= 0, x ∈ U},
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where the application

µA : U → [0, 1]

is the membership degree function.

In other words, a fuzzy set is determined by a function µA. For each x ∈ U ,
µA(x) ∈ [0, 1] is a real number that indicates the compatibility of x with the char-

acteristic (predicate) that de�nes the set A.

It is also possible to consider that the ordinary membership is determined by the

characteristic function

χA : U → {0, 1}, χA(x) =

{
1, if x ∈ A

0, if x /∈ A

that is,

x ∈ A⇔ χA(x) = 1, x /∈ A⇔ χA(x) = 0, ∀x ∈ U

The fuzzy membership, given by µA, is a generalisation of the classical one, since

χA is a particular case of µA.

From this easy but relevant observation follows that the notion of fuzzy set

extends the one of classical set. That is, an ordinary set is a fuzzy set. Particularly,

the universe U (that we take as ordinary in the de�nition of A) and the empty set

∅ are fuzzy. Indeed,

µ∅ = χ∅ such that µ∅(x) = χ∅(x) = 0, ∀x ∈ U

µU = χU such that µU (x) = χU (x) = 1, ∀x ∈ U

Once characterized a fuzzy set by its membership degree function, µA, all its prop-

erties are referred to this, so the content, complementary, operations, etc., are ex-

pressed in terms of the corresponding membership functions.

From a semantic point of view, the essential de�nition of fuzzy logic is the one of

interpretation, which associates to each (atomic) formula an element usually taken1

in the real interval [0, 1]. We detail now how an interpretation gives a truth degree

to a fuzzy proposition through the concept of fuzzy set.

Given a predicate A(x) in a universe U and an element x0 ∈ U , the formula

A(x0) is interpreted as true with truth degree µA(x0). In that case we write:

I(A(x0)) = µA(x0)

1In a more general way it can be taken from a certain ordered set [Zad08], as we consider later

in this chapter.
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Then we say that the proposition A(x0) holds with degree µA(x0), that is the mem-

bership degree of x0 to the fuzzy set A. And that set is, necessary, the set associated

to predicate A(x):

A = {x ∈ U : A(x)},

We can assume that the previous de�nition is the formalisation (interpretation)

of predicate A(x) through the fuzzy set A. Indeed, it is legitimate to de�ne it in

these terms: �x0 satis�es predicate A(x) with degree µA(x0), that is, the membership

degree of x0 to the fuzzy set A = {x ∈ U : A(x)}.�
Later in this chapter, by means of linguistic modi�ers, we provide a meaning

to consider fuzzy propositions as false, very true, very false, more or less true, etc.

This way we also incorporate the fuzzy nature to the concept of interpretation:

particularly, it is possible to associate a di�erent interpretation to each predicate

modi�er (like no, too, a little, approximately, etc.) to be formalized. This possibility

provides another di�erentiating element of fuzzy logic.

Before proceeding, it is mandatory to distinguish the vagueness of a statement

(that a�ects to the statement itself) and uncertainty (that a�ects its compliance). In

other words, this is not a possibilistic logic that considers the nonrandom uncertainty

of non fuzzy propositions.

We detail now the syntax of this paradigm beyond fuzzy sets. The syntax of fuzzy

logic has not too many novelties with respect to the interpretation of connectives.

Once an elemental expression has been interpreted, the compounded expressions

takes their values using ad hoc formulae [Lee72]. Thus, for instance, the conjunction

is usually de�ned by the formula

I(A(x0) ∧B(x0)) = min{I(A(x0)), I(B(y0))},

where A(x), B(y) are some predicates in universes U , V, respectively, and x0 ∈
U , y0 ∈ V.

If we take predicates A(x), B(x) over the same universe U and they de�ne, re-

spectively, fuzzy sets A,B ⊂ U , it also follows

I(A(x0) ∧B(x0)) = µA∩B(x0),

where µA∩B(x0) is the membership degree of x0 to the intersection set A ∩ B.

That is, it is allowed to de�ne the fuzzy conjunction by means of the corresponding

intersection of sets.
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Generally speaking, the truth function of the fuzzy conjunction can be de�ned

also by the wide range of functions known as triangular norms, introduced by [SS83]

to model distances in probabilistic metric spaces (de�ned by K. Menger in 1942)

and the semigroups of distribution functions.

We de�ne now these functions in the interval [0, 1].

De�nition 1.2.1 ([NW06]). An operation T : [0, 1]× [0, 1] −→ [0, 1] is a triangular

norm or t-norm if, and only if, it veri�es

i) is commutative, i.e., T (x, y) = T (y, x), ∀x, y ∈ [0, 1].

ii) is associative, i.e., T (x, T (y, z)) = T (T (x, y), z),∀x, y, z ∈ [0, 1].

iii) T (x, 1) = x,∀x ∈ [0, 1].

iv) is monotonic in each component, i.e.2, if x1 ≤ x2, then T (x1, y) ≤ T (x2, y),

∀x1, x2, y ∈ [0, 1].

Analogously, disjunction is usually characterized by the expression

I(A(x0) ∨B(x0)) = max{I(A(x0)), I(B(y0))},

and if we consider predicates A(x), B(x) on the same universe U de�ning, respec-

tively, the fuzzy sets A,B ⊂ U , we also have

I(A(x0) ∨B(x0)) = µA∪B(x0),

where µA∪B(x0) is the membership degree of x0 to the union set A∪B. Consequently,
this logic operation is associated to the union of sets. More precisely, it is possible

to formalize fuzzy disjunction (of propositions and also of predicates) by the union

of fuzzy sets.

Furthermore, as in the conjunction, the (truth function of the) fuzzy disjunction

can be de�ned by the wide range of functions called t-conorms, characterized in the

following way in the interval [0, 1].

De�nition 1.2.2 ([NW06]). An operation S : [0, 1]× [0, 1] −→ [0, 1] is a triangular

conorm, or t-conorm, if, and only if, it veri�es

i) is commutative, i.e., S(x, y) = S(y, x), ∀x, y ∈ [0, 1].

2From the given characterization (only for the �rst component) follows also the monotonicity in

the second one using conditions i) and iv).
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ii) is associative, i.e., S(x, S(y, z)) = S(S(x, y), z),∀x, y, z ∈ [0, 1].

iii) S(x, 0) = x, ∀x ∈ [0, 1].

iv) is monotonic in each component, i.e.3, if x1 ≤ x2, then S(x1, y) ≤ S(x2, y),

∀x1, x2, y ∈ [0, 1].

If T is a t-norm in [0, 1], then S(x, y) = 1−T (1−x, 1− y) de�nes a t-conorm and S

is said to derive from T . More generally, given a t-norm T and a strong negation4 N ,

then function SN : [0, 1]× [0, 1] −→ [0, 1], de�ned as SN (x, y) = N(T (N(x), N(y))),

is a t-conorm called N -dual of T .

By the elemental properties of negation we have T (x, y) = N(SN (N(x), N(y))),

that is, T is the N -dual t-norm of SN . Given a t-conorm S and a strong negation N ,

the function TN : [0, 1] × [0, 1] −→ [0, 1], de�ned as TN (x, y) = N(S(N(x), N(y))),

is a t-norm called N -dual t-norm of S.

Again, since N is a negation, S(x, y) = N(TN (N(x), N(y))), that is, S is the

N -dual t-conorm of TN .

Concluding, we say that T and S are N -dual if ∀x, y ∈ [0, 1] it holds:

T (x, y) = N(S(N(x), N(y))) S(x, y) = N(T (N(x), N(y)))

Particularly, taking the usual negation N(x) = 1−x, T and S are dual if ∀x ∈ [0, 1]

it holds:

T (x, y) = 1− S(1− x, 1− y) S(x, y) = 1− T (1− x, 1− y)

We present below basic pairs of basic t-norms and t-conorms (dual) ([CFF97]):

• Zadeh's (or the Minimum/Maximum) de�ned by

T (x, y) = min{x, y} S(x, y) = max{x, y}

• �ukasiewicz's de�ned by

T (x, y) = max{x+ y − 1, 0} S(x, y) = min{x+ y, 1}

3The monotonicity in the second component follows also from i) and iv).
4A strong negation in [0, 1] is a function N : [0, 1] −→ [0, 1] that is continuous, strictly decreasing

and N(0) = 1, N(N(x)) = x.



10 Chapter 1. Introduction

• Of the Product, de�ned by

T (x, y) = xy S(x, y) = x+ y − xy

• Weak/Strong, de�ned by

T (x, y) =

{
min{x, y}, if max{x, y} = 1

0, otherwise
S(x, y) = x+ y − xy

• Hamacher's, de�ned for each γ ≥ 0 by

Tγ(x, y) =
xy

γ + (1− γ)(x+ y − xy)
S(x, y) =

x+ y − (2− γ)xy

1− (1− γ)xy

• Yager's, de�ned for each p > 0 by

Tp(x, y) = 1−min{1, p
√

(1− x)p + (1− y)p} Sp(x, y) = min{1, p
√
xp + yp}

It is common to use t-norms and t-conorms to produce new connectives [Miz89a,

Miz89b, Tur92, FC98, DSMK07, KMP04]. T-norms and t-conorms are particular

cases of aggregation operators5 (studied by [DP84, DP85, DP86], [FY94, FR92] and

[Yag93a, Yag93b, Yag94b, Yag94a]) and, also, certain combinations of them originate

new aggregation operators [CBM99, CKKM02].

It is possible to produce aggregators (see [Lin65, Miz89b, Tur92, MTK99, JM03,

Jen04, Jen06]) by convex combinations of a t-norm T and a t-conorm S, that is,

produce the aggregator @(x, y) = αT (x, y)+(1−α)S(x, y), that preserves symmetry

and idempotence.

Aggregators are common in the development of multiple intelligent systems, as

is the case of neuronal networks, fuzzy controllers, expert systems and, specially, in

decision theory. Aggregators allow the e�cient and �exible combination of informa-

tion [HHV96], which has become a main task in multiple-criteria decision problems

where it is necessary to process a great deal of information of di�erent quality and

precision.

The most general de�nition for the aggregation operator, in the interval [0, 1], is

the one given in [KK99], that we reproduce here.

De�nition 1.2.3. An aggregation operator @ is an application @ : [0, 1]n −→ [0, 1]

that ful�ls:

5See De�nition 1.2.3 for a characterization of the former.
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i) @(0, . . . , 0) = 0,@(1, . . . , 1) = 1 (boundary conditions)

ii) ∀(x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n,

(x1, . . . , xn) ≤ (y1, . . . , yn)
6 =⇒ @(x1, . . . , xn) ≤ @(y1, . . . , yn) (monotonicity)

Sometimes other conditions are required together with the ones mentioned above,

such as continuity, symmetry and idempotence. Particularly, @ is symmetric if,

and only if, for all permutation σ of {1, . . . , n} and all n-uple (x1, . . . , xn) ∈ [0, 1]n

the next holds: @(x1, . . . , xn) = @(xσ(1), . . . , xσ(n)); also, @ is idempotent (i.e.,

@(x, . . . , x) = x) if and only if for all n-uple (x1, . . . , xn) ∈ [0, 1]n,min{x1, . . . , xn} ≤
@(x1, . . . , xn) ≤ max{x1, . . . , xn} holds.

Some well known examples of aggregation operators are t-norms and t-conorms

(previously detailed), Quasi-Linear Weighted Means [Acz48, Yag94b] (if they are,

also, symmetric, they give the quasi-arithmetic mean, like the arithmetical average,

the geometric average, and harmonic and quadratic means), OWA operators [Yag88]

(arithmetic average is also a particular case of these operators), the extended aggre-

gation functions [MC97], and the γ-operators of [ZZ80], among others.

We end this section addressing a fundamental element in (fuzzy) logic: implica-

tion. Fuzzy implication constitutes the most interesting composed operation of fuzzy

logic (as well as in classical logic), since it allows to perform logical inferences and

deduce theorems from axioms. Its truth function allows di�erent non-equivalent for-

mulations; there are, thus, many di�erent fuzzy implications that not always extend

the usual (classical) implication [TCC00, CF95].

The usual way to interpret fuzzy implication

A(x0)⇒ B(y0)

is given by the formula

I(A(x0)⇒ B(y0)) = max{min{I(A(x0)), I(B(y0))}, 1− I(A(x0))},

where A(x), B(y) are arbitrary predicates in universes U , V respectively and x0 ∈
U , y0 ∈ V. If predicates A(x), B(y) de�ne fuzzy sets A ⊂ U , B ⊂ V, it follows

I(A(x0)⇒ B(y0)) = max{min{µA(x0), µB(y0)}, 1− µA(x0)}; x0 ∈ U , y0 ∈ V

This truth function for fuzzy implication, provided by Zadeh, generalizes the classical

implication.

6Where (x1, . . . , xn) ≤ (y1, . . . , yn) if, and only if, xi ≤ yi, i = 1, . . . , n.
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Mamdani and Larsen provide other interesting examples of fuzzy implication,

whose interpretations we present here7

Mamdani : I(A(x0)⇒ B(y0)) = min{I(A(x0)), I(B(y0))}

Larsen : I(A(x0)⇒ B(y0)) = I(A(x0)) · I(B(y0))

We present now the fuzzy implication in the most general way. First, we consider

that, given a Boole algebra (A,∧,∨,′ , 0, I), an operation →: A × A −→ A is an

implication if for each x, y ∈ A, it holds x ∧ (x → y) ≤ y. It is well known that

p → q = (p ∧ q′)′, p → q = (p ∧ q) ∨ (p′ ∧ q) ∨ (p ∧ q′) are implications and, by the

properties of the Boole algebra, we have that (p∧q)∨(p′∧q)∨(p∧q′) = (p′∧q′)∨q =

p′ ∨ (p ∧ q) = p′ ∨ q, and also (p ∧ q′)′ = p′ ∨ q.

If, in the fuzzy context, we choose a t-norm T instead of a conjunction ∧, a
t-conorm S instead of a disjunction ∨ and a strong negation N instead of a negation
′, we obtain the following models of fuzzy implication [TCC00]:

J1(x, y) = N(T (x,N(y)))

J2(x, y) = S(N(x), y)

J3(x, y) = S(N(x), T (x, y))

J4(x, y) = S(T (N(x), N(y)), y)

With respect to its characterization, a fuzzy implication in the real interval [0, 1] is

de�ned by the following truth function8 [TCC00, TV85].

De�nition 1.2.4. An implication function J is an application J : [0, 1]n −→ [0, 1]

that ful�ls:

(1) If x1 ≤ x2, then J(x1, y) ≥ J(x2, y)

(2) If y1 ≤ y2, then J(x, y1) ≤ J(x, y2)

(3) J(0, y) = 1

(4) J(1, y) = y

(5) J(y, J(x, z)) = J(x, J(y, z)), ∀x, y, z ∈ [0, 1]

7Both implications are very used in the �eld of fuzzy control.
8For convenience, we omit from now on all mention to the logic expressions involved in the hy-

potheses and the theses of the implication, and we refer only to the truth function of the implication

connective.
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It is also frequent to require some of the next conditions

(6) J(x, 0) = N(x)

(7) J is continuous

(8) J(x, y) = J(N(y), N(x)), for some strong negation N

(9) J(x, x) = 1

(10) x ≤ y if, and only if, J(x, y) = 1

There are three main classes of (truth functions of) implications [CFF97, ACT95]:

• S-implications de�ned by

x −→ y = S(N(x), y)

where S is a t-conorm and N is a negation in [0, 1]. These implications come

from the equivalence, in binary logic, of formulae p → q and p′ ∨ q. Some of

these S-implications are given by

� �ukasiewicz, de�ned by x −→ y = min{1− x+ y, 1}

� Kleene-Dienes, de�ned by x −→ y = max{1− x, y}

• R-implications de�ned by residuation of a continuous t-norm T , like

x −→ y = sup{z ∈ [0, 1] : T (x, z) ≤ y}

These implications come from Gödel logic and, among them, we have the ones

given by:

� Gödel, de�ned by x −→ y =

{
1, if x ≤ y

y, if x > y

� �ukasiewicz, de�ned by x −→ y = min{1− x+ y, 1}

Also, the following are admitted as implications:

• T-norm implications, de�ned through a t-norm T as

x −→ y = T (x, y)

This group includes the Mamdani implication, used in theory of fuzzy control,

and the implication from the product t-norm.
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• QM -implications [TCC00, Yin02], characterized by Q : [0, 1]2 −→ [0, 1] given

by Q(x, y) = S(N(x), T (x, y)) from a t-norm T , a t-conorm S and a strong

negation N .

Some QM -operators (that is the name that we should use in this case since

these do not determine, in general, an implication) are

� Q1(x, y) = S(1 − x, T (x, y)) = max{1 − x, y}, where T is the t-norm of

�ukasiewicz and S its dual t-conorm.

� Q2(x, y) = S(1−x, T (x, y)) = 1−x+x2y, where T is the Product t-norm

and S its dual t-conorm.

� Q3(x, y) =


1, if y = 1

y, if x = 1

1− x, otherwise

Note that in classical logic the S-implication p′∨q and the QM -implication p′∨(p∧q)
are equivalent and de�ne the ordinary logic implication, although they are di�erent

as fuzzy operators.

In order to perform fuzzy inference, it is essential the property of the fuzzy (or

generalized) modus ponens, that was �rst proposed by L. A. Zadeh and that propa-

gates the truth degrees of the premises to the conclusion by means of a composition

of fuzzy relations. o:

If A(x) then B(y)

and

A′(x)

 then B′(y)

where A(x), A′(x) are arbitrary fuzzy predicates (in an arbitrary universe U) as well
as B(y), B′(y) (in a universe V). Such predicates are associated to the corresponding
fuzzy sets A,A′, B,B′.

The truth degree for this expression makes use of the composition rule

If A(x)

and

R(x, y)

 then (A ◦R)(y)

being:

µA◦R(y) = max{min{µA(x), µR(x, y)}}, x ∈ U
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where R is a binary fuzzy relation over U×U , and ◦ denotes the (unary) composition

of the fuzzy set A �characterized by predicate A(x) in the universe U� and the fuzzy

relation R.

In contrast to ordinary logic, the antecedent A(x) is not required to coincide with

the previous A′(x), and this fuzzy modus ponens can be seen as a particular case of

the composition rule, where the relation R is the fuzzy cartesian product A×B.

A fuzzy modus ponens appears, for instance, in [VP96], in the language f-Prolog

that we describe in Section 1.4, although in its formalisation fuzzy relations are not

involved.

While negation is the only modi�er for classical predicates, a fuzzy predicate

A(x) can also be modi�ed by

not A(x), very A(x), a little A(x), more or less A(x), approximately A(x),...

Indeed, it is possible to formalize these so-called predicate modi�ers, that correspond

to adverbs and shapes the use of property A(x). For instance, we can de�ne modi�er

very in this way (supposing that A(x) is de�ned in U and x0 ∈ U).

I(very A(x0)) = [I(A(x0))]
2 or equivalently I(very A(x0)) = [µA(x0)]

2

and for the modi�er approximately

I(approx A(x0)) = [I(A(x0))]
1/2 or equivalently I(approx A(x0)) = [µA(x0)]

1/2

It is very useful, for approximate reasoning, the logic concept of linguistic variable,

developed by [Zad75]. A linguistic variable is a set of terms of natural (or formal)

language expressions that can be taken as linguistic labels in the considered context.

These labels are fuzzy sets over a domain. As an example of linguistic variable, con-

sider variable speed with values: low, medium, high, among others, de�ned over the

domain of kilometers per hour. Other example is the truth, with values: very true,

a little true, false, very false, etc., that is, the values associated to the corresponding

modi�ers previously formalized.

Finally, aside from the already observed di�erences with classical logic, as the

vague character of predicates, the in�nite truth values, the presence of linguistic

modi�ers and the di�erent interpretations, it is noteworthy the presence of speci�c

quanti�ers (see [DP80]) like: nearly all, some, the majority, quite a little.
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1.2.2 Applications

Fuzzy logic (FL) constitutes a model for reasoning that allows to deal with com-

plex problems, poorly de�ned problems or problems for which there are no precise

mathematical model. Thanks to this kind of logic it has been possible to model a

solve situations traditionally considered untreatable from the point of view of clas-

sical logic. In the last decades fuzzy logic has been used in a growing variety of

instruments, machines, software and diverse �elds of daily life. This proliferation of

applications has diminished the initial distrust to this kind of logic.

In fact, since the basic notions of fuzzy logic where stablished, by the �rst time,

by the paper of [Zad65b] on fuzzy sets; and in spite of the enthusiasm of some

researchers, like the mathematicians R. Bellman and G. Moisil, to adopt the new

ideas; the main tendency was skeptical, even hostile, towards the new theory. Cur-

rently, while some controversy still remains, the value of its contribution to multiple

applications has consolidated this paradigm.

Professor Zadeh's original intention was to provide a formalism to handle the

imprecision and vagueness of human thinking, expressed linguistically, although af-

terwards much of the merit of fuzzy logic has focused on the �eld of automatic

control of processes. This is due to the fuzzy �boom� in Japan, that began in 1987

and it reached its peak at the beginnings of the nineties. Indeed, aside from the

relevant seminary EE.UU.-Japan on fuzzy sets and its applications held in Berkeley

in 1974, other important milestone for the development of this logic was the congress

IFSA (International Fuzzy Systems Association) of Tokyo that year (1987). In that

congress, Matsushita announced the �rst consumer product based on fuzzy logic (a

showerhead). Simultaneously, in other �eld, the Sendai underground was launched.

It used a controller based on fuzzy logic, and is considered as one of the most suc-

cessful applications of this logic [VZ96].

Since then, a large amount of consumer products use fuzzy technology, many of

them using the label �fuzzy� as a symbol of quality and high performance. As early

as in 1974, professor Mamdani experimented successfully with a fuzzy controller

in a steam machine, while the �rst real implantation of such a controller was in

performed in 1980 by F. L. Smidth & Co. in a cement plant in Denmark. In 1983,

Fuji applied fuzzy logic to the control of chemical injection for a water treatment

plant, for the �rst time in Japan. In 1987, OOMRON developed the �rst commercial

fuzzy controllers with the professor Yamakawa. From then on, fuzzy control has

been successfully applied to many branches of technology, as we see with examples
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of speci�c applications at the end of this section. Its success lies in the conceptual

and developmental simplicity of these control applications.

Worldwide, Japan is, as we have seen, the country where fuzzy logic and its

applications has been best welcome. Professors K. Asai, J. Tanaka and T. Terano

were precursors in 1968 with their works on fuzzy automata and learning systems.

In Europe, the interest for fuzzy logic began in the seventies and the most signi�cant

contributions focuses on theoretical developments. With respect to Spain, professor

E. Trillas began a research on fuzzy logic and its applications and, in opinion of

[Zad96], thanks to his contributions Spain is a leading country in Europe in this

�eld.

With respect to its application �elds, one of the most important ones is control

theory. Indeed, the application of fuzzy logic to control has been natural, and the

�fuzzy� label was introduced initially linked to this area. The evolution of fuzzy

control has been spectacular. Its growth has been quick because fuzzy control appli-

cation are easy to make since they only require fuzzy rules of the form �if then� to

handle commands. Fuzzy rules, usually �ne-tuned by experts, are fuzzy implications

involving fuzzy propositions (simple of compound) [DHR96, PDH97]. Also, fuzzy

controllers are simple and sound and, in mane cases, there are no possibility to use

traditional controllers since there are no mathematical model (or it is non practical),

as states Ebrahim Mamdani (pioneer in fuzzy control) in his work [Mam93].

L. A. Zadeh creates also the theory of approximate reasoning of fuzzy logic in

the context of arti�cial intelligence in his search for more e�cient tools for building

expert systems (other main �eld of FL).

In [Zad73] the principle of incompatibility is enunciated. It states that com-

plexity and precision are antagonistic when describing the behaviour of a system,

so conventional programs have little e�ectiveness to model human behaviour. Ad-

dressing this problem, it suggests, in one hand, to represent (imprecise) information

by means of fuzzy sets; and in the other, the inference over imprecise information,

based on the use of fuzzy implication and the most relevant property: generalized

modus ponens, formalized as the unary composition of a fuzzy set in a fuzzy relation

(the so-called inference compositional rule). This composition property of two fuzzy

relations allows to apply fuzzy logic to fuzzy control and, then, the development

of reasoning systems and their implementation. The concrete implication is to be

chosen carefully since it is essential to the system. The e�ectiveness of di�erent

implication functions for reproducing human reasoning and ease inference methods
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has been quite studied in the literature.

Fuzzy logic emerges in the search of professor Zadeh, as an answer to fuzzy logic

because of two main aspects: it represents formally the imprecise knowledge and

manages adequately the uncertainty in some expert systems. These characteristics

gives to FL great relevancy in the �eld of knowledge engineering.

So, an expert system is a system based on knowledge plus information from the

experts on the domain [PS05]. Its goal is the resolution of problems in this domain,

applying reasoning techniques over the information in their base of knowledge. De-

spite probability theory is the classical formal model to represent uncertainty, it has

not been universally accepted in the design of expert systems to address uncertainty.

It is well known that it requires a large collection of data and operations to be ap-

propriate [SB75, Ada76]. Many methods and specialized extensions of probability

calculus has been developed to overcome these limitations, suchs as certainty fac-

tors of MYCIN9 [SB75], the subjective Bayesian [DHN90], the theory of evidence

of Dempster-Shafer [Sha76] and the theory of endorsements [Coh85]. In contrast to

the previous methods, that lack a well known semantic framework, L. A. Zadeh pro-

posed a formal logic based on theory of fuzzy sets that is very adequate for dealing

with uncertainty.

Fuzzy Rule-Based Systems (FRBSs) are an extension of classical systems for

representing knowledge based on rules [CHHM01]. As those, FRBSs are composed

of conditional rules of the form �if then�, with the particularity that the antecedent

and consequent are fuzzy expressions. We list next some advantages of fuzzy expert

systems:

- They are an easy way of codifying a non-linear system.

- They correspond well with the schemes of human thinking over a large amount

of mathematical problems.

- They are e�cient (the run quickly) on conventional computers.

- They run extremely quick on specialized hardware.

The application of fuzzy logic to rule-based systems has focused mainly in, in one

hand, generalize the model of certainty factors and, in the other, the use of fuzzy

predicates in the description of rules and reality.

9MYCIN is an expert system written in Prolog.



1.2. Fuzzy logic 19

Other �eld of application to highlight is, �nally, the contribution of fuzzy logic to

soft computing. The emergence of neurocomputation and genetic algorithms (in the

mid 80s) had a signi�cant impact on the development of fuzzy logic. Probability and

fuzzy logic can be used together in the methodologies of neurocomputation and ge-

netic algorithms. This suggests to [Zad96] the concept of soft computing, understood

as �a kind of society of fuzzy logic, neurocomputation and probabilistic reasoning�.

In this scope, fuzzy logic provides a methodology to deal with imprecision, approxi-

mate reasoning and computation with words. The most important of soft computing

is that it suggests the possibility of using fuzzy logic, neurocomputation and genetic

algorithms combined instead of isolated. One of the most relevant combinations

currently is the �neuro-fuzzy� systems (for an introduction, see [Ngu02]). The grow-

ing use of soft computing has brought an important contribution for the conception,

design and development of intelligent systems.

A part of this �eld is considered by many the new challenge for fuzzy logic: the

Internet. As stated by professor José Ángel Olivas from the University of Castilla-La

Mancha, the use of fuzzy technologies is mandatory to address the massive amount of

data, retrieve information, and control and manage the net. This intuition coincides

also with the new path that, according to professor Zadeh, should follow fuzzy

logic. The �rst encounter on fuzzy logic and the Internet (FLINT 2001) held at the

University of Berkely on summer 2001 and organized by Zadeh itself is proof of this.

The main idea that arose is the tendency towards Computing with words, by means

of techniques of soft computing (that includes fuzzy logic, neuronal networks and

evolutionary computation). These terms, coined by professor Zadeh, materializes in

many research lines like:

- A new generation of search engines on the Internet, using techniques of soft

computing to enhance the current (lexicographic) search to a conceptual search.

- Advanced techniques to describe user pro�les that allow a more intelligent use

of the Internet.

- Semantic web, where users could delegate tasks on the software, that will be

able to process, reason, combine information and perform logic deductions to

solve daily problems.

And much more new �elds of application of soft computingwhich already are pro-

ducing promising results.



20 Chapter 1. Introduction

To end this section we relate some of the multiple speci�c applications of this

logic (in the �eld of fuzzy control and expert systems, mainly).

• Consumer electronic products: intelligent washing machines of Panasonic or

Bosch (Matsuhita Electronic Industrial), microwave ovens, termic systems,

video recorders, televisions, image stabilizing systems in photographic and

video cameras of Sony, Sanyo, Cannon (Matsuhita) and automatic focus sys-

tems in photographic cameras.

• Systems: automatic pilotage systems for airplanes, maneuvering control for

lift or trains (underground of Senadi, Japan, 1987), water treatment systems,

automotive systems (ABS of Mazda and Nissan, automatic speed control, cli-

mate control, automatic driving systems), industrial combustion control sys-

tems, tra�c controllers, heating/cooling systems (Mitsubishi air conditioning,

rice-cooker), climate prediction systems, atmospheric prediction systems and

writing recognition systems.

• Software for: clinical diagnosis (CADAG, Adlssnig, Arita, OMRON), security

(Yamaichi, Hitachi), linguistic translation, data understanding, informatics

technology and fuzzy data bases for storing and querying imprecise information

(use of language FSQL).

To summarize, and attending the opinion of [VZ96], fuzzy logic has applications,

mainly, in two very di�erent �elds: the �rst, control theory applications, and the

other, expert system development. Internet and soft computing could be third and

fourth �elds. According to him, we are entering an era of intelligent systems that will

have a deep impact on the way we communicate, take decisions and use machines,

and fuzzy logic (together with soft computing and fuzzy declarative languages, in

our opinion), will play an important role in bringing the era of intelligent systems.

With respect to the work performed in this thesis, its practical applications are

part of other promising line of application of fuzzy logic: the design and enhancement

of declarative languages that allow to codify easily applications with fuzzy taste in

the referred �elds. Concretely, we focused on enhancements related to the procedural

semantics of one of the most interesting paradigms in fuzzy logic programming, from

our point of view, that is the multi-adjoint logic. In the next section we provide a

brief view of logic programming to expose, afterwards, in a more detailed way, the

most relevant aspects of fuzzy logic programming.
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1.3 Logic programming

Logic programming (LP) was originated in the research on Automatic Theorem

Proving. Since the works of [Her30, Rob65, Kow74, War83], logic programming

reaches maturity at the beginnings of the eighties. In essence, logic programming

(for which [Llo87, Apt90, Apt97, JA07]) are fundamental references) is based on a

subset of predicate logic, concretely in Horn clauses, that are used as the core of a

programming language together with an operational semantics, SLD-resolution, for

which there are an e�cient implementation.

Its main feature is, indeed, the use of logic as programming language. More

precisely, a program in LP is conceived as a formal theory in a certain logic, and

computation is understood as a logic deduction in this logic.

The base logic has to include the following elements (see [Jul00]):

- A language expressive enough to address an interesting �eld of application,

- An operational semantics, that is, a calculation mechanism to execute pro-

grams,

- A declarative semantics to provide a meaning to programs independently of

their possible execution, and

- Results of soundness and completion to assure that the computed result coin-

cides with what is considered true according to the notion of truth given by

the declarative semantics.

Also, this declarative semantics speci�es the meaning of the syntactic objects of the

language by means of its translation to elements and structures in a known (generally

mathematical) domain.

The operational semantics in LP is based on a method of proof by refutation

called SLD-resolution, that is an instance of the resolution strategy. SLD-resolution

is based on the uni�cation algorithm and allows the retrieval of answers, i.e., the link

of a value to a logical variable. It is a re�nement of Robinson's resolution, that was

�rst described by [Kow74], and whose name comes from �Selective Linear De�nite

clause resolution�. Besides, it is a sound and complete method for the referred logic.

The declarative semantics of LP can be de�ned in many ways. An illustrative

example is model theory, whose domain is a purely syntactic universe: the Herbrand

universe.
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In essence, a logic program is a set of Horn clauses. A clause has the form

A← B1, . . . , Bn, and can be considered as a part of the de�nition of a routine. A

clause of the form← C1, . . . , Ck is a goal, and each Ck can be understood as a call to a

routine. To execute a program is to query a goal. If the goal is← C1, . . . , Ck, a com-

putation step implies unifying some Cj with the head A of a clause A← B1, . . . , Bn,

thus obtaining:

← (C1, . . . , Cj−1, B1, . . . , Bn, Cj+1, . . . , Ck)θ

where θ is a uni�er substitution. Uni�cation is, then, a mechanism for the argument

passing, data selection and data building. The computation ends when the goal

transits to an empty clause and there are no more literals inside of it to solve.

We introduce now some basic notions of logic programming that we use in further

chapters. These concepts are addressed with more detail in [Llo87, JA07].

Let V be an in�nite set of variables and Σ a set of function symbols f/n, each

one of them with an arity n associated. T (Σ,V)10 and T (Σ) stand, respectively, for
the set of terms and ground terms (terms with no variables) built upon Σ ∪ V and

Σ. The set of variables in an expression E is denoted by Var(E). A term, then, is

said to be ground if Var(t) = ∅.

De�nition 1.3.1 ([JA07]). A substitution σ is an application σ : V −→ T that

assigns to each variable x the set of variables V of a �rst order language L, a term

σ(x) of the set of terms T .

It is usual to require σ(x) ̸= x only for a �nite number of variables and, also, to

express the substitution in terms of sets, identifying (in some sense) the application

σ to the set of images. That is, we write σ = {x1/t1, . . . , xn/tn}, where ti = σ(xi)

is di�erent from xi and each pair xi/ti is called �binding� or substitution element.

The set Dom(σ) = {x ∈ V : σ(x) ̸= x} = {x1, . . . , xn} is said to be the domain

of σ, and its range is Ran(σ) = {σ(x) : x ∈ Dom(σ)} = {t1, . . . , tn}. Additionally,
we represent by id the identity substitution, that can be understood as the set of

empty bindings, so Dom(id) = ∅, that is, id(x) = x for all x ∈ V. Also, σ is said to

be ground if the terms ti are ground (the include no variables).

De�nition 1.3.2. Given an expression E and a substitution σ, σ(E) is called in-

stance and is the result of applying σ over E, replacing simultaneously all instance

of xi in E by the corresponding term ti, being xi/ti an element of substitution σ.

10Occasionally we only write T .
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Usually the previous instance is written Eσ instead of σ(E). Whenever a substitu-

tion applies to the more general formulae of language L, and not only to expressions

in a clausal language, it is convenient to rename the bound variables before applying

the substitution (see, [Jul04]).

De�nition 1.3.3. Given the substitutions σ = {x1/t1, . . . , xn/tn}, θ = {y1/s1, . . . ,
ym/sm}, the composition σ ◦ θ11 is the substitution determined from the set σ ◦ θ =

{x1/θ(t1), . . . , xn/θ(tn), y1/s1, . . . , ym/sm}, removing the bindings xi/θ(ti) such that

xi = θ(ti) and removing from θ the bindings yj/sj such that yj ∈ {x1, . . . , xn}.

This composition veri�es, over an expression E, that (σ ◦θ)(E)= σ(θ(E)) is associa-

tive and the identity substitution is the (two-sided) identity element. In the other

hand, given σ, θ with Var(σ)∩Var(θ) = ∅, the union σ∪θ is de�ned by the union set
of both, that is, (σ ∪ θ)(x) = σ(x), x ∈ Dom(σ) and (σ ∪ θ)(x) = θ(x), x ∈ Dom(θ).

A substitution ρ is called renaming substitution or, simply, renaming, if there is

ρ−1 (inverse substitution) such that ρ ◦ ρ−1 = ρ−1 ◦ ρ = id. Two expressions E1,

E2 are variant if there are renaming substitutions ρ, ρ′ such that E1 = ρ(E2) and

E2 = ρ′(E1).

Composition of substitutions induces the usual preorder among substitutions:

θ ≤ σ if, and only if, there is γ that σ = θ ◦ γ, and we say that θ is a more general

substitution than σ. This preorder induces a partial preorder over terms given by

t ≤ t′ if there is γ that t′ = tγ.

Two terms t and t′ are variants (one another) if there is a renaming ρ that

tρ = t′. Given a substitution θ and a set of variables W ⊆ V, we denote by θ|̀W the

substitution obtained from θ by restricting Dom(θ) only to the variables W . We

write θ = σ [W ] if θ|̀W = σ |̀W , and θ ≤ σ [W ] denotes the existence of a substitution

γ such that θ ◦ γ = σ [W ].

In the next de�nition, we address the concept of uni�cation, that is fundamental

in logic programing and automatic proving ([JA07]). In an intuitive way, to unify two

expressions is to make them syntactically equal by applying over them a substitution

called uni�er (i.e., both expressions become equal to the instances resulting from

them trough some substitution).

De�nition 1.3.4. A substitution θ is a uni�er of the expressions E1, E2 if, and

only if, θ(E1) = θ(E2).

11Occasionally we write only σθ instead of σ ◦ θ to abbreviate.
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We can extend this de�nition in a very natural way to an in�nite number of expres-

sions E1, . . . , En, and we use, then, the uni�er of the set S = {E1, . . . , En}.

De�nition 1.3.5 ([JA07]). A uni�er σ of a set of expressions S is the most general

uni�er for S if, and only if, any other uni�er θ is such that σ ≤ θ.

We write mgu for the most general uni�er of a set of expressions. The mgu always

exists and is unique (not taking renaming into account, see [LMM88]).

To end this brief summary to logic programming, we state that the strength

of this paradigm reside in its declarative component, that allows the construction

of software by specifying �what� to compute instead of �how� to compute it, task

delegated to the control system. Furthermore, since LP is based upon logic, it

is well suited for representing knowledge and to obtain new information from the

represented information. By contrast, it is not possible to represent vagueness or

imprecise knowledge in LP, in principle, due to its rigid way to answer queries.

This characteristic can be considered a limitation when modelling certain problems.

So, in order to extend a framework as rich as logic programming to overcome this

limitation, we have to exploit methods, techniques or tools to handle imprecision in

an e�cient way through a computer; these tools have also to adapt to the framework

to be extended, that is, the extension of the framework has to be natural and, in

absence of imprecision, it has to preserve the properties of the original framework.

As seen in the previous section, fuzzy logic is a mathematical tool that ful�ls those

constraints.

Then, from the fusion of logic programming and fuzzy logic comes fuzzy logic

programming, that handles imprecision and vagueness in a natural way, thus ad-

dressing that limitation of LP by integrating the well-established concepts of fuzzy

logic. As we see in the next section, there are two main approaches in this paradigm.

One possibility consists on the implementation of the same language enhanced to

deal with imprecision [Hin86]; The other consists on extending the original language

to allow the aforementioned goal [MBP87, LL90, IK85].

We focus in the next section on detailing in depth the most important notions of

fuzzy logic programming, studying also the main approaches to this paradigm and

classifying them by di�erent criteria.
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1.4 Fuzzy logic programming

Fuzzy logic programming (FLP) arose as an extension of LP in the same sense that

fuzzy logic extends classical logic. FLP is de�ned formally as a part of fuzzy logic

focused on the study of fuzzy theories or fuzzy programs, that are a set of fuzzy

logic expressions in a �rst order language directly executables in a computer.

This style of programming applies to areas where the high level of abstraction

and expressiveness of traditional declarative languages is required, but those are

not able to neither model vague or imprecise scenarios nor formulate approximate

reasoning. To this end, new expressive resources from fuzzy logic are incorporated,

as the ones mentioned in 1.2.

The area of fuzzy logic programming is in a relatively incipient state, although

it is being consolidated by a growing net of researchers that provide maturity in

the theory aspects as well as in the practice ones. However there are still neither

standards nor a uni�ed framework, but di�erent approaches that take divergent

paths.

Due to this variety of schemes on FLP, it is possible to establish many classi�ca-

tions, analysing the procedural mechanism to deal with vagueness, the extension of

syntactic uni�cation, the extension of SLD-resolution, or other considerations (see

Subsection 1.5) where we include interesting concepts as the implementation or not

of the negation in this area, or di�erent fuzzy logics.

Many of the di�erent approaches of fuzzy logic programming replace the classical

inference mechanism, SLD-resolution, by a fuzzy variant that allows to deal with

uncertainty and evaluate truth degrees. Taking this into account, and following the

classi�cation provided in [Rub11], it is possible to establish to main trends:

• The �rst one includes truth degrees together with facts, rules and goals and,

therefore, it needs to modify the resolution mechanism to perform operations

over those degrees, and uni�cation remains intact.

• The other modi�es the uni�cation algorithm and preserves the resolution mech-

anism by handling truth values separately.

Thus, there is no common method to �fuzzify� the resolution principle of Prolog

(see [VGM02]): the majority of these languages implement the fuzzy resolution prin-

ciple introduced by [Lee72] (extended by [Muk82] and [WTL93]), like the system

Prolog-Elf [IK85], Fril Prolog [BMP95] and the language F-Prolog [LL90]. Other
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fuzzy languages like Likelog, considered in [AF99], or Bousi∼Prolog ([JRG08])

only contemplate the fuzzy component of predicates by introducing the notion of

similarity. [AG93] implements a modality of resolution conceived to manage the

truth values of clauses as intervals (each boundary represents a truth and a false

degree), [LL90] uses fuzzy expressions incorporating semantic hedges, [MSD89] in-

cludes expressions with an associated con�dence obtained from its truth degree, and

it sets the con�dence of the resolvent from the con�dence of the original clauses,

and other systems, like [VP96, MOV01d, MOV01c, MOV04, MO04], where there

are fuzzy facts and/or fuzzy rules labelling clauses with real numbers (or, more

generally, elements of a lattice) representing its associated truth degree.

To summarize, in these languages there are many methods to fuzzify the knowl-

edge, to represent it and to handle it. The soundness and completenes properties

for the di�erent types of procedural semantics has been proposed related to an ap-

propriate declarative semantics that, in many cases, has been conceived as a fuzzy

extension of the classical least Herbrand model [Llo87].

We detail now with more depth the two main trends in fuzzy logic programming

with respect to the procedural mechanism, and their most representative languages,

as indicated in [Rub11].

FLP extending SLD-resolution

In general, in this approach programs are a subset of clauses with an associated

truth degree that is explicitly annotated. Computation and truth propagation is

performed through a procedural semantic that is an extension of the classical reso-

lution principle, while the (syntactic) uni�cation mechanism remains untouched.

Thus, to represent vagueness in this framework, each fact, rule and goal is associ-

ated to a truth degree (for simplicity we detail here only a reduced framework of FLP

that extends resolution. For a more detailed formalization, see [Voj01] or [MOV01d]).

More precisely, a fuzzy logic program consists of tree parts: a fuzzy fact of the form

p(t1, . . . , tn)←[f ], where p is a predicate symbol, each t is a term and f is a truth de-

gree associated to p(t1, . . . , tn); a fuzzy rule of the form A←[α]⟨B1, α2⟩, . . . , ⟨Bn, αn⟩,
where the truth degree of each (sub)goal Bi is α and the value of all conditions is

∆(α, β), being ∆ a t-norm or a fuzzy conjunction (see Section 1.2.1 in this chapter);

and β = ∆n
i=1(αi) a fuzzy goal of the form ←[c]B1, . . . , Bn, being c a constant that

indicates the maximum truth degree to reach in the inference; or with the form

←[F ]B1, . . . , Bn, being F a variable to store the �nally computed truth degree.
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These kind of frameworks of FLP keep intact the uni�cation mechanism and

extend only the SLD-resolution mechanism to let the truth degrees associated to

each atom transit from the antecedents to the consequents until succeed or fail.

Therefore, supposing a set of fuzzy clauses C1, . . . , Cn+1:

C1 ≡ A←[α0]B1, . . . , Bn

C2 ≡ B
′

1←[α1]

. . .

Cn+1 ≡ B
′

n←[αn]

where there is a fuzzy fact B′

i←[αi] for each antecedent in C1, i.e., B
′

i = Bi. Then,

we can infer the fuzzy fact α←[∆n
i=0αi]. Now, in case of a success, together with

the output, a truth degree is provided.

After these brief general considerations about fuzzy logic languages that extend

the SLD-resolution, we enumerate now some of the most interesting languages in

this approach:

• Prolog-ELF. This language [IK85] is a Prolog system resulting from the

Fifth Generation of Programming Languages of Japan. A Prolog-ELF program

is a set of clauses associated to a truth degree in the interval [0, 1]. The system

is based on the fuzzy resolution of [Lee72], clauses are +A − B1, . . . ,−Bn or

+A and goals of the form: −B1, . . . ,−Bn.

Truth values are assigned through this notation: α. + A − B1, . . . ,−Bn or

assert(α : +A − B1, . . . ,−Bn). This notation has been adopted instead of

the classical one (A : −B1, . . . , Bn) because, according to the authors, there

are many interpretations in fuzzy logic for ¬A ∨ B, and they do not always

correspond to the implication. Variables in Prolog-Elf begin by the character

�∗�, and commentaries by �:�. Prolog-Elf allows also to de�ne fuzzy sets by

means of special predicates that act as a membership function, i.e., that return

a value between 0 and 1. Truth values in the body of a rule are combined

using the t-norm �minimum� for conjunction, the t-conorm �maximum� for

disjunction, and 1−x for negation. Since it is based on the work of Lee, truth

values of positive literals have to be in the interval (0.5, 1].

• FProlog. FProlog [MBP87] is the name of the �rst implementation of Fril.

The �rst version of this language was developed at the end of the seventies as

a continuation of the works of Baldwin on fuzzy relations. The second version
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was released in the �rst years of the eighties. Both versions can be considered

related languages. FProlog uses Lisp syntax instead of Prolog syntax.

In order to provide the system with deductive capabilities, a Prolog in-

terpreter was integrated in its structure. The system could work as an au-

tonomous Prolog system. FProlog also allowed the de�nition of fuzzy re-

lations, with a truth degree associated to each tuple. To compute the truth

degree it uses fuzzy counterparts of conjunction, disjunction and negation.

• Fuzzy Prolog. Was created by Mukaidono [MSD89]. It extends Lee's ap-

proach to allow truth values in the interval [0, 1]. This work brought its �rst

proposal about a Fuzzy Prolog, consolidated in [MSD89] by the introduction

for the �rst time of the notion of fuzzy �rst order predicate, whose variables

can be membership functions over a fuzzy subset (this idea has been acquired

by more modern systems, like the fuzzy module of Ciao-Prolog of [GMV04]).

The most recent contribution of Mukaidono is a fuzzy Prolog based on the

�ukasiewicz implication (LbFP). In LbFP there are no changes in the uni�-

cation process. Facts and rules are extended with truth values in the interval

[0, 1] where 1 represents truth and 0 unknown or absurd. Truth values in the

body of a rule are combined using the �minimum� t-norm for the conjunction,

the �maximum� t-conorm for the disjunction and 1 − x for the negation. For

a certain solution this framework takes the maximum of the computed values.

Resolution in LbFP takes the shape of a tree in contrast with the classical

linear resolution.

• f-Prolog. f-Prolog was created by [LL90]. An f-Prolog program di�ers only

from a Prolog program in the truth degree that some facts carry and in the

degree of the implication, that is associated to the rules. An f-Prolog program

is a sequence of f-facts, f-rules and an f-goal. An f-fact A is f . An f-rule

has the form A − [f ] − B1, . . . ,−Bn, where A,Bi are atoms and the degree

of the conclusion A is the product of α and the minimum of the truth values

associated to each Bi. An f-goal is an expression −[F ]−Q1, . . . ,−Qn being F

a variable. The system also allows to specify the minimum degree that a goal

has to satisfy: for instance, it is possible to query the system solutions with

more than 0.8 truth degree.

• Rfuzzy. RFuzzy language is an extension and enhancement of the fuzzy mod-

ule Ciao-Prolog presented in [GMV04]. This module uses the union of subsets
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of truth degrees to handle imprecision. These truth degrees are combined by

means of aggregation operators. Additional arguments can be used in each

clause for managing these degrees. The implementation is based on a pro-

cess of compilation that translates fuzzy programs to Prolog code. Further-

more, this module uses the notion of fuzzy �rst order predicate introduced by

Mukaidono in [MSD89].

One of the problems the authors of RFuzzy points out to the module Ciao is

its complexity [MCS09]. This complexity is due to the use of real intervals to

represent truth degrees. Besides, answers are associated to constraints, and

the management of variables that carry truth degrees is problematic. RFuzzy

reduces this complexity in some aspects: it uses real numbers instead of in-

tervals to represent truth values; it answers with direct values instead of with

constraints; and it removes the necessity of including variables to manage truth

degrees.

• Multi-adjoint language. In multi-adjoint logic programming (MALP in

brief) [MOV01d, MOV01c, MOV01b, MOV01a], each program is associated

with a certain lattice that provides truth degrees and allows to encapsulate

di�erent types of fuzzy logics inside each rule. Given a MALP program, goals

are evaluated in two separated computational phases. During the resolution

phase, the fuzzy counterpart of SLD-derivation steps, called admissible steps,

are applied. This �rst phase produces a substitution and an expression where

all atoms have been exploited. This last expression is interpreted afterwards

(in the so-called interpretative phase) in the multi-adjoint lattice associated

to the program, thus obtaining a pair (truth degree; substitution) that is the

fuzzy analogous to the classical notion of computed answer traditionally used

in LP.

Furthermore, it is noteworthy that the framework based on similarity presented

in [Ses02] can be emulated by means of a certain multi-adjoint lattice [MOV04],

particularly, the real interval [0, 1] with the t-norm of Gödel, and extending the

original program with a set of rules de�ning a similarity relation (in a similar

way to the extension of �rst order logic with equality axioms). This illustrates

the generality and expressiveness of the multi-adjoint logic language.

From our point of view, the features of this language makes it one of the

most powerful and interesting in the area of fuzzy logic programming. By
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this reason we have chosen it as a framework to develop our research in this

�eld. In Chapter 2 we expose in depth the syntax, semantics and further basic

notions of the multi-adjoint approach.

Extension of uni�cation in FLP

The second trend in FLP is represented by languages that replaces the syntactic uni-

�cation mechanism (of classical SLD-resolution) by a fuzzy uni�cation algorithm.

While the global mechanism of resolution remains untouched, uni�cation changes

dramatically since it can �unify� di�erent predicates (provided they have some sim-

ilarity degree).

The main goal of this framework is to obtain more �exible uni�cation mecha-

nisms. There are, at least, three approaches:

• Semantic uni�cation ([AG98]): each constant is associated to a meaning (e.g., a

fuzzy subset) and the uni�cation is based on that meaning (e.g., by a matching

procedure);

• Uni�cation based on distance edition ([GS00]): the uni�cation degree is based

on a syntactic similarity between two symbols (e.g., house, mouse);

• Weak uni�cation: it is the fuzzy extension of classical uni�cation.

From now on, we focus on weak uni�cation, since both semantic uni�cation and

uni�cation based on distance edition can be implemented on weak uni�cation.

Generally speaking, weak uni�cation consists on the substitution of the syntactic

equality by a similarity (or proximity) relation. This similarity relation R relates

symbols of the alphabet of a �rst order language L, that is, R = RP ∪ RF ∪ RV

where RV is a similarity on V de�ned by (1) RV(x, y) = 0 if x ̸= y being x, y ∈ V;
(2) RV(x, x) = 1. Furthermore, RF is such that, given two symbols f, g ∈ F with

the same arity n, belonging to the alphabet of L, RF relates both f and g, and that

relation is quanti�ed by an approximation degree in a way that can be read as �f is

similar to g with approximation degree α�, with α ∈ (0, 1].

A fuzzy program, in this framework, is composed by a set of clauses and a re-

lation between the symbols in the alphabet of L. This kind of languages, in FLP,

need to modify the uni�cation algorithm so it copes with the given relations. In this

framework the uni�cation algorithm does not end when two terms di�er in some

symbol, but it searches a relation between them. Furthermore, SLD-resolution has
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to be adapted to allow the composition of the approximation degrees obtained in

each resolution steps. Then, supposing a set of clauses C1, . . . , Cn+1:

C1 ≡ A←[α0]B
′

1, . . . , B
′

n

C2 ≡ B1←
. . .

Cn+1 ≡ Bn←

where there is a fact B′

i← similar to an antecedent in C1, i.e.,

R(B
′

1,B1) = α1, . . . ,R(B
′

n,Bn) = αn

Then we infer ⟨A, β⟩, with β = Λn
i=1αi.

We present now the basic features of the main fuzzy logic languages based on

similarity.

• Likelog: this language, whose name is an acronym of �Likeness in Logic�,

is the practical implementation of the works of [FGS00]. This language is

based on the theoretical concept of cloud. A cloud is a set of elements that

can be considered similar with respect to their meaning [AF99]. According to

the authors, Likelog is an environment of logic programming implemented

in Dec-10 Standard Prolog. The language is able to handle �exible queries

and answers. Its syntax L′ is an extension of a �rst order language L with no

function symbols where similarity is introduced by a fuzzy relation R = RC ∪
RV ∪RP on the symbols of the alphabet, and it ful�ls the re�exive, symmetric

and transitive properties. Its procedural semantics is a fuzzy extension of the

uni�cation algorithm associated to the resolution, while its �xpoint semantics

is given by an extension of the classical least Herbrand model. One of the

applications of Likelog is its �exibility on handling answers and queries in

deductive databases.

• SiLog: this language ([LSS01]) is based on the work [Ses02]. The SiLog system

is implemented on a W-Prolog interpreter built in Java (for which an online

reference is http://waitaki.otago.ac.nz/~michael/wp/). It is composed

by two parts: an inference engine and a similarity manager. The inference

engine handles the weak uni�cation, while the similarity manager generates a

similarity from the quotient sets (families of λ-cuts) from the elements included
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in a dictionary incorporated by the user. The similarity manager ensures

that the built relations ful�l the de�nition of similarity, which means that

the extension is a little rigid and limited. Similarity relations are addressed

independently to the program.

• Bousi∼Prolog ([JRG08, JRG09a, JR09b, JR10a]): this language is one of

the most recent and interesting languages in this tendency. This language is

the practical implementation of the theoretical works of [JR06b, JR06a]. Its

procedural semantics [JR09a] adapts the principle of SLD-resolution and its

uni�cation algorithm is based on proximity relations (i.e., a binary fuzzy re�ex-

ive and symmetric relation on a set, not necessarily transitive). It generalizes

the procedural mechanism of Sessa, based on similarity relations, and enhances

the expressive power of the resulting language. The properties of re�exivity

and symmetry are very appropriate to express the value of �proximity� between

elements of a domain. The authors of this language can model problems in

cases where the transitive restriction of the similarity relation is an obstacle.

The syntax of Bousi∼Prolog is, basically, Prolog syntax enriched by a

constructor symbol∼ used to describe proximity relations (in fact, fuzzy binary

relations that are translated automatically to proximity or similarity relations)

by means of what authors call a proximity equation. Those equations are

expressions of the form symbol ∼ symbol = proximity value. This operator

is the fuzzy counterpart of the syntactic uni�cation operator `=' of Prolog.

Furthermore, the language supports the use of fuzzy sets [JRG09b, JRG10,

JR10b], integrating them easily in the core of the system by the use of fuzzy

relations, not a�ecting the procedural semantics.

On the other hand, the authors of Bousi∼Prolog have created UNICORN

[JR09c], a programming environment that allows to edit, compile and run

Bousi∼Prolog programs, according to the principle of weak SLD-resolution

described for this language. The complete implementation of this tool consists

of 900 lines of Prolog code, approximately, and it includes more useful options

for programmers. A more complete speci�cation of the tool can be found in

http://dectau.uclm.es/bousi/.



1.5. Other considerations 33

1.5 Other considerations

To end this section on FLP, we include here important concepts about this paradigm,

as presented in the PhD thesis [Pen10]. For example, together with the classi�cation

provided in previous sections, it is also possible to di�erentiate between languages

based on annotations from languages based on implications (see [LS01b, LS05]).

• Languages based on annotations (see [KL88, KS92, NS91, NS92, Lu96, Cao00,

KLV02]), admit rules of the form A : f(β1, . . . , βn) ←− B1 : β1, . . . , Bn :

βn whose meaning can be understood as �the truth degree of A is, at least,

f(β1, . . . , βn), if the truth degree of each atom Bi is at least βi�, 1 ≤ i ≤
n, being f a computable function and βi a constant of a variable over an

appropriate domain (set of truth values).

• In contrast, those languages based on implications (see [DMO04a, DM04,

LS94, LS01b, MOV01d, MOV01c, MOV01b, MOV01a, MO02, MOV04, MO04,

DMO07, vE86, Voj01]) have rules of the form ⟨A←@(B1, . . . , Bn); v⟩ where
v is the truth degree associated to formula A←@(B1, . . . , Bn), where @ is a

connective that combines atomic expressions Bi.

Computationally, given an interpretation I, truth values I(Bi) are determined

by the truth function of connective @ and, afterwards, propagated to atom A

in the head of the rule. Also, truth degrees can be taken from a lattice, that

is, the application I can be mapped to values on a certain lattice. [DMO04a,

KLV04, LS01b, Voj01] show that the majority of the frameworks that manages

imprecision can be implemented in this context.

On the other hand, it is noteworthy that the majority of approaches do not include

any kind of non-monotonic reasoning, neither admit negation. It is not the case

of [DM01a, LS06, LS02a, LS02b, LS03, Str05a, Str05c], where the domain of truth

values is a lattice. The language of [VGM02, GMV04] also admits negation, but

here truth degrees are real intervals [KY95], which are very adequate to formalize

linguistic variables as �age� or �speed�.

With respect to negation, it is the most relevant logic concept not originally

coped by fuzzy logic programming. This is because its inclusion leads to a signi�cant

complexity. However, negation plays an important role on representing knowledge

and many of its applications cannot be emulated by positive programs. Negation

is also useful in the management of databases, program composition, reasoning by
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default, etc. [Ger05] can, in the context of control techniques, address positive and

negative information if truth values are taken from a bilattice.

Furthermore, as already stated in this introductory chapter, there is no consensus

about which fuzzy logic corresponds to which context. The majority of the systems

uses a min-max logic (to model conjunction an disjunction), but some systems uses

�ukasiewicz logic [KK94]. Other approaches allow a more generic interpretation of

connectives [VP96], and the multi-adjoint framework allows also di�erent logics to

model connectives.

Finally, with respect to the set where the interpretation of formulae take place12,

there are fuzzy logic programs interpreted in:

1. The real interval [0, 1], as the case of [MSD89, vE86, Sha83, VP96, Voj01,

AF99, KLV04].

2. A lattice, as [MOV01d, MOV01c, MOV01b, MO02, MOV04, MO04] (multi-

adjoint lattice) and also [DM00, DM01b, DM02, DMO04b] (residuated lattice).

3. A bilattice [Gin88, Fit91, Ger05, LS04, Str05c], trilattice [LS01a] or, more gen-

erally, a multilattice [MOR05, Mor06b, MOR06a, MOR07c, MOR07b, MOR07a].

4. A set of intervals, like [VGM02, GMV04, LS01a, Luk01, AG93].

5. A quali�cation domain, as the case of [CRR08, RR08b, RR09].

To conclude, fuzzy logic programming is a research area in constant expansion and

promising perspectives, whose application in the form of fuzzy logic languages can

greatly help to codify systems with fuzzy features in the �elds of most solid implan-

tation of fuzzy logic, as seen in Section 1.2.2 (the construction of expert systems,

control applications, soft computing, etc.).

As already stated, from our point of view the most interesting context is the

multi-adjoint programming, due to its great generality (it can implement many of

the other fuzzy logic schemes), its high level of expressiveness and is clearly de�ned

procedural semantics. We detail in Chapter 2 the essential concepts of the multi-

adjoint framework.

12In other contexts more general structures have been used to interpret formulae, like algebraic

domains (see [RZ01, Sco82]).



Chapter 2

Multi-adjoint Logic

Programming and the FLOPER

System

The uncertainty and vagueness are constant elements present in most human think-

ing activities, fuzzy logic programming seems to be a computing paradigm with a

level of expressiveness very close to human reasoning. Daily, we frequently deal with

fuzzy predicates (not boolean, crisp ones). For instance, a person can be quite young

or not very young: the frontier between �absolutely young� and �not young at all�

is not sharp, but inde�nite, fuzzy. If �John� is 18 year old, we can say that he is

�young� at a 95% truth degree. If �Mary� is 70 years old, she is young at a lower

truth degree. Then, the obvious question is how do we model the concept of �truth

degree�. In our system, we work with the so-called multi-adjoint lattices to model

them by providing a �exible, wide enough de�nition of such notion.

Informally speaking, in the multi-adjoint logic framework, a program can be seen

as a set of rules each one annotated by a truth degree, and a goal is a query to the

system, i.e., a set of atoms linked with connectives called aggregators. A state is a

pair ⟨Q, σ⟩ whereQ is a goal and σ a substitution (initially, the identity substitution).

States are evaluated in two separate computational phases. During the operational

one, admissible steps (a generalization of the classical modus ponens inference rule)

are systematically applied by a backward reasoning procedure in a similar way to

35
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classical resolution steps in pure logic programming, thus returning a computed

substitution together with an expression where all atoms have been exploited. This

last expression is then interpreted under a given lattice during what we call the

interpretive phase, hence returning a pair ⟨truth_degree; substitution⟩ which is the

fuzzy counterpart of the classical notion of computed answer traditionally used in

LP.

The main goal of this chapter is the detailed description of the FLOPER sys-

tem which is available from http://dectau.uclm.es/floper/. Nowadays, the tool

provides facilities for executing as well as for debugging (by generating declarative

traces) such kind of fuzzy programs, thus ful�lling the gap we have detected in the

area.

In order to explain the tool, we have structured this chapter as follows: in Section

2.1 we present the essence of MALP, including syntax, procedural semantics, and

some interesting computational cost measures de�ned for this programming style;

the core of this chapter is represented by Section 2.2, which is dedicated to explain

the main capabilities of the FLOPER system such as running/debugging MALP

programs, managing lattices and dealing with additional fuzzy concepts; we detail

in Section 2.3 how the use of sophisticated multi-adjoint lattices are very useful

for easily coding �exible real-world applications and obtaining low-cost traces at

execution time.

2.1 Multi-Adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming (for a

complete formulation of this framework, see [MOV01d, MOV01c, MOV04, JMP09]).

In what follows, we use abbreviation MALP for referencing programs belonging to

this setting.

2.1.1 MALP Syntax

We work with a �rst order language, L, containing variables, constants, function

symbols, predicate symbols, and several (arbitrary) connectives to increase lan-

guage expressiveness: implication connectives (←1,←2, . . .); conjunctive operators

(denoted by &1,&2, . . .), disjunctive operators (|1, |2, . . .), and hybrid operators (usu-
ally denoted by @1,@2, . . .), all of them are grouped under the name of �aggregators�.
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Aggregation operators (or aggregators) are useful to describe/specify user pref-

erences. An aggregation operator, when interpreted as a truth function, may be

an arithmetic mean, a weighted sum or in general any monotone application whose

arguments are values of a complete bounded lattice L. For example, if an aggre-

gator @ is interpreted as @̇(x, y, z) = (3x + 2y + z)/6, we are giving the highest

preference to the �rst argument, then to the second, being the third argument the

least signi�cant. Although these connectives are binary operators, we usually gener-

alize them as functions with an arbitrary number of arguments. So, we often write

@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truth func-

tion for an n-ary aggregation operator @̇ : Ln → L is required to be monotonous

and ful�lls @̇(⊤, . . . ,⊤) = ⊤, @̇(⊥, . . . ,⊥) = ⊥.
Additionally, our language L contains the values of amulti-adjoint lattice equipped

with a collection of adjoint pairs ⟨←i,&i⟩ (where each &i is a conjunctor which is

intended to the evaluation of modus ponens [MOV04]) formally de�ned as follows.

De�nición 2.1.1 (Multi-Adjoint Lattice). Let (L,≤) be a lattice. A multi-adjoint

lattice is a tuple (L,≤,←1,&1, . . . ,←n,&n) such that:

1. ⟨L,≼⟩ is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥
and ⊤, respectively.

2. ⟨L,≼⟩ is a complete lattice, i.e. for all subset X ⊂ L, there are inf(X) and

sup(X).

3. ⊤&iv = v&i⊤ = v, ∀v ∈ L, i = 1, . . . , n.

4. Each operation &i is increasing in both arguments.

5. Each operation ←i is increasing in the �rst argument and decreasing in the

second one.

6. If ⟨&i,←i⟩ is an adjoint pair in ⟨L,≼⟩ then, for any x, y, z ∈ L, we have that:

x ≼ (y ←i z) if and only if (x&i z) ≼ y

This last condition, called adjoint property, could be considered the most im-

portant feature of the framework (in contrast with many other approaches) which

justi�es most of its properties regarding crucial results for soundness, completeness,

applicability, etc.
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In general, L may be the carrier of any complete bounded lattice where a L-

expression is a well-formed expression composed by values and connectives de�ned

in L, as well as variable symbols and primitive operators (i.e., arithmetic symbols

such as ∗,+,min, etc...). In what follows, we assume that the truth function of any

connective @ in L is given by its corresponding connective de�nition, that is, an

equation of the form @(x1, . . . , xn) , E, where E is a L-expression not containing

variable symbols apart from x1, . . . , xn. For instance, consider the following classi-

cal set of adjoint pairs (conjunctions and implications) in ⟨[0, 1],≤⟩, where labels L,
G and P mean respectively �ukasiewicz logic, Gödel intuitionistic logic and product

logic (which di�erent capabilities for modeling pessimist, optimist and realistic sce-

narios, respectively):

&P(x, y) , x ∗ y ←P(x, y) , min(1, x/y) Product

&G(x, y) , min(x, y) ←G(x, y) ,
{

1 if y ≤ x

x otherwise
Gödel

&L(x, y) , max(0, x+ y − 1) ←L(x, y) , min{x− y + 1, 1} �ukasiewicz

Moreover, the three disjunctions associated to the previous fuzzy logics are de�ned as

follows: |P(x, y) , x+y−x∗y, |G(x, y) , max{x, y}, and |L(x, y) , min{x+y, 1}.
At this point, we wish to make a mention to the notion of quali�cation domain

used in the QLP (Quali�ed Logic Programming) scheme described in [RD08], which

plays a role in that framework similar to multi-adjoint lattices in MALP. A quali�-

cation domain is a structure ⟨D,⊑,⊥,⊤, ◦⟩, such that ⟨D,⊑,⊥,⊤⟩ is a lattice with

top (⊤) and bottom (⊥) elements, a partial ordering ⊑, and where the so-called

attenuation operation �◦� is a conjunction. Now, given two elements d, e ∈ D, d ⊓ e

means for the greatest lower bound of d and e, whereas d ⊔ e represents its least

upper bound. We also write d @ e as abbreviation of d ⊑ e&d ̸= e. The attenuation

operator ◦ satis�es the following constraints.

1. ◦ is associative, commutative and monotonic w.r.t. ⊑.

2. ∀d ∈ D : d ◦ ⊤ = d.

3. ∀d ∈ D : d ◦ ⊥ = ⊥.

4. ∀d, e ∈ D/{⊥,⊤} : d ◦ e @ e.

5. ∀d, e1, e2 ∈ D : d ◦ (e1 ⊓ e2) = d ◦ e1 ⊓ d ◦ e2.
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Note that the required properties in QLP and MALP are rather close, but in-

stead of the last distributive law just pointed out in claim 5, in our setting we

use the adjoint property (claim 6 in De�nition 2.1.1). Translations between both

worlds can be frequently performed, as occurs for instance with the simple boolean

quali�cation domain B = ([0, 1],≤, 0, 1,&), whose shape as a multi-adjoint lattice

looks like ⟨[0, 1],≤,←,&⟩, where & is de boolean conjunction and ← its adjoint

implication (i.e., the usual bi-valuated logic implication). Something similar oc-

curs with the quali�cation domain of Van Emden's uncertainty values used in QLP,

U = ([0, 1],≤, 0, 1,×), which is equivalent to the multi-adjoint lattice (in which

most of our examples are interpreted) described above, as well as with the so-called

weights domain W = (R ∪∞,≥,∞, 0,+), whose detailed explanation is delayed to

Section 2.3 (where we will present powerful extensions and applications related with

debugging tasks into the MALP framework).

In general, any quali�cation domain (D,≼,⊥,⊤, ◦) whose attenuation operation

◦ conforms an adjoint-pair with a given implication operation←◦, can be expressed

as the multi-adjoint lattice ⟨D,≼,←◦, ◦⟩. Anyway, we wish to �nish this brief com-

parison by highlighting that the variety of connectives de�nable in multi-adjoint lat-

tices is clearly much greater than those appearing in quali�cation domains (where

for a given program, all rules must always use the same attenuation operator), which

justi�es the higher expressive power of MALP w.r.t. QLP.

Continuing now with the description of the multi-adjoint logic programming

approach, a MALP rule is a formula H ←i B, where H is an atomic formula

(usually called the head) and B (which is called the body) is a formula built from

atomic formulas B1, . . . , Bn (n ≥ 0 ), truth values of L, conjunctions, disjunctions

and aggregations. Rules whose body is ⊤ or equivalently, rules without body (or

with empty body) are called facts. A goal is a body submitted as a query to the

system.

Roughly speaking, a MALP program is a set of pairs ⟨R; v⟩ (we often write

�R with v�), where R is a rule and v is a truth degree (a value of L) expressing

the con�dence of a programmer in the truth of rule R. By abuse of language, we

sometimes refer a tuple ⟨R; v⟩ as a �rule�. As an example, in Figure 2.1 we show a

MALP program whose rules de�ne fuzzy predicates modeling degrees of youth (�y�),

heritage (�h�) and education (�e�), as well as the con�dence level (�c�) on people for

repaying a loan. Note that the seventh rule models this last notion by considering

young persons having good heritage or education degrees. In what follows, we are
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Multi-adjoint logic program P1:

R1 : y(peter) with 0.4

R2 : y(mary) with 0.8

R3 : h(peter) with 0.9

R4 : h(mary) with 0.3

R5 : e(peter) with 0.5

R6 : e(mary) with 0.95

R7 : c(X) ←p (h(X) |P e(X)) &P y(X) with 1

Derivation D1:

Admissible derivation
⟨c(X); id⟩ →AS1

R7

⟨&P(1,&P(|P(h(X1), e(X1)), y(X1))); {X/X1}⟩ →AS2
R3

⟨&P(1,&P(|P(0.9, e(peter)), y(peter))); {X/peter,X1/peter}⟩ →AS2
R5

⟨&P(1,&P(|P(0.9, 0.5), y(peter))); {X/peter,X1/peter}⟩ →AS2
R1

⟨&P(1,&P(|P(0.9, 0.5), 0.4)); {X/peter,X1/peter}⟩

Interpretive derivation

⟨&P(1,&P(|P(0.9, 0.5), 0.4)); {X/peter}⟩ →IS

⟨&P(1,&P(0.95, 0.4)); {X/peter}⟩ →IS

⟨&P(1, 0.38); {X/peter}⟩ →IS

⟨0.38; {X/peter}⟩.

Figure 2.1: MALP program with admissible/interpretive derivations for goal �c(X)�

going to explain the procedural principle of MALP programs, whose application to

goal �c(X)� w.r.t. our program, will assign truth degrees 0.772 (i.e, a credibility of

77.2%) and 0.38 (or 38% of con�dence level) to �mary� and �peter�, respectively.

2.1.2 MALP Procedural Semantics

The procedural semantics of the multi�adjoint logic language L can be thought of

as an operational phase (based on admissible steps) followed by an interpretive one.

In the following, C[A] denotes a formula where A is a sub-expression which occurs

in the �possibly empty� context C[]. Moreover, C[A/A′] means the replacement of A
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by A′ in context C[], whereas Var(s) refers to the set of distinct variables occurring

in the syntactic object s, and θ[Var(s)] denotes the substitution obtained from θ by

restricting its domain to Var(s).

De�nición 2.1.2 (Admissible Step). Let Q be a goal and let σ be a substitution. The

pair ⟨Q;σ⟩ is a state and we denote by E the set of states. Given a program P, an
admissible computation is formalized as a state transition system, whose transition

relation →AS ⊆ (E × E) is the smallest relation satisfying the following admissible

rules (where we always consider that A is the selected atom in Q and mgu(E) denotes

the most general uni�er of an equation set E [LMM88]):

1) ⟨Q[A];σ⟩ →AS ⟨(Q[A/v&iB])θ;σθ⟩, if θ = mgu({A′ = A}), ⟨A′←iB; v⟩
in P and B is not empty.

2) ⟨Q[A];σ⟩ →AS ⟨(Q[A/v])θ;σθ⟩, if θ = mgu({A′ = A}) and ⟨A′←i; v⟩ in
P.

3) ⟨Q[A];σ⟩ →AS ⟨(Q[A/⊥]);σ⟩, if there is no rule in P whose head uni�es

with A.

Note that the second case could be subsumed by the �rst one, after expressing each

fact ⟨A′←i; v⟩ as a program rule of the form ⟨A′←i⊤; v⟩. Also, the third case is

introduced to cope with (possible) unsuccessful admissible derivations. As usual,

rules are taken renamed apart. We shall use the symbols →AS1, →AS2 and →AS3

to distinguish between computation steps performed by applying one of the speci�c

admissible rules. Also, the application of a rule on a step will be annotated as a

superscript of the →AS symbol.

De�nición 2.1.3. Let P be a program, Q a goal and �id� the empty substitution.

An admissible derivation is a sequence ⟨Q; id⟩→AS . . .→AS⟨Q′; θ⟩. When Q′ is a

formula not containing atoms (i.e., a L-expression), the pair ⟨Q′;σ⟩, where σ =

θ[Var(Q)], is called an admissible computed answer (a.c.a.) for that derivation.

Ejemplo 2.1.4. In Figure 2.1 we illustrate an admissible derivation (note that

the selected atom in each step appears underlined), where the admissible computed

answer (a.c.a.) is composed by the pair: ⟨&P(1,&P(|P(0.9, 0.5), 0.4)); θ⟩ where θ only

refers to bindings related with variables in the goal, i.e.,

θ = {X/peter,X1/peter}[Var(c(X))] = {X/peter}
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If we exploit all atoms of a given goal, by applying enough admissible steps, then it

becomes a formula with no atoms (a L-expression) which can be interpreted w.r.t.

lattice L by applying the following de�nition we initially presented in [JMP06]:

De�nición 2.1.5 (Interpretive Step). Let P be a program, Q a goal and σ a

substitution. Assume that @̇ is the truth function of connective @ in the lattice

⟨L,≼⟩ associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have that

@̇(r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive computation as

a state transition system, whose transition relation →IS ⊆ (E × E) is de�ned as the

least one satisfying: ⟨Q[@(r1, . . . , rn)];σ⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];σ⟩.

De�nición 2.1.6. Let P be a program and ⟨Q;σ⟩ an a.c.a., that is, Q does not

contain atoms (i.e., it is a L-expression). An interpretive derivation is a sequence

⟨Q;σ⟩→IS . . .→IS⟨Q′;σ⟩. When Q′ = r ∈ L, being ⟨L,≼⟩ the lattice associated to

P, the state ⟨r;σ⟩ is called a fuzzy computed answer (f.c.a.) for that derivation.

Ejemplo 2.1.7. If we complete the previous derivation of Example 2.1.4 by applying

3 interpretive steps in order to obtain the �nal f.c.a. ⟨0.38; {X/peter}⟩, we generate
the interpretive derivation shown in Figure 2.1.

2.1.3 Interpretive Steps and Cost Measures

A classical, simple way for estimating the computational cost required to built a

derivation, consists in counting the number of computational steps performed on it.

So, given a derivation D, we de�ne its:

• operational cost, Oc(D), as the number of admissible steps performed in D.

• interpretive cost, Ic(D), as the number of interpretive steps done in D.

Note that the operational and interpretive costs of derivation D1 performed in Fig-

ure 2.1 are Oc(D1) = 4 and Ic(D1) = 3, respectively. Intuitively, Oc informs us

about the number of atoms exploited along a derivation. Similarly, Ic seems to esti-

mate the number of connectives evaluated in a derivation. However, this last state-

ment is not completely true: Ic only takes into account those connectives appearing

in the bodies of program rules which are replicated on states of the derivation, but

no those connectives recursively nested in the de�nition of other connectives. The

following example highlights this fact.
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Ejemplo 2.1.8. A simpli�ed version of rule R7, whose body only contains an ag-

gregator symbol is:

R∗
7 : c(X) ←p @1(h(X), e(X), y(X)) with 1

where @1 is de�ned as @1(x1, x2, x3) , &P(|P(x1, x2), x3). Note that R∗
7 has exactly

the same meaning (interpretation) than R7, although di�erent syntax. In fact, both

ones have the same sequence of atoms in their head and bodies. The di�erences are

regarding the set of connectives which explicitly appear in their bodies since in R∗
7 we

have moved &P and |P from the body of the rule (see R7) to the connective de�nition

of @1. Now, we use rule R∗
7 instead of R7 for generating the following derivation

D∗
1 which returns exactly the same f.c.a than D1:

⟨c(X); id⟩ →AS1
R7

⟨&P(1,@1(h(X1), e(X1)y(X1))); {X/X1}⟩ →AS2
R3

⟨&P(1,@1(0.9, e(peter), y(peter))); {X/peter,X1/peter}⟩ →AS2
R5

⟨&P(1,@1(0.9, 0.5, y(peter))); {X/peter,X1/peter}⟩ →AS2
R1

⟨&P(1,@1(0.9, 0.5, 0.4)); {X/peter,X1/peter}⟩ →IS

⟨&P(1, 0.38); {X/peter}⟩ →IS

⟨0.38; {X/peter}⟩

Note that, since we have exploited the same atoms with the same rules (except for

the �rst steps performed with rules R7 and R∗
7, respectively) in both derivations,

then Oc(D1) = Oc(D
∗
1) = 4. However, although connectives &P and |P have been

evaluated in both derivations, in D∗
1 such evaluations have not been explicitly counted

as interpretive steps, and consequently they have not been added to increase the

interpretive cost measure Ic. This unrealistic situation is re�ected by the abnormal

result Ic(D1) = 3 > 2 = Ic(D∗
1). It is important to note that R∗

7 must not be

considered an optimized version of R7, even when the wrong measure Ic seems to

indicate the contrary.

This problem was initially pointed out in [JMP07], where a preliminary solution

was proposed by assigning weights to connectives in concordance with the set of

primitive operators involved in the de�nition of the proper connective @ as well as

those ones recursively contained in the de�nitions of connectives invoked from @.

Moreover, in [MM09b] we improved the previous notion of �connective weight� by

also taken into account the number of recursive calls to fuzzy connectives (directly

or indirectly) performed in the de�nition of @.
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A rather di�erent way for facing the same problem is presented in [MM09a], where

instead on connective weights, we opt for the more �visual� method we have just

implemented into FLOPER, based on the subsequent re-de�nition of the behaviour

of the interpretive phase.

De�nición 2.1.9 (Small Interpretive Step). Let P be a program, Q a goal and

σ a substitution. Assume that the (non interpreted yet) L-expression Ω(r1, . . . , rn)

occurs in Q, where Ω is just a primitive operator or a connective de�ned in the lattice

⟨L,≼⟩ associated to P, and r1, . . . , rn are elements of L. We formalize the notion of

small interpretive computation as a state transition system, whose transition relation

→SIS ⊆ (E × E) is the smallest relation satisfying the following small interpretive

rules (where we always consider that Ω(r1, . . . , rn) is the selected L-expression in

Q):

1) ⟨Q[Ω(r1, . . . , rn)];σ⟩ →SIS ⟨Q[Ω(r1, . . . , rn)/E
′];σ⟩, if Ω is a connective de�ned

as Ω(x1, . . . , xn)

, E and E′ is obtained from the L-expression E by replacing each variable (for-

mal parameter) xi by its corresponding value (actual parameter) ri, 1 ≤ i ≤ n,

that is, E′ = E[x1/r1, . . . , xn/rn].

2) ⟨Q[Ω(r1, . . . , rn)];σ⟩ →SIS ⟨Q[Ω(r1, . . . , rn)/r];σ⟩, if Ω is a primitive operator

such that, once evaluated with parameters r1, . . . , rn, produces the result r.

From now on, we shall use the symbols→SIS1 and→SIS2 to distinguish between

computation steps performed by applying one of the speci�c �small interpretive�

rules. Moreover, when we use the expression interpretive derivation, we refer to a

sequence of small interpretive steps (according to the previous de�nition) instead

of a sequence of interpretive steps (regarding De�nition 2.1.5). Note that this fact

supposes too a slight revision of De�nition 2.1.6 which does not a�ect the essence of

the notion of fuzzy computed answer: the repeated application of both kinds of small

interpretive steps on a given state only a�ects to the length of the corresponding

derivations, but both ones lead to the same �nal states (containing the corresponding

fuzzy computed answers).

Ejemplo 2.1.10. Recalling again the a.c.a. obtained in Example 2.1.4, we can reach

the �nal fuzzy computed answer ⟨0.38; {X/peter}⟩ (achieved in Example 2.1.7 by

means of interpretive steps) by generating now the following interpretive derivation

D2 based on �small interpretive steps� (De�nition 2.1.9):
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⟨&P(1,&P(|P(0.9, 0.5), 0.4)); {X/peter}⟩ →SIS1

⟨&P(1,&P((0.9 + 0.5)− (0.9 ∗ 0.5), 0.4)); {X/peter}⟩ →SIS2

⟨&P(1,&P(1.4− (0.9 ∗ 0.5), 0.4)); {X/peter}⟩ →SIS2

⟨&P(1,&P(1.4− 0.45, 0.4)); {X/peter}⟩ →SIS2

⟨&P(1,&P(0.95, 0.4)); {X/peter}⟩ →SIS1

⟨&P(1, 0.95 ∗ 0.4); {X/peter}⟩ →SIS2

⟨&P(1, 0.38); {X/peter}⟩ →SIS1

⟨1 ∗ 0.38; {X/peter}⟩ →SIS2

⟨0.38; {X/peter}⟩

Going back now to Example 2.1.8, we can rebuild the interpretive phase of Deriva-

tion D∗
1 in terms of small interpretive steps, thus generating the following interpretive

derivation D∗
2. Firstly, by applying a →SIS1 step on the L-expression

&P(1,@1(0.9, 0.5, 0.4)), it becomes &P(1,&P(|P(0.9, 0.5), 0.4)), and from here, the in-

terpretive derivation evolves exactly in the same way as derivation D2 we have just

done above.

At this moment, it is mandatory to meditate on cost measures regarding deriva-

tions D1, D
∗
1 , D2 and D∗

2 . First of all, note that the operational cost Oc of all them

coincides, which is quite natural. However, whereas Ic(D1) = 3 > 2 = Ic(D∗
1),

we have now that Ic(D2) = 8 < 9 = Ic(D∗
2). This apparent contradiction might

confuse us when trying to decide which program rule (R7 or R∗
7) is �better�. The

use of De�nition 2.1.9 in derivations D2 and D∗
2 is the key point to solve our prob-

lem, as we are going to see. In Example 2.1.8 we justi�ed that by simply counting

the number of interpretive steps performed in De�nition 2.1.5 might produce ab-

normal results, since the evaluation of connectives with di�erent complexities were

(wrongly) measured with the same computational cost. Fortunately, the notion of

small interpretive step makes visible in the proper derivation all the connectives

and primitive operators appearing in the (possibly recursively nested) de�nitions of

any connective appearing in any derivation state. As we have seen, in D2 we have

expanded in three →SIS1 steps the de�nitions of three connectives, i.e. |P, and &P

twice, and we have applied �ve →SIS2 steps to solve �ve primitive operators, that

is, +, −, and ∗ (three times). The same computational e�ort as been performed in

D∗
2 , but also one more →SIS1 step was applied to accomplish with the expansion

of the extra connective @1. This justi�es why Ic(D2) = 8 < 9 = Ic(D∗
2) and con-
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tradicts the wrong measures of Example 2.1.8: the interpretive e�ort developed in

derivations D1 and D2 (both using the program rule R7), is slightly lower than the

one performed in derivations D∗
1 and D∗

2 (which used rule R∗
7), and not the contrary.

The accuracy of our new way for measuring and performing interpretive compu-

tations seems to be crucial when comparing the execution behaviour of programs

obtained by transformation techniques such as the fold/unfold framework we de-

scribe in [JMP05a, GM08]. In this sense, instead of measuring the absolute cost of

derivations performed in a program, we are more interested in the relative gains/lost

of e�ciency produced on transformed programs. For instance, by applying the so-

called �aggregation operation� described in [GM08] we can transform rule R7 into

R∗
7 and, in order to proceed with alternative transformations (fold,unfold, etc.) if

the resulting program degenerates w.r.t. the original one (as occurs in this case), we

need an appropriate cost measure as the one proposed here to help us for taken deci-

sions. This fact has capital importance for discovering drastic situations which can

appear in degenerated transformation sequences such as the generation of highly

nested de�nitions of aggregators. For instance, assume the following sequence of

connective de�nitions: @100(x1, x2) , @99(x1, x2), @99(x1, x2) , @98(x1, x2), . . . ,

and �nally @1(x1, x2) , x1 ∗ x2. When trying to solve two expression of the form

@99(0.9, 0.8) and @1(0.9, 0.8), cost measures based on number of interpretive steps

([JMP06]) and weights of interpretive steps ([JMP07]) would assign 1 unit of inter-

pretive cost to both derivations. Fortunately, our new approach is able to clearly

distinguish between both cases, since the number of →SIS1 steps performed in each

one is rather di�erent (100 and 1, respectively).

2.2 The �Fuzzy LOgic Programming Environment

for Research�

As shown in the web page http://dectau.uclm.es/floper/ designed in our re-

search group for freely accessing FLOPER -see also references [MM08, MMPV10b,

MMPV10a, MMPV11, MMPV12a, MMPV12b]- during the last years we have been

involved in the development of this tool for aliving MALP programs (which can be

easily loaded into the system by means of plain-text �les with extension �.fpl�). For

example, our previous illustrative program included into �le �P1.fpl�, contains the

following rules where, note for instance that the fuzzy connectives for implication,

disjunction and conjunction symbols belonging to the product logic are respectively
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referred as �<prod�, �|prod� and �&prod�:

y(peter) with 0.4.

y(mary) with 0.8.

h(peter) with 0.9.

h(mary) with 0.3.

e(peter) with 0.5.

e(mary) with 0.95.

c(X) <prod (h(X) |prod e(X)) &prod y(X) with 1.

Figure 2.2: MALP program P1 loaded into FLOPER

In order to simplify the task of coding fuzzy logic programs, our tool is able to

parse MALP rules with `syntactic sugar� trying to look as conservative extensions

of Prolog clauses:

• Since the weight of a rule can be omitted if it coincides with the ⊤ element

of the corresponding lattice then, a rule like `p(X) with 1.� can be simply

expressed as �p(X).�.

• When the concrete implication symbol connecting the body and head of a

given a rule be irrelevant, we can write �<-� instead of using a particular label

�<logic�, since FLOPER will choose an arbitrary implication (i.e., the last one

found when textually exploring the lattice stored into the system) for this rule.

So, �p(X) <- q(X).� is a valid rule.

• Something similar occurs (but even without the need of �-�) for connectives

used in the bodies of program rules, thus implying that �p(X) <- q(X) &

r(X).� is a valid rule for any conjunction operator. At this point, it is impor-

tant to remark that the last rule in Figure 2.2 (we assume that the connectives

belonging to the product logic are the last ones de�ned into the lattice stored

into FLOPER) can be highly simpli�ed to the following shape: �c(X) <-

(h(X) | e(X)) & y(X).�.

• We can also include Prolog clauses between �$$� symbols, for instance

�$p(X):-!, var(X).$�, and moreover, it is possible too to insert pure Pro-

log code between �{}� symbols into the body of a fuzzy logic MALP rule, as

occurs with �p([H|T]) <- {Y is H+1} q(Y) & p(T).�.
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Figure 2.3: Running FLOPER into any standard Prolog platform

Once the application is loaded inside any standard Prolog interpreter (like SWI or

Sicstus -which is our case, by using v3.12.5-), it shows the menu shown in Figure

2.3. The parser has been implemented by using the classical DCG's (De�nite Clause

Grammars) resource of the Prolog language, since it is a convenient notation for

expressing grammar rules. Via the �parse� option, it is possible to load a �.fpl� �le

for which FLOPER generates two di�erent Prolog representations of the fuzzy

code, as we will describe in sub-sections 2.2.1 and 2.2.2. Such code will cohabit with

the set of clauses introduced by the user (together the Prolog-based de�nition of

the associated lattice that we will describe in sub-section 2.2.3) via the �load� option

for consulting pure Prolog �les (�.pl�). The system is equipped too with choices
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Figure 2.4: The graphical interface of FLOPER

for saving and listing such rules as well as the �clean� option for removing all clauses

from the FLOPER database.

The remaining menus are useful for executing goals and displaying evaluation trees,

as well as for managing multi-adjoint lattices, as we are going to explain in what

follows helped by the graphical interface recently developed for FLOPERand shown

in Figure 2.4, which allows the comfortable use of �projects� in order to manage

�les with the following di�erent purposes:

• several �.fpl� �les can contain the set of MALP rules implementing a single

MALP program,

• the set of clauses modeling its (unique) associated multi-adjoint lattice must

be included into a �le with obvious extension �.pl�,

• additional Prolog code (for representing linguistic modi�ers/variables, etc)

can be also attached in di�erent �.pl� �les and

• several �script� �les could be useful for executing in one go more than one of
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the set of commands we are going to explain in this section, as illustrated in

the following example:

ord: intro.

arg: c(X).

ord: ismode.

arg: s.

ord: tree.

ord: leaves.

ord: run.

2.2.1 Running Programs

In order to fully execute a goal, FLOPER employs the high-level representation

of the MALP program compiled via the �parse� option. The key point of this

code is to extend each atom of the program with an extra argument, called truth

variable, of the form TVi, which is intended to contain the truth degree obtained

after the subsequent evaluation of the atom. In the case of a fact, the extra argument

obviously contains its weight. For instance, �p(X) with 0.5� is simply translated

into the Prolog fact �p(X, 0.5)�.

Fuzzy connectives are represented as predicates de�ned in the lattice associated

to the program. For instance, the role of �&godel� is played by the Prolog predicate

�and_godel�. Since the fuzzy connective �&godel� is a binary operation, then its

associated predicate �and_godel� has arity three: two parameters plus the result,

returned in the third argument TV.

When compiling MALP rules, the last atom called in the body of the trans-

lated clause is the adjoint conjunction, which is intended to combine the truth de-

gree of the body and the weight of the rule, in order to propagate the �nal truth

degree to the head. For instance, given a MALP rule like �p(X) <prod q(X,Y)

&godel r(Y) with 0.8�, the resulting translated Prolog clause would look like

�p(X,_TV0) : −q(X, Y,_TV1), r(Y,_TV2), and_godel(_TV1,_TV2,_TV3), and_prod(0.8,_TV3,_TV0)�.

In order to execute a fuzzy program stored in a �.fpl� �le , FLOPER needs �rstly

to load and compile it by using the �parse� option. Internally, while FLOPER

analyzes the content of the �le (following the DCG speci�cation of the MALP

syntax) it also generates two di�erent Prolog representations of the fuzzy code:

the high level representation coincides with a set of executable Prolog clauses as
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we have just described, while the low level representation allows FLOPER to draw

execution trees as we will see in the next subsection.

Here we have an example of using the �parse� option, where note that FLOPER

lists the content of any previously loaded �.pl� �le (none in our case), the parsed

MALP program and the generated Prolog code.

>> parse.

File to parse: `P1.fpl'.

No loaded files.

ORIGINAL FUZZY-PROLOG CODE:

y(peter) with 0.4.

y(mary) with 0.8.

h(peter) with 0.9.

h(mary) with 0.3.

e(peter) with 0.5.

e(mary) with 0.95.

c(X) <prod (h(X) |prod e(X)) &prod y(X) with 1.

GENERATED PROLOG CODE:

y(peter,0.4).

y(mary,0.8).

h(peter,0.9).

h(mary,0.3).

e(peter,0.5).

e(mary,0.95).

c(X,TV0):-h(X,_TV1),e(X,_TV2),lat:or_prod(_TV1,_TV2,_TV3),

y(X,_TV4),lat:and_prod(_TV3,_TV4,_TV5),

lat:and_prod(1,_TV5,TV0).

While parsing, FLOPER creates a �le tmp_fuzzy-prolog.pl to allocate the generated

Prolog code, in order to allow the possibility of saving it afterwards into a new �le

by using the �save� option.

One important feature is that translated connectives (like �lat:and_prod/3�)

are pre�xed by �lat:�, which means that the Prolog interpreter will search their
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de�nitions in the �lat� module, a di�erent name-space designed to avoid name

collisions. The resulting Prolog code can be executed in any Prolog engine, with

the only requirement that the associated lattice must be loaded in the corresponding

module. This can be easily achieved with the following two goals:

?- lat:consult(lattice.pl).

?- consult(program.fpl).

Moreover, goals are introduced in FLOPER by choosing the �intro� option and they

su�er a very similar translation process to program rules. So, it is easy to see that a

fuzzy goal like �y(X) &godel h(peter)�, is translated into the pure Prolog goal

�y(X, _TV1),h(peter, _TV2), and_godel(_TV1, _TV2, Truth_degree)� (note

that the last truth degree variable is not anonymous now) for which the Prolog

interpreter returns the two desired fuzzy computed answers after selecting the �run�

option (see Figure 2.4) :

[Truth_degree=0.4, X=peter]

[Truth_degree=0.8, X=mary]

2.2.2 Execution Trees

Apart from the compilation method to Prolog code commented before, we have

conceived a new low-level representation for the fuzzy code which is useful for build-

ing execution trees with any level of depth and o�ering too debugging (tracing)

capabilities. For instance, after parsing the last rule of our program, we obtain

the following expression (which is �asserted� into the database of the interpreter

as a Prolog fact, but it is never executed directly, in contrast with the previous

Prolog-based, high-level representation of the fuzzy code) whose components have

obvious meanings:

rule(7,

head(atom(pred(c,1),[var('X')])),

impl(prod),

body(and(prod,2,[or(prod,2,[atom(pred(h,1),[var('X')]),

atom(pred(e,1),[var('X')])]),

atom(pred(y,1),[var('X')])])),

td(1)).
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Figure 2.5: FLOPER drawing an execution tree

FLOPER is equipped with three options related with tracing tasks. Option �tree�

draws the execution tree (which collects a di�erent derivation from the root to each

leaf) of a goal w.r.t. a program. Option �depth� �xes the maximum length allowed

for their branches (initially 3). And, �nally, option �ismode� �xes the detail level of

the interpretive phase associated to each derivation in the tree.

So, let us consider again the MALP program of our running example. For goal

�y(X) &godel h(peter)�, FLOPER displays the tree showed in Figure 2.5. In

this screen-shot, we �nd two representations of the same tree: the middle-up window

shows the proper graphic which is easy to understand and manipulate (by moving

nodes, showing only skeletons of trees, etc.), while the marked text in the middle-

down window represents the same tree in plain text. In this last case, each line
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Figure 2.6: Comparing di�erent modes of performing the interpretive phase

contains a state (composed by the corresponding goal and substitution) preceded by

the number of the program rule used by the admissible step leading to it (root nodes

and nodes obtained via →AS3 are always labeled with the virtual, non existing rule

R0), and nodes belonging to the same branch appear in di�erent lines appropriately

indented to help the readability of the tree (which only contain two di�erent branches

in our case). Generated trees can be saved in �.jpg�, �.txt� and �xml� formats.

Moreover, FLOPER allows the user to choose the level of information given by

the interpretive phase in the execution tree through option �ismode�. We can choose

among the following three modes:
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• large: This mode omits the entire interpretive phase, o�ering only the �nal

leaf (if exists) of each branch.

• medium: Performs classical interpretive steps according De�nition 2.1.5, in

order to evaluate each expression of the goal till �nding the �nal solution.

• small: This mode applies our improved notion of small interpretive step pro-

vided in De�nition 2.1.9, which is very useful for visualizing the more or less

complexity (distinguishing between connective calls and primitive operators

evaluation) of connectives exploited during the interpretive phase. Figure

2.6 shows that the shorter the step is, the larger tree is generated.

To �nish this block, we are going to illustrate now with a very simple example

that the new options are crucial when the �run� choice fails: remember that this

last option is based on the generation of pure logic SLD-derivations which might

fall in loop or directly fail when �nding non de�ned atoms, in contrast with the

traces (based on �nite, non- failed, admissible/interpretive derivations) that the

�tree� option displays. So, consider the following MALP program:

p(a) with 0.8.

p(X) <prod p(s(s(s(X)))) with 0.9.

p(b) with 0.6.

where the �rst and last rules indicate that a goal like �p(X)� admits two solutions, but

the second rule would be responsible of introducing an in�nite branch between the

leaves associated to both fuzzy computed answers in the corresponding execution

tree. Moreover, if we plan to run a more complex goal like �q(X) @aver p(X)�

(where, obviously, the used connective refers to the average aggregator), we �nd a

second problem related now with an unde�ned atom. In contrast with Prolog,

in our fuzzy setting the evaluation of �q(X)� doesn't fail, since FLOPER proceeds

with an →AS3 step according De�nition 2.1.2, and hence, it is possible to �nd the

two desired fuzzy computed answers for that goal, as shown in the execution tree of

Figure 2.7. By choosing option �leaves�, the system displays the content of the two

fully evaluated leaves �<0.4,{X/a}>� and �<0.3,{X/b}>�, as desired.

As we have seen, the generation of traces based on execution trees, contribute to

increase the power of FLOPER by providing debugging capabilities which allow us

to discover solutions for queries even when the pure Prolog compilation-execution

process becomes insu�cient.



56 Chapter 2. Multi-adjoint Logic Programming and the FLOPER System

Figure 2.7: Tree with an in�nite branch and a →AS3 step

2.2.3 Managing Lattices

We have conceived a very easy way to model lattices of truth degrees for being

included into the FLOPER tool. All relevant components of each lattice can be

encapsulated inside a Prolog �le which must necessarily contain the de�nitions

of a minimal set of predicates de�ning the set of valid elements (including special

mentions to the �top� and �bottom� ones), the full or partial ordering established

among them, as well as the repertoire of fuzzy connectives which can be used for

their subsequent manipulation. In order to simplify our explanation, assume that �le

�bool.pl� refers to the simplest notion of (a binary) adjoint lattice, thus implementing

the following set of predicates:

• member/1 which is satis�ed when being called with a parameter representing a

valid truth degree. In the case of �nite lattices, it is also recommended to imple-

ment members/1 which returns in one go a list containing the whole set of truth

degrees. For instance, in the Boolean case, both predicates can be simply mod-

eled by the Prolog facts: member(0)., member(1). and members([0,1]).

• bot/1 and top/1 obviously answer with the top and bottom element of the

lattice, respectively. Both are implemented into �bool.pl� as bot(0). and



2.2. The �Fuzzy LOgic Programming Environment for Research� 57

top(1).

• leq/2 models the ordering relation among all the possible pairs of truth de-

grees, and obviously it is only satis�ed when it is invoked with two elements

verifying that the �rst parameter is equal or smaller than the second one. So,

in our example it su�ces with including into �bool.pl� the facts: leq(0,X).

and leq(X,1).

• Finally, given some fuzzy connectives of the form &label1 (conjunction), |label2
(disjunction) or@label3 (aggregation) with arities n1, n2 and n3 respectively, we

must provide clauses de�ning the connective predicates �and_label1/(n1+1)�,

�or_label2/(n2+1)� and �agr_label3/(n3+1)�, where the extra argument of each

predicate is intended to contain the result achieved after the evaluation of the

proper connective. For instance, in the Boolean case, the following two facts

model in a very easy way the behaviour of the classical conjunction operation:

and_bool(0,_,0). and_bool(1,X,X).

The reader can easily check that the use of lattice �bool.pl� when working with

MALP programs whose rules have the form �A ←bool &bool(B1, . . . , Bn) with 1�,

being A and Bi typical atoms1, successfully mimics the behaviour of classical Pro-

log programs where clauses accomplish with the shape �A : − B1, . . . , Bn�.

As a novelty in the fuzzy setting, when evaluating goals according to the procedural

semantics described in Section 2.1.1, each output will contain the corresponding sub-

stitution (i.e., the crisp notion of computed answer obtained by means of classical

SLD-resolution in Prolog) together with the maximum truth degree 1.

On the other hand and following the Prolog style regulated by the previous

guidelines, in �le �num.pl� we have included the clauses shown in Figure 2.8. Here,

we have modeled the more �exible lattice (that we will mainly use in our examples,

beyond the boolean case) which enables the possibility of working with truth degrees

in the in�nite space (note that this condition disables the implementation of the

consulting predicate �members/1�) of real numbers between 0 and 1, allowing too

the possibility of using conjunction and disjunction operators recasted from the three

typical fuzzy logics described before (i.e., the �ukasiewicz, Gödel and product logics),

as well as a useful description for the hybrid aggregator average.

1Here we also assume that several versions of the classical conjunction operation have been

implemented with di�erent arities.
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member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattice)

bot(0). top(1). leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).

and_godel(X,Y,Z):- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 2.8: Multi-adjoint lattice modeling truth degrees in the real interval [0,1]

(�num.pl�)

Note also that we have included de�nitions for auxiliary predicates, whose names

always begin with pre�x �pri_�. All of them are intended to describe primitive/arith-

metic operators (in our case +, −, ∗, /, min andmax) in a Prolog style, for being

appropriately called from the bodies of clauses de�ning predicates with higher levels

of expressiveness (this is the case for instance, of the three kinds of fuzzy connectives

we are considering: conjunctions, disjunctions and agreggations).

Since till now we have considered two classical, fully ordered lattices (with a

�nite and in�nite number of elements, collected in �les �bool.pl� and �num.pl�, re-

spectively), we wish now to introduce a di�erent case coping with a very simple

lattice where not always any pair of truth degrees are comparable. So, consider the

partially ordered multi-adjoint lattice in Figure 2.9 for which the conjunction and

implication connectives based on the Gödel logic described in Section 2.1.1 conform

an adjoint pair but with the particularity now that, in the general case, the Gödel 's

conjunction must be expressed as &G(x, y) , inf(x, y), where it is important to

note that we must replace the use of �min� by �inf � in the connective de�nition.

To this end, observe in the Prolog code accompanying Figure 2.9 that we have

introduced �ve clauses de�ning the new primitive operator �pri_inf/3� which is

intended to return the in�mum of two elements. Related with this fact, we must

point out the following aspects:
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⊤

α β

⊥

member(bottom). member(alpha).

member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha).

leq(beta,beta). leq(beta,top).

leq(alpha,top). leq(X,top).

and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom):-!.

pri_inf(alpha,X,alpha):-leq(alpha,X),!.

pri_inf(beta,X,beta):-leq(beta,X),!.

pri_inf(top,X,X):-!.

pri_inf(X,Y,bottom).

Figure 2.9: Partially ordered lattice with four elements

• Note that since truth degrees α and β -or their corresponding representations

as Prolog terms �alpha� and �beta� used for instance in the de�nition(s)

of �members(s)/1�- are not comparable, any call to �leq(alpha,beta)� or

�leq(beta,alpha)� will always fail.

• However, goals �pri_inf(alpha,beta,X)� and �pri_inf(beta,alpha,X)�, in-

stead of failing, successfully produces the desired result �X=bottom�.

• Note anyway that the implementation of the �pri_inf/1� predicate is manda-

tory for coding the general de�nition of �and_godel/3�.

As a �nal example, we can also de�ne the so called Borel algebra based on the union
of intervals (where for instance B([0, 1]) is the union of intervals between 0 and 1
[VGM02, MCS11]) as a Prolog program for being used into FLOPER as follows:

member([i(X,Y)]) :- number(X),number(Y),X=<Y.

member([i(X,Y),i(Z,T)|U]) :- number(X),number(Y),number(Z),

X=<Y, Y < Z,member([i(Z,T)|U]).

bot([i(0,0)]). top([i(1,1)]).

leq([X1,X2|X],Y) :- existsGreater(X1,Y),leq([X2|X],Y).

leq([X1],Y) :- existsGreater(X1,Y).

existsGreater(i(Xb,Xt),[i(Yb,Yt)|Y]) :- Yb=<Xb, Xt=<Yt,!.

existsGreater(X,[_|Y]) :- existsGreater(X,Y).

• A member of this algebra is a list of pairs representing disjoined intervals.
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• The top element is the point 1 (interval from 1 to 1), and the bottom one is

the point 0 (interval from 0 to 0).

• A union of intervals, U , is less or equal than other union of intervals U ′ if for

each I ∈ U , there exists another interval I ′ ∈ U ′, such that I ⊆ I ′.

2.2.4 Linguistic modi�ers and linguistic variables

Another interesting feature of FLOPER is its ability for managing linguistic modi-

�ers and linguistic variables in a very easy way. A linguistic modi�er can be seen as

an aggregator such that, when applied to a fuzzy expression, it alters its �nal truth

degree. Some examples of well known modi�ers are �very� and �roughly�, where the

�rst one tends to return a lower truth degree, and the second one, a higher truth de-

gree. Since the concept of modi�er is dependent of a concrete lattice, its de�nition

should appear inside the Prolog �le containing the proper multi-adjoint lattice

loaded into FLOPER 
For instance, in the typical lattice ⟨[0, 1],≤⟩ used in previous

examples, we could de�ne some modi�ers by means of the following usual formulae:

modifier formula implementation

extremely extremely(x) = x4 agr_extremely(X,TV0) : −TV0 is X ∗X ∗X ∗X.
very very(x) = x2 agr_very(X,TV0) : −TV0 is X ∗X.
moreorless moreless(x) = x1/2 agr_moreless(X,TV0) : −TV0 is sqrt(X).

roughly roughly(x) = x1/4 agr_roughly(X,TV0) : −TV0 is sqrt(sqrt(X)).

Figure 2.10: Linguistic modi�ers

With these modi�ers, now we could update the program of Figure 2.1 to increase

the di�culty for obtaining a credit in crisis times. The only rule to be modi�ed is
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the seventh one, whose new shape could look like:

R∗
7 : c(X) ←p @very((h(X) |P e(X)) &P y(X)) with 1

Linguistic modi�ers increase the expresiveness of the fuzzy language and as said

before, they have to be de�ned as part of the lattice associated to the MALP

program in the current project.

On the other hand, linguistic variables allow us to represent linguistic symbols

de�ned by means of fuzzy sets. A linguistic variable is characterized by a tuple

⟨x, T, U,G,M⟩, where x is the name of the variable, T the set of linguistic symbols

or terms of x, U the universe where x is de�ned, G represents a syntactic rule to

generate linguistic terms, and M is a semantic rule for assigning to each linguistic

symbol t its fuzzy set M(t). For instance, we can represent the linguistic variable

distance, with values {near, far_away} de�ned over the universe [0,+∞) in kilo-

meters, as shown in Figure 2.11. We can implement this variable into a Prolog

�le de�ning a fuzzy predicate for each symbol. The arguments are an input vari-

able (D) giving the crisp distance, and an output variable (TV) returning the degree

of membership of the input variable to the fuzzy set. Then, it is possible to load

this Prolog program into the current project of FLOPER, in order to use such

de�nitions in the corresponding MALP program.

Figure 2.11: Linguistic variable �distance� with terms �near� and �far away�

near(D,1) :- D=<100.

near(D,TV):- 100<X, X=<500, TV is (500-X)/400.

near(D,0) :- 500<D.
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far_away(D,0) :- D=<100.

far_away(D,TV):- 100<X, X=<500, TV is (X-100)/400.

far_away(D,1) :- 500<D.

In the following example, we design a touristic application to compute the best

destination for vacations. The database includes some cities and relevant information

relating them (kind of weather, good sights, distance from our hometown). It is clear

that some of this information has a very fuzzy taste, so the choice of a fuzzy language

is desirable. We can fuzzify the crisp distance using the linguistic variable de�ned

above as follows.

nice_weather(madrid) with 0.8.

nice_weather(istanbul) with 0.7.

nice_weather(moscow) with 0.2.

nice_weather(sydney) with 0.5.

many_sights(madrid) with 0.6.

many_sights(istanbul) with 0.7.

many_sights(moscow) with 0.2.

many_sights(sydney) with 0.6.

crisp_distance(madrid, 250).

crisp_distance(istanbul, 3700).

crisp_distance(moscow, 4200).

crisp_distance(sydney, 18000).

good_destination(X) <- @roughly(crisp_distance(X,D) & near(D))

@aver

@very(nice_weather(X) & many_sights(X)).

Note that the use too of linguistic modi�ers in the last MALP rule means that

we give little importance to the distance since we are more interested on weather and

sights. Now, for goal good_destination(X), the execution of the previous program

into FLOPER returns the following results (meaning that the best destination,

according to our speci�cation, is Madrid, followed by far by Istanbul and Sydney,

while Moscow scores 0):

[Truth_degree=0.0,X=moscow]

[Truth_degree=0.005000000000000009,X=sydney]

[Truth_degree=0.07999999999999996,X=istanbul]

[Truth_degree=0.5245698525097306,X=madrid]

Note that, with the current de�nition of fuzzy predicates `near' and `far_away', no

matter how we reduce the importance of distance since, if it is over 500 kilometers, it

will always be near with 0 truth degree, and if it is under 100 kilometers, it will be far
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with 0 truth degree. If our perception of distance changes, these notions will become

useless. To �x that, we can de�ne them with non-linear rules like the following ones,

which show that FLOPER is �exible enough to deal with fuzzy predicates de�ned

(in Prolog) by means of non-linear arithmetic expressions:

near(D,TV) :- TV is 250/(D+250).

far(D,TV) :- TV is 1 - 250/(D+250).

Figure 2.12: Linguistic variable �distance� with �exible versions of �near� and �far

away�

2.3 Extending Lattices and Declarative Traces

This section presents di�erent methods to gain expressiveness when designing a

MALP program by manipulating its associated lattice. The main technique con-

sists on agglutinating several lattices in order to obtain the Cartesian product of

them, which is also a multi-adjoint lattice [MMPV12a]. Once this is done, a new

functionality emerges for obtaining declarative traces (when evaluating goals) at a

very low cost.

Teorema 2.3.1. If L1, . . . , Ln are a �nite number of multi-adjoint lattices, then its

Cartesian product L = L1 × · · · × Ln is also a multi-adjoint lattice.

In order to simplify our explanation, but without lost of generality, we only

consider two multi-adjoint lattices (L1,≤1,&1,←1) and (L2,≤2,&2,←2), each one
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equipped with just a single adjoint pair. Then, L = L1×L2 has lattice structure with

an ordering relation induced in the product from (L1,≤1) and (L2,≤2) as follows:

(x1, y1) ≤ (x2, y2)⇔ x1 ≤1 x2, y1 ≤2 y2

Moreover, being ⊤1 = sup(L1), ⊥1 = inf(L1), ⊤2 = sup(L2) and ⊥2 = inf(L2),

we have that (⊤1,⊤2) = sup(L) and (⊥1,⊥2) = inf(L) which implies that the

Cartesian product L is a bounded lattice if both L1 and L2 are also bounded lattices.

Analogously, L1×L2 is a complete lattice if L1 and L2 verify too the same property.

Finally, from the adjoint pairs (&1,←1) and (&2,←2) in L1 and L2, respectively, it

is possible to de�ne the following connectives in L:

(x1, y1)&(x2, y2) , (x1&1x2, y1&2y2)

(x1, y1)← (x2, y2) , (x1 ←1 x2, y1 ←2 y2)

for which it is easy to justify that they conform an adjoint pair in L1 × L2 (thus

satisfying, in particular, the adjoint property). In a similar way, it is also possible to

de�ne new connectives (conjunctions, disjunctions and aggregators) in the Cartesian

product L1 × L2 from the corresponding pairs of operators de�ned in L1 and L2.

FLOPER is able to deal with Cartesian products of multi-adjoint lattices by

acting on the �member/1� predicate, which accept as argument any object which

belong to a lattice. Some examples of simple �member/1� de�nitions are:

• member(X) :- number(X), X=<1, X>=0: [0,1] interval

• member([X|L]): lists

• member(info(X,Y)): pairs

The very intuitive way to obtain Cartesian product of lattices is to use Prolog

functions with arity 2 (indeed, the cartesian product of n lattices can be represented

using functions with arity n). In order to implement a cartesian product of lattices

in a Prolog �le, we de�ne �member/1� predicate whose parameter is a term headed

with a function symbol, for instance: member(f(X,Y)) :- check1(X), check2(Y).

Of course, predicates �leq/2�, �top/1�, �bot/1� and connectives have to be de�ned

following the same criterium in order to implement the concrete Cartesian product

of lattices.

Before showing an example of Cartesian product modeled in FLOPER, let us

consider again the so called domain of weight values W used in the QLP (Quali�ed
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Logic Programming framework of [RD08, CRR10, RR08a], whose elements are in-

tended to represent proof costs, measured as the weighted depth of proof trees. As

explained in Section 2.1, W can be seen as lattice (N ∪ {∞},≥), where ≥ is the

reverse of the usual numerical ordering (with ∞ ≥ d for any d ∈ N) and thus, the

bottom elements is ∞ and the top element is 0 (and not vice versa). Note that in

this lattice the arithmetic operation �+� plays the role of a conjunction (it is easy

to prove that in this setting such de�nition of & veri�es the properties required

by t-norms [NW06]). Moreover, we can obtain the residual implication of the �+�

t-norm, de�ned as y ← z , sup{t ∈ W : t + z ≤ y}, which in this particular case

acquires the following shape:

y ← z ,

 y − z, if z ≥ y

0, if y > z

So, the reader can easily check that (+,←) conforms an adjoint pair in (N∪{∞},≥),
thus accomplishing with De�nition 2.1.1 in Section 2.1, which implies that W is

in fact a multi-adjoint lattice. A valid implementation of W lattice presents the

following de�nitions:

member(X) :- number(X). member(infty).

leq(infty,X). leq(X,Y):-X>=Y.

top(0). bot(infty).

and_plus(X,infty,infty). and_plus(infty,X,infty). and_plus(X,Y,Z):-Z is X+Y.

In order to associate the lattice W to our program P1, we have to change the

weights of each rule by valid truth degrees belonging to the new lattice. For instance,

rule �y(peter) with 0.4� would be rewritten as �y(peter) with 1� (the underlying idea

is that �the use of each program rule in a derivation implies the application of one

admissible step�), resulting in a new program, PW . By using the �lat� option of

FLOPER, we can built a project which associates lattice W to program PW and

now, for goal �c(X)�, we can generate an admissible derivation similar to the one seen

in Figure 2.1, but ending now with ⟨&P(info(1,&P(|P(1, 1), 1)), {X/peter}⟩. Since:
&P(1,&P(|P(1, 1), 1)) = +(1,+(+(1, 1), 1))) = 4, the �nal fuzzy computed answer or

f.c.a. ⟨4; {X/peter}⟩ indicates that goal �c(X)� holds when X is peter, as proved

after applying 4 admissible steps.

On the other hand, since we have said that V is the multi-adjoint lattice ([0, 1],≤)
based on real numbers in the unit interval used along this thesis (which is equipped

with three adjoint pairs modeling implication and conjunction symbols collected
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from the �ukasiewicz logic, Gödel intuitionistic logic and product logic) then, in the

Cartesian product V×W we will �nd the top and bottom elements (1, 0) and (0,∞),

respectively, as well as the following de�nitions of conjunction operations (among

other connectives) whose names are mirroring to extensions of the product logic and

�ukasiewicz logic:

(v1, w1) &P+ (v2, w2) , (v1 ∗ v2, w1 + w2)

(v1, w1) &L+ (u2, w2) , (max(0, v1 + v2 − 1), w1 + w2)

Moreover, we can also conceive a more powerful lattice expressed as the Cartesian

product of V (see Figure 2.8) andW. Now, each element includes two components,

coping with truth degrees and cost measures. In order to be loaded into FLOPER,

we must de�ne in Prolog the new lattice, whose elements could be expressed as

data terms of the form �info(Fuzzy_Truth_Degree, Cost_Number_Steps)�. Some

of the required predicates are:

member(info(X,W)):-number(X), 0=<X,X=<1,(W=infty,!; number(W),1=<W).

leq(info(X1,W1),info(X2,W2)):-X1 =< X2, (W1=infty,!; number(W2), W2 =< W1).

bot(info(0,infty)). top(info(1,1)).

and_prod(info(X,W1),info(Y,W2),info(Z,W3)) :- pri_prod(X,Y,Z),pri_add(W1,W2,W3).

pri_add(infty,_,infty). pri_add(_,infty,infty).

pri_add(X,Y,Z) :- number(X), number(Y), Z is X+Y.

Finally, if the weights assigned to the rules of our example are �info(0.4,1)� forR1,

�info(0.8,1)� for R2, �info(0.9,1)� for R3 and so on, then we would obtain the

desired f.c.a. ⟨info(0.38, 4); {X/peter}⟩ for goal �c(X)�, with the obvious meaning

that we need 4 admissible steps to prove that the query is true at a 38% degree when

X is �peter�.

One step beyond, we will also see that if instead of the number of computational

steps, we are interested in knowing more detailed data about the set of program rules

and connective de�nitions evaluated for obtaining each solution then, instead of W
it will be mandatory to use a new lattice S based on strings or labels (i.e., sequences

of characters) for generating the Cartesian product V × S. In [MMPV12b] we show

not only that S is a complete multi-adjoint lattice, but also that the concatenation

of strings, usually called �append� in many programming languages, plays the role

of a conjunction connective in such lattice.



2.3. Extending Lattices and Declarative Traces 67

In order to be loaded into FLOPER, we need to de�ne again the new lattice as a

Prolog program, whose elements will be terms of the form

�info(Fuzzy_Truth_Degree, Label)� as shown in Figure 2.13 (we only list some

representative clauses).

member(info(X,Y)):-number(X),0=<X,X=<1,atom(Y). top(info(1,'')).

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-

pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),

pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).

pri_prod(X,Y,Z,'#PROD.'):-Z is X * Y.

pri_app(X,Y,Z) :-name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).

append([],X,X). append([X|Xs],Y,[X|Zs]):-append(Xs,Y,Zs).

.....

Figure 2.13: Multi-adjoint lattice modeling truth degrees with labels

Here, we see that when implementing for instance the conjunction operator of the

Product logic, in the second component of our extended notion of �truth degree�, we

have appended the labels of its arguments with label '&PROD.' (see clauses de�ning

and_prod, pri_app and append). Of course, in the fuzzy program to be run, we

must also take into account the use of labels associated to the program rules, as

occurs with the following example:

p(X) <prod &godel(q(X),@aver2(r(X),s(X))) with info(0.9,'RULE1.').

q(a) with info(0.8,'RULE2.').

r(X) with info(0.7,'RULE3.').

s(X) with info(0.5,'RULE4.').

where we have used in the �rst rule aggregator �@aver2� (intended to compute the

average between the results achieved by applying two di�erent disjunction operations

on the parameters) de�ned in Prolog as:

agr_aver2(X,Y,info(Za,Zb)) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),

agr_aver(Z1,Z2,info(Za,Zc)),

pri_app(Zc,'@AVER2.',Zb).

Now, the reader can easily test that, after executing goal �p(X)�, we obtain

the following fuzzy computed answer which includes the desired declarative trace

containing the sequence of program-rules and connective-calls (mirroring →AS and

→SIS1 steps, according de�nitions 2.1.2 and 2.1.9, respectively) evaluated till �nding

the �nal solution:
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>> run.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.

@AVER2.|GODEL.|LUKA.

@AVER.&GODEL.&PROD.), X=a]

With a very little extra e�ort, we can extend the previous lattice to have into

account also the exploited primitive operators during the interpretive phase, thus

simulating →SIS2 steps (see again De�nition 2.1.9). We simply need to include a

label in the Prolog de�nition of each primitive operator in order to identify it (for

instance, �#PROD� refers to the product primitive operator).

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-

pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),

pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).

pri_prod(X,Y,Z,'#PROD.') :- Z is X * Y.

Figure 2.14: Obtaining declarative traces on fuzzy computed answers

As shown in Figure 2.14, the result of executing again goal �p(X)� is:

>> run.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.

@AVER2.|GODEL.#MAX.|LUKA.

#ADD.#MIN.@AVER.#ADD.#DIV.

&GODEL.#MIN.&PROD.#PROD.), X=a]
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In this fuzzy computed answer we obtain both the truth value (0.72) and sub-

stitution (X = a) associated to our goal, but also the sequence of program rules

exploited when applying admissible steps as well as the proper fuzzy connectives

evaluated during the interpretive phase, also detailing the set of primitive operators

(of the form #label) they call.
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Chapter 3

The FuzzyXPath interpreter

In this chapter we present a fuzzy variant of the XPath query language for the

�exible information retrieval on XML documents. Our main purpose is to provide a

repertoire of operators that o�er the possibility of managing satisfaction degrees by

adding structural constraints and fuzzy operators inside conditions (which must be

considered from now on as fuzzy conditions instead of boolean conditions), in order

to produce a ranked sorted list of answers according to user's preferences when

composing queries. By using the FLOPER system designed in our research group,

our proposal has been implemented with a fuzzy logic language to take pro�t of the

clear synergies between both target and source fuzzy languages.

Our approach �rstly proposes two structural constraints calledDOWN andDEEP

for which a certain degree of relevance can be associated. So, whereas DOWN pro-

vides a ranked set of answers depending on the path they are found from �top to

down� in the XML document, DEEP provides a ranked set of answers depending on

the path they are found from �left to right� in the XML document. Both structural

constraints can be used together, assigning degree of importance with respect to the

distance to the root XML element.

Secondly, we have enriched the arsenal of operators of XPath with fuzzy variants

of and and or. Particularly, we have considered three versions of and: and+, and,

and- (and the same for or : or+, or, or-) which make more �exible the composition

of fuzzy conditions. Three versions for each operator that come for free from our

adaptation of fuzzy logic to the XPath paradigm. One of the most known elements

of fuzzy logic is the introduction of fuzzy versions of classical boolean operators.

71
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Product, �ukasiewicz and Gödel fuzzy logics are considered as the most prominent

logics and give a suitable semantics to fuzzy operators. Our contribution is now to

give sense to fuzzy operators into the XPath paradigm, and particularly in user's

preferences. We claim that in our work the fuzzy versions provide a mechanism

to force (and debilitate) conditions in the sense that stronger (and weaker) user

preferences can be modeled with the use of stronger (and weaker) fuzzy conditions.

The combination of fuzzy operators in queries permits to specify a ranked set of

fuzzy conditions according to user's requirements.

Finally, we have equipped our XPath based query language with a mechanism for

thresholding user's preferences, in such a way that user can request that requirements

are satis�ed over a certain percentage.

3.1 A Flexible XPath Language

Our proposal of �exible XPath is de�ned by the following grammar:

xpath := [`['deep-down`]' ]path

path := literal | text() | node | @att | node/path | node//path

node := QName | QName[cond]

cond := xpath op xpath | xpath num-op number

deep := DEEP=number

down := DOWN=number

deep-down := deep | down | deep `;' down

num-op := > | = | < | <>

fuzzy-op := and | and+ | and- | or | or+ | or- |

avg | avg{number,number}

op := num-op | fuzzy-op

Basically, our proposal extends XPath as follows:

• A given XPath expression can be adorned with �[DEEP = r1; DOWN = r2]�

which means that the deepness of elements is penalized by r1 and that the order

of elements is penalized by r2, and such penalization is proportional to the

distance (i.e., the length of the branch and the weight of the tree, respectively).

In particular, �[DEEP = 1; DOWN = r2]� can be used for penalizing only

w.r.t. document order. DEEP works for //, that is, the deepness in the
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&P(x, y) = x ∗ y |P(x, y) = x+ y − x ∗ y Product: and/or

&G(x, y) = min(x, y) |G(x, y) = max(x, y) Gödel: and+/or-

&L(x, y) = max(x+ y − 1, 0) |L(x, y) = min(x+ y, 1) �uka: and-/or+

Figure 3.1: Fuzzy Logical Operators

XML tree is only computed when descendant nodes are explored, while DOWN

works for both / and //. Let us remark that DEEP and DOWN can be used

several times on the main path expression and/or any other sub-path included

in conditions.

• We consider three versions for each one of the conjunction and disjunction

operators (also called connectives or aggregators) which are based in the so-

called Product, Gödel and �ukasiewicz fuzzy logics. The Gödel and �ukasiewicz

logic based fuzzy symbols 1 are represented in our application by and+, and-,

or- and or+, in contrast with product logic operators and and or (see Figure

3.1). Adjectives like pessimistic, realistic and optimistic are sometimes applied

to the �ukasiewicz, Product and Gödel fuzzy logics since operators satisfy that,

for any pair of real numbers x and y in [0, 1] (as used in MALP):

0 ≤ &L(x , y) ≤ &P(x , y) ≤ &G(x , y) ≤ 1

and the contrary for the disjunction operations (as used in MALP):

0 ≤ |G(x , y) ≤ |P(x , y) ≤ |L(x , y) ≤ 1

So, note that it is more di�cult to satisfy a condition based on a pessimistic

conjuntor/disjunctor (i.e, and-/or- inspired by the �ukasiewicz and Gödel log-

ics, respectively) than with Product logic based operators (i.e, and/or), while

the optimistic versions of such connectives (i.e., and+/or+) are less restrictive,

obtaining a greater set of answers. This is a consequence of the following chain

of inequalities (as used in MALP):

0 ≤ &L(x , y) ≤ &P(x , y) ≤ &G(x , y) ≤ |G(x , y) ≤ |P(x , y) ≤ |L(x , y) ≤ 1

or equivalently, by using the notation of our application:

0 ≤ and−(x , y) ≤ and(x , y) ≤ and+(x , y) ≤ or−(x , y) ≤ or(x , y) ≤ or+(x , y) ≤ 1

1The fuzzy logic community frequently uses the terms t-norm and t-conorm for expressing

generalized versions of conjunctions and disjunctions.
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Therefore users should re�ne queries by choosing operators in the previous

sequence from left to right (or from right to left), till �nding solutions satisfying

in a stronger (or weaker) way the requirements.

• Furthermore, the avg operator is de�ned too in a weighted way. Assuming two

given RSV's r1 and r2, avg is de�ned as (r1 + r2)/2, and avg(p1, p2) is de�ned

as (p1 ∗ r1 + p2 ∗ r2)/p1 + p2.

• Finally, we have considered a special case of constraint, a thresholding con-

straint of the form xpath op r, where r ∈ [0, 1] and op ∈ {<,>,=}, in which

the user can specify the threshold that the RSV of a given fuzzy condition has

to raise.

In general, an extended XPath expression de�nes, w.r.t. an XML document, a

sequence of subtrees of the XML document where each subtree has an associated

RSV. XPath conditions, which are de�ned as fuzzy operators applied to XPath

expressions, compute a new RSV from the RSVs of the involved XPath expressions,

which at the same time, provides an RSV to the node.

3.2 Examples with DEEP and DOWN

In order to illustrate the language, let us see some examples of �exible queries in

XPath. We will take as input document the one shown in Figure 3.2. The example

shows a sequence of hotels where each one is described by name and price, proximity

to streets (close_to) and provided services (pool and metro -together with distance-).

In the example, we assume that document order has the following semantics. The

tag close_to speci�es the proximity to a given street. However, the order of close_to

tags is relevant, and the top streets are closer than the streets at the bottom. In

other words, the case:

hotel_H

close_to street_A

close_to street_B

implies that hotel H is near to both streets A and B, but closer to A than to B.

The nesting of close_to has also a relevant meaning. While a given street A can be

close to the hotel H, the streets close to A are not necessarily close to the hotel H.

In other words, in the case:
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<hotels>

<hotel name="Melia">

<close_to>Gran Via

<close_to>Callao</close_to>

<close_to>Plaza de Espana</close_to>

</close_to>

<services>

<pool></pool>

<metro>150</metro>

</services>

<price>100</price>

</hotel>

<hotel name="NH">

<close_to>Sol

<close_to>Gran Via</close_to>

<close_to>Callao</close_to>

</close_to>

<services>

<metro>300</metro>

</services>

<price>150</price>

</hotel>

<hotel name="Hilton">

<close_to>Moncloa

<close_to>Gran Via</close_to>

<close_to>Sol</close_to>

</close_to>

<services>

<metro>150</metro>

</services>

<price>50</price>

</hotel>

<hotel name="Tryp">

<close_to>Cibeles

<close_to>Alcala

<close_to>Gran Via</close_to>

</close_to>

<close_to>Retiro</close_to>

</close_to>

<services>

<pool></pool>

<metro>10</metro>

</services>

<price>575</price>

</hotel>

<hotel name="Sheraton">

<close_to>Recoletos

<close_to>Cibeles</close_to>

<close_to>Gran Via

<close_to>Sol</close_to>

</close_to>

</close_to>

<close_to>Sol</close_to>

<services>

<pool></pool>

<metro>300</metro>

</services>

<price>475</price>

</hotel>

</hotels>

Figure 3.2: Input XML document collecting Hotel's information

hotel_H

close_to street_A

close_to street_B

the street B is near to street A, and street A is close to hotel H, which implies that

street B is also close to hotel H, but no so close as street A. H can be situated at the

end of street A, and B can cross A at the beginning. We can say, in this case, that

B is an adjacent street to H, while A is close to H. This means that when looking

for a hotel close to a given street, the highest priority should be assigned to streets

close to the hotel, while adjacent streets should be relegated to lower priority. The

example has been modeled in order to illustrate the use of structural constraints and

fuzzy operators. Particularly, when the user tries to �nd hotels very close to a given

street it should be provided a high DOWN value and a low DEEP value, whereas in
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the case the user tries to �nd hotels in the neighborhood of an street should provide

high DEEP and low DOWN.

Ejemplo 3.2.1. In our �rst example, we focus on the use of DOWN. Let us suppose

that the user is interested to �nd a hotel close to Sol street. This might be his(er)

�rst tentative looking for a hotel. Using crisp XPath (s)he would formulate:

<< /hotels/hotel[close_to/text() = “Sol”]/@name >>

However, it gives the user the set of hotels close to Sol without distinguishing

the degree of proximity. The fuzzy version of XPath permits to specify a value of

degradation of answers, in such a way that the user reformulates the query as:

<< /hotels/hotel[[DOWN = 0.9]close_to/text() = “Sol”]/@name >>

The query speci�es that close_to tag is degraded by 0.9 from top to down. In

other words, when Sol is found close to a hotel, the position in which it occurs gives

a di�erent satisfaction value. In this case, we will obtain:

<result>

<result rsv="1.0">NH</result>

<result rsv="0.9">Sheraton</result>

</result>

Fortunately, we have found a hotel (NH) which is very close to Sol, and one

(Sheraton) which is a little bit farther from Sol.

Let us remark the previous example and the other examples of the Section show

the results in order of satisfaction degree.

Ejemplo 3.2.2. Let us suppose now that we are looking for a hotel close to Callao.

In this case, we can try to make the same question:

<< /hotels/hotel[[DOWN = 0.9]close_to/text() = “Callao”]/@name >>

However, the result is empty. Therefore we can try to relax the query by changing

`/' by `//':

<< /hotels/hotel[[DOWN = 0.9]//close_to/text() = “Callao”]/@name >>
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Now, we will �nd answers, however, we will not be able to distinguish the prox-

imity of the hotels. Our fuzzy version of XPath permits to specify how the solutions

are degraded but not only taking into account the order but also the deepness. In

other words, there would be useful to give di�erent weights to be a close street, and

to be an adjacent street. Therefore we can use the query:

<< /hotels/hotel[[DEEP = 0.5;DOWN = 0.9]//close_to/text() = “Callao”]/@name >>

obtaining the following results:

<result>

<result rsv="0.5">Melia</result>

<result rsv="0.45">NH</result>

</result>

It seems that Melia is near to Callao, and NH is a little bit farther than Melia.

Ejemplo 3.2.3. The use of DEEP combined with DOWN could be considered as the

best choice. However, DEEP can be used alone when the user only wants to penalize

adjacency. If we like to search hotels near to Gran Via street, degrading adjacent

streets with a factor of 0.5, we can consider the following query (and we obtain the

following result):

<< //hotel[[DEEP = 0.5]//close_to/text() = “GranV ia”]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.5">NH</result>

<result rsv="0.5">Hilton</result>

<result rsv="0.5">Sheraton</result>

<result rsv="0.25">Tryp</result>

</result>

We can see that Melia is close to Gran Via, while NH, Hilton and Sheraton are

situated in adjacent streets of Gran Via. Tryp is the farthest hotel.

Ejemplo 3.2.4. The following table summarizes the results by combining DEEP

and DOWN in a single query:
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<< //hotel[[DEEP = r1;DOWN = r2]//close_to/text() = “GranV ia”]/@name >>

HOTEL (A: r1 = 0.1, r2 = 1) (B: r1 = 0.5, r2 = 0.5) (C: r1 = 1, r2 = 0.1)

Melia

NH

Hilton

Tryp

Sheraton

1

0.1

0.1

0.01

0.1

1

0.5

0.5

0.25

0.25

1

1

1

1

0.1

While case C only penalizes closeness, case A penalizes adjacency. Case B pe-

nalizes both closeness and adjacency.

3.3 AVG Examples

Ejemplo 3.3.1. Let us suppose that the user is interested in a hotel combining two

services like pool and metro. Instead of using classical and/or connectives for mixing

both features, we can obtain more �exible estimations on RSV values by using the

avg operator as follows:

<< //hotel[services/pool avg services/metro]/@name >>

thus obtaining the following results:

<result>

<result rsv="1.0">Melia</result>

<result rsv="1.0">Tryp</result>

<result rsv="1.0">Sheraton</result>

<result rsv="0.5">NH</result>

<result rsv="0.5">Hilton</result>

</result>

By using the avg fuzzy operator, the user �nds that Melia, Tryp and Sheraton

have pool and metro, while NH and Hilton lack on one of them.

Ejemplo 3.3.2. Now, let us suppose that the importance of the metro is the double

of the importance of the pool. In this case, the user can formulate the query as

follows:
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<< //hotel[services/pool avg{1, 2} services/metro]/@name >>

obtaining the following results:

<result>

<result rsv="1.0">Melia</result>

<result rsv="1.0">Tryp</result>

<result rsv="1.0">Sheraton</result>

<result rsv="0.666667">NH</result>

<result rsv="0.666667">Hilton</result>

</result>

We can see in the results that NH and Hilton increase the degree of satisfaction

w.r.t. the previous query given that they have metro station.

Ejemplo 3.3.3. Let us suppose the user is looking now for hotels giving more im-

portance to the fact that the price of the hotel is lower than 150 euros than to the

proximity to Sol street. The user can formulate the query as follows, obtaining the

results below:

<< //hotel[[DEEP = 0.8]//close_to/text() = “Sol” avg{1, 2} //price/text() < 150]/@name >>

<result>

<result rsv="0.933333">Hilton</result>

<result rsv="0.666667">Melia</result>

<result rsv="0.333333">NH</result>

<result rsv="0.333333">Sheraton</result>

</result>

Now, we take a new input XML document, Figure 3.3, whose skeleton is depicted

in Figure 3.4 that will help us better understand the AVG operator, this document

represents a collection of books; all results of this document will be accompanied by

table showing the calculation performed for RSV.

Ejemplo 3.3.4. The Figure 3.5 shows the answer associated to the XPath expres-

sion:

<< /bib/book[@price < 30 avg @year < 2006] >>
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<bib>

<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>

<author>Miguel de Cervantes Saavedra</author>

<publications> <book year="1997" price="35.99">

<title>La Galatea</title>

<author>Miguel de Cervantes Saavedra</author>

<publications>

<book year="1994" price="25.99">

<title>Los trabajos de Persiles y Segismunda</title>

<author>Miguel de Cervantes Saavedra</author></book>

</publications></book>

</publications></book>

<book year="1999" price="25.65">

<title>La Celestina</title>

<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95">

<title>Hamlet</title>

<author>William Shakespeare</author>

<publications>

<book year="2000" price="22.5">

<title>Romeo y Julieta</title>

<author>William Shakespeare</author></book>

</publications></book>

<book year="2007" price="22.95">

<title>Las ferias de Madrid</title>

<author>Felix Lope de Vega y Carpio</author>

<publications>

<book year="1996" price="27.5">

<title>El remedio en la desdicha</title>

<author>Felix Lope de Vega y Carpio</author> </book>

<book year="1998" price="12.5">

<title>La Dragontea</title>

<author>Felix Lope de Vega y Carpio</author></book>

</publications></book>

</bib>

Figure 3.3: Input XML document collecting books

Figure 3.4: XML document collecting books represented as a tree.
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Here we show that books satisfying a price under 30 and a year before 2006 have

the highest RSV.

Document RSV computation

<result>

<book rsv="0.5" ...> <title>Don Quijote ...</title> ...</book>

<book rsv="1.0"...><title>La Celestina</title> ...</book>

<book rsv="1.0" ...><title>Hamlet</title> ...</book>

<book rsv="0.5" ...><title>Las ferias de Madrid</title> ...</book>

</result>

0.5 = (0 + 1)/2

1 = (1 + 1)/2

1 = (1 + 1)/2

0.5 = (1 + 0)/2

Figure 3.5: Output of a query using the average operator AVG

Ejemplo 3.3.5. Finally, in Figure 3.6 we combine all operators (thus obtaining

more scattered RSV values) in query:

�[DEEP=0.9,DOWN=0.8]//book[(@price>25 and @price<30) avg (@year<2000 or @year>2006)]/title�

Document RSV computation

<result>

<title rsv="0.3645">La Galatea</title>

<title rsv="0.59049">Los trabajos de Persiles y Si...</title>

<title rsv="0.72">La Celestina</title>

<title rsv="0.288">Hamlet</title>

<title rsv="0.2304">Las ferias de Madrid</title>

<title rsv="0.373248">El remedio en la desdicha</title>

<title rsv="0.149299">La Dragontea</title>

</result>

0.3645 = 0.93 ∗ 1/2

0.59049 = 0.95 ∗ 1

0.72 = 0.9 ∗ 0.8 ∗ 1

0.288 = 0.9 ∗ 0.82 ∗ 1/2

0.2304 = 0.9 ∗ 0.83 ∗ 1/2

0.373248 = 0.93 ∗ 0.83 ∗ 1

0.149299 = 0.93 ∗ 0.84 ∗ 1/2

Figure 3.6: Output of a query using all operators

3.4 Thresholding Example

Fuzzy conditions return a satisfaction degree in the in�nite space of real numbers

between 0 and 1. We can take pro�t of this feature by imposing thresholds to such

conditions, thus �ltering the set of solutions according to the satisfaction degree. The

idea is to formulate queries by directly acting on the satisfaction degrees obtained

after evaluating �fuzzy� conditions.

Ejemplo 3.4.1. For instance, let us suppose that in the query of example 3.2.3, the

user looks for hotels in which the degree of proximity to Gran Via street is greater
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than seventy �ve per cent (i.e., value 0.75 measured between 0 and 1) then (s)he can

formulate the following query, obtaining the following results:

<< //hotel[([DEEP = 0.5]//close_to/text() = “Gran V ia”) > 0.75]/@name >>

<result>

<result rsv="1.0">Melia</result>

</result>

3.5 Conjunctive/Disjunctive Connective Examples

Ejemplo 3.5.1. In the following queries we express the following requirement: hotels

near to Gran Via, near to a metro station, having pool, with greater preference (3 to

2) to pool than metro. We will use and+, and and and- which provide distinct levels

of exigency, which are demonstrated in the results.

<< //hotel[([DEEP = 0.5]//close_to/text() = ”GranV ia”) and+ (//pool avg{3, 2} //metro/text() < 200)]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.5">Sheraton</result>

<result rsv="0.4">Hilton</result>

<result rsv="0.25">Tryp</result>

</result>

<< //hotel[([DEEP = 0.5]//close_to/text() = ”GranV ia”) and (//pool avg{3, 2} //metro/text() < 200)]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.3">Sheraton</result>

<result rsv="0.25">Tryp</result>

<result rsv="0.2">Hilton</result>

</result>
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<< //hotel[([DEEP = 0.5]//close_to/text() = ”GranV ia”) and− (//pool avg{3, 2} //metro/text() < 200)]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.25">Tryp</result>

<result rsv="0.1">Sheraton</result>

</result>

So, in the �rst case (the least demanding and optimistic) we obtain four hotels

(Melia, Sheraton, Hilton and Tryp), as well as in the second case (a little bit more

exigent) while third table (the strongest one) lists three candidates (Melia, Tryp and

Sheraton). Sheraton and Hilton are degraded using and and and-. This e�ect would

even be more evident when previous conditions are compared with a threshold. For

instance, to be greater than 0.25. In such a case and- gives just a single solution:

Melia.

3.6 Dynamic Filtering for Improving E�ciency

In [JMMO10, JMM+13] we have reported some thresholding techniques specially

tailored for the MALP language, where the main idea consists in to dynamically

create and evaluate �lters for prematurely disregarding those super�uous computa-

tions leading to non-signi�cant solutions. Somehow inspired by the same guidelines,

we have recently equipped our FuzzyXPath interpreter with a command with syn-

tax �[FILTER=r]� (being r a real number between 0 and 1) which can be used just

at the beginning of a query for indicating that only those answers with RSV greater

of equal than r must be generated and reported. As we have described in [ALM14a],

when �[FILTER=r]� precedes a fuzzy query, the interpreter lazily explores an input

XML document for dynamically disregarding as soon as possible those branches of

the XML tree leading to irrelevant solutions with an RSV degraded below r, thus

allowing the possibility of e�ciently managing large �les without reducing the set

of answers for which users are mainly interested in.

In order to explain the bene�ts of using the FILTER command, let us consider

in this section the XML document shown in Figure 3.3, for which the execution of

query,

<< [//book[@year < 2000 avg @price < 50]/title >>



84 Chapter 3. The FuzzyXPath interpreter

produces the following set of solutions:

<result>

<title rsv="1.0">La Galatea</title>

<title rsv="1.0">Los trabajos de Persiles y Sigismunda</title>

<title rsv="1.0">La Celestina</title>

<title rsv="1.0">El remedio en la desdicha</title>

<title rsv="1.0">La Dragontea</title>

<title rsv="0.5">Don Quijote de la Mancha</title>

<title rsv="0.5">Hamlet</title>

<title rsv="0.5">Romeo y Julieta</title>

<title rsv="0.5">Las ferias de Madrid</title>

</result>

If we consider now the new, quite similar query �[FILTER=0.4]//book[@year <2000

avg @price<50]/title�, we clearly obtain again nine answers, but only �ve if we

�x �[FILTER=0.8]�. Obviously, we would hope that the runtime of the second

case should be lower than the �rst one since, as our approach does, there is no

need for computing all solutions and then �ltering the best ones. This desired

dynamic behaviour when avoiding useless computations is re�ected in Figure 3.7

which considers the e�ort needed for executing (excluding parsing/compiling time)

a query like,

<< [FILTER = r]//book[(@price > 25 and @price < 30) avg (@year < 2000 or @year > 2006)] >>

where each row represents the size of several XML �les accomplishing with the same

structure of our running example (but considering di�erent nesting levels of tags

book, title, author and publications), and each column refers to a di�erent degree of

the FILTER command. Here, the runtime is measured in seconds (the benchmarks

have been performed using a computer with processor Intel Core Duo, with 2 GB

RAM and Windows Vista) and each record in the input �le refers to a di�erent book

(that is, the number of records coincides with the number of occurrences of tag book)

which might contain other books inside its publications tag.

Moreover, in Figure 3.8 we continue with a similar query to the previous one,

but also considering the DEEP command2. Here, for a large XML document with

2This kind of statistics can be produced on-line for several XML �les and FuzzyXPath queries

via the following URL that we have just prepared for the interested reader: http://http://dectau.
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Records

FILTER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.766 1.696 1.734 0.842 0.469 0.268 0.221 0.087 0.056

2000 6.628 6.432 6.998 3.242 1.439 0.677 0.599 0.168 0.122

3000 14.532 14.023 14.059 6.306 2.831 1.257 1.101 0.253 0.179

4000 25.535 24.684 24.722 10.883 4.827 1.918 1.794 0.345 0.242

5000 41.522 37.782 37.166 16.201 7.242 2.993 2.516 0.427 0.281

6000 58.905 55.354 55.596 24.411 10.993 4.207 3.554 0.554 0.373

7000 85.167 85.652 82.733 37.748 14.436 5.083 4.653 0.649 0.460

8000 137.737 102.816 102.763 69.401 26.680 8.273 5.894 0.690 0.481

9000 175.272 131.828 131.021 56.937 22.601 7.869 7.329 0.824 0.549

10000 195.613 185.201 167.676 95.286 26.649 9.516 9.595 0.973 0.742

Figure 3.7: Performance of FuzzyXPathby using FILTER on XML �les with grow-

ing sizes
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a �xed size, we express the number of seconds needed for executing such query

when varying FILTER and DEEP, where it is easy to see that the behaviour is

more and more improved whenever FILTER grows and DEEP decreases, as wanted.

Note that the previous query makes use of the avg command and remember that

its behaviour is de�ned, for two given RSV's r1 and r2, as r3 = (r1 + r2)/2, we

can now use the priorized version of such operator which let us to give di�erent

degrees of importance to its arguments (remember that, for two given RSV's r1 and

r2, avg{p1, p2} is computed by r3 = (r1 ∗ p1 + r2 ∗ p2)/(p1 + p2)) and hence, if in

the previous query we use avg{30, 1} instead of standard avg, we indicate that the

�rst sub-condition (i.e., @price>25 and @price<30) is 30 times more important than

the second one (i.e., @year<2000 or @year>2006), whereas avg{1, 30} represent the
inverse criterion. In Figures 3.9 and 3.10 we provide statistics in the same way than

in Figure 3.8, but using now average with priorities 30-1 and 1-30, respectively.

uclm.es/fuzzyXPath/?q=FuzzyXPathStatistics.
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Chapter 4

Implementation Issues

User's preferences play a key role in information retrieval. In modern Web based

information retrieval systems, user expects to introduce his(er) key words and pref-

erences to in�uence the search results. However, while the technology is still improv-

ing, users get sometimes frustrated with those retrieval systems which only o�er a

poor/rigid set of expressive resources. Therefore the need for �exible query languages

arises, in which the user can formulate queries according to his(er) preferences, being

adaptable to data schema but without increasing complexity. In addition, �exible

query languages should be equipped with a mechanism for obtaining a certain ranked

list of answers. The ranking of answers can provide satisfaction degrees depending

on several factors.

The XPath language [BBC+07] has been proposed as a standard for XML query-

ing and it is based on the description of the path in the XML tree to be retrieved.

XPath allows to specify the name of nodes (i.e., tags) and attributes to be present

in the XML tree together with boolean conditions about the content of nodes and

attributes.

XPath querying mechanism is based on a boolean logic: the nodes retrieved

from an XPath expression are those matching the path of the XML tree. Therefore,

the user should know the XML schema in order to specify queries. However, even

when the XML schema exists, it may not be available for users. Moreover, XML

documents with the same XML schema can be very di�erent in structure. Let us

suppose the case of XML documents containing the curriculum vitae of a certain

group of persons. Although they can share the same schema, each one can decide to

89
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include studies, jobs, training, etc. organized in several ways: by year, by relevance,

and with di�erent nesting degree. In an XPath-based structural query, the main

criteria to provide a certain degree of satisfaction are the hierarchical deepness and

document order. However, user's preferences play also a key role in determining the

best solutions. Conditions on XPath expressions are usually of varying importance

for a user, that is, the user gives a higher degree of importance to certain require-

ments when satisfying his(er) wishes. Therefore, the query language should provide

mechanisms for assigning priority to answers, when they occur in di�erent parts of

the document, as well as priority to queries, with regard to user's preferences.

4.1 Multi-Adjoint Logic Programming and FuzzyX-

Path

In this section, we will introduce the elements of multi-adjoint logic programming

(MALP). MALP will serve as semantic foundation of our proposal. Moreover, MALP

will be used for the implementation of our language. The section will describe the

theoretical basis of MALP: multi-adjoint lattices and fuzzy operators de�ned on

them. In addition, it will be described an instance of MALP which considers a

multi-adjoint lattice of trees with truth values, and operators de�ned for such lattice.

Finally, we will describe the rule-based implementation of our FuzzyXPath by using

MALP rules.

4.1.1 Multi-Adjoint Logic Programming

In multi-adjoint logic programming [MOV04, JMP09], we work with a �rst or-

der language, L, containing variables, function symbols, predicate symbols, con-

stants, quanti�ers (∀ and ∃), and several arbitrary connectives such as implications

(←1,←2, . . . ,←m), conjunctions (&1,&2, . . . ,&k), disjunctions (∨1,∨2, . . . ,∨l), and
general hybrid operators (�aggregators� @1,@2, . . . ,@n), used for combining/propa-

gating truth values through the rules, and thus increasing the language expressive-

ness. Additionally, our language L contains symbols called truth degrees belonging

to a multi-adjoint lattice L, whose formal description will be presented afterward in

De�nition 4.1.5 (see also Figure 4.2).

A rule is a formula �A ←i B with α�, where A is an atomic formula (usually

called the head), B (which is called the body) is a formula built from atomic formulas
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B1, . . . , Bn (n ≥ 0 ), truth values of L and conjunctions, disjunctions and general

aggregations, and �nally α ∈ L is the �weight� or truth degree of the rule. The set of

truth values L may be the carrier of any complete lattice, as for instance occurs with

the interval ([0, 1],≤), where ≤ is the usual order. Consider, for instance, the pro-

gram P of Figure 4.1 composed of three rules with associated multi-adjoint lattice

⟨[0, 1],≤,←P,&P⟩, where label P stands for Product logic with the following connec-

tive de�nitions (for implication, conjunction and disjunction symbols, respectively):

�←P (x, y) = min(1, x/y)�, �&P(x, y) = x ∗ y� and �|P(x, y) = x+ y − x ∗ y�.

R1 : p(X) ←P q(X,Y ) |P r(Y ) with 0.8

R2 : q(a, Y ) ← with 0.9

R3 : r(b) ← with 0.7

Figure 4.1: Example of MALP program

In order to describe the procedural semantics of the multi�adjoint logic language,

in the following we denote by C[A] a formula where A is a sub-expression (usually an

atom) which occurs in the �possibly empty� one hole context C[] whereas C[A/A′]

means the replacement of A by A′ in context C[], and mgu(E) is the most general

uni�er of an equation set E. The pair ⟨Q;σ⟩ composed of a goal and a substitution

is called a state. So, given a program P, an admissible computation is formalized

as a state transition system, whose transition relation →AS is the smallest relation

satisfying the following admissible rules:

1) ⟨Q[A];σ⟩→AS⟨(Q[A/v&iB])θ;σθ⟩ if A is the selected atom in goal Q,
A′←iB with v in P, where B is not empty, and θ = mgu({A′ = A})

2) ⟨Q[A];σ⟩→AS⟨(Q[A/v])θ;σθ⟩ if A′← with v in P, θ = mgu({A′ = A})

The following derivation illustrates our de�nition (note that the exact program rule

used -after being renamed, that is, standardized apart- in the corresponding step is

annotated as a super�index symbol, whereas exploited atoms appear underlined):
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&P(x, y) = x ∗ y ←P (x, y) = min(1, x/y) Product

&G(x, y) = min(x, y) ←G (x, y) =

1 if y ≤ x

x otherwise
Gödel

&L(x, y) = max(x+ y − 1, 0) ←L (x, y) = min{x− y + 1, 1} �uka.

Figure 4.2: Adjoint Pairs in ([0, 1],≤)

⟨p(X); {}⟩ →AS
R1

⟨0.8 &P (q(X1, Y1) |P r(Y1)); {X/X1}⟩ →AS
R2

⟨0.8 &P (0.9 |P r(Y2)); {X/a,X1/a, Y1/Y2}⟩ →AS
R3

⟨0.8 &P (0.9 |P 0.7); {X/a,X1/a, Y1/b, Y2/b}⟩

The �nal formula can be directly interpreted in the lattice L to obtain the �nal fuzzy

computed answer. So, since 0.8 &P (0.9 |P 0.7) = 0.8∗ (0.9+0.7− (0.9∗0.7)) = 0.776,

we say that the truth degree of p(X) is 0.776 when X is a.

4.1.2 MALP and FuzzyXPath

MALP can be used as basis of our proposed �exible extension of XPath as follows.

The idea is to consider MALP as semantic background for fuzzy queries expressed in

XPath. With this aim we have to accommodate MALP truth values and connectives

to XML documents, RSVs, fuzzy operators and structural/thresholding constraints.

Firstly, we have to consider a suitable multi-adjoint lattice. The elements of the

multi-adjoint lattice represent the truth values. In the context of XPath, truth

values are trees of truth values, which we call TV trees. TV trees represent the RSV

associated to each node of the ordered XML tree. From a theoretical point of view,

the evaluation of a given goal w.r.t. a MALP program, will return a TV tree (i.e, an

ordered tree of real numbers in the interval [0, 1]) as the result of the computation.

De�nición 4.1.1. (TV trees) Formally, a TV tree is an empty tree or a pair (r, un)

where r ∈ [0, 1] and un is a sequence of n TV trees. In a TV tree t we denote by

root(t) to r and by ch(t) to un. Let T be the set of TV trees, and ≤ the usual

order of real numbers; we can de�ne the following order between TV trees; t ≼T s i�

root(t) ≤ root(s) and ch(t) ≼T ch(s) whenever t is not empty; and t ≼T s whenever

s is empty.
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Figure 4.3: TV trees partial order

Abusing from the notation, in the previous ≼T is used for sequences of TV trees,

whose de�nition is as follows. Given two sequences of TV trees un = (u1, . . . , un)

and vm = (v1, . . . , vm) then un ≼T vm whenever there exists a subsequence sm of

un such that si ≼T vi for all 1 ≤ i ≤ m.

Intuitively, TV trees are ordered in decreasing order w.r.t. size, and increasing

w.r.t. the relation on real numbers, and therefore the biggest element is the empty

tree. We can see in Figure 4.3 an example of trees ordered by the ≼T relation, where

the sequence of children is ((0.7, (0.5)), (0.6, (0.4, 0.8))); an alternative sequence is

(0.3, (0.6, (0.4, 0.8))).

We denote by first(un, k) (resp. last(un, k)) the �rst n−k (resp. last k) elements

of the sequence un. When k > n then first(un, k) is completed with k-n empty trees

at the right hand side and last(un, k) is completed with k-n empty trees at the left

hand side.

Proposición 4.1.2. ≼T is a partial order (re�exive, antisymmetric and transitive).

Proof. Re�exivity and transitivity can be easily proved. The relation is antisym-

metric reasoning by induction as follows. Let us suppose t ≼T s and s ≼T t

then, when t and s are empty then trivially s = t; otherwise root(t) ≤ root(s)

and root(s) ≤ root(t) therefore root(t) = root(s); in addition (a) there exists a

subsequence sm of un such that sj ≼T wi, 1 ≤ i ≤ m, where ch(t) = un and

ch(s) = wm; analogously, (b) there exists a subsequence l
n
of wm of such that

lk ≼T uk, 1 ≤ k ≤ n. We can reason now that n = m: from (a) we have that

n ≥ m, and from (b) we have that m ≥ n. Now, from (a) un ≼T wn and from (b)

wn ≼T un, thus by hypothesis un = wn, and therefore s = t.

Now, we can de�ne the following operations in the set T .
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Figure 4.4: Conjunction on TV trees (according Product logic)

De�nición 4.1.3. (Conjunction on TV trees) The operation &T
O(t, s), O ∈ {P, G, L}

is de�ned as the tree whose root is &O(root(t), root(s)), and children ch(t) + ch(s);

whenever t (resp. s) is not empty, and otherwise the result is s (resp. t), where &O

is the corresponding operator over [0, 1] and + is the concatenation of sequences.

Basically, the conjunction is de�ned as the application of the corresponding con-

junction operator to the roots of the trees, and the concatenation of the children.

We can see in Figure 4.4 an example of conjunction between TV trees.

De�nición 4.1.4. (Implication Operator on TV trees) The operation ←T
O (t, s),

O ∈ {P, G, L} is de�ned in the case of non-empty trees t and s as the tree whose root

is ←O (root(t), root(s)), and the children are first(un, n −m) + t if n > m and t

otherwise, where t = last(un,m)\wm where ch(t) = un and ch(s) = wm. In the case

t is empty is de�ned as the empty tree and in the case s is empty as t.

In the previous de�nition, we use the di�erence of two sequences of TV trees:

vn\wn de�ned as the sequence un in which un is empty whenever wi ≼T vi for

all 1 ≤ i ≤ n; and un = vn, otherwise. Basically, the implication operator ←T
O

(t, s) computes the corresponding adjoint operator to the roots of the trees, and the

children of t are replaced by empty TV trees (from right to left) whenever they are
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greater or equal than the corresponding element of s. We can see in Figure 4.5 an

example of use of the implication, in the case of product logic, between TV trees.

Our goal now is to prove that TV trees conform a multi-adjoint lattice de�ned

as follows.

De�nición 4.1.5. Let (L,≼) be a lattice. A multi-adjoint lattice is a tuple:

⟨L,≼,←1 ,&1 , . . . ,←n ,&n⟩

such that:

1. (L,≼) is complete, namely, ∀S ⊂ L non empty ∃inf(S), sup(S). Then, it is

a bounded lattice, i.e. it has bottom and top elements, denoted by ⊤ and ⊥,
respectively.

2. (&i,←i) is an adjoint pair in (L,≼), i.e.:

(a) &i is non decreasing in both arguments, for all i, i = 1, . . . , n.

(b) ←i is non decreasing in the �rst argument and non increasing in the

second, for all i.

(c) x ≼ (y←iz) if and only if (x&iz) ≼ y, for any x, y, z ∈ L (adjoint

property).
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3. ⊤&iv = v&i⊤ = v for all v ∈ L, i = 1, . . . , n, where ⊤ = sup(L).

TV trees are a multi-adjoint lattice based on truth values over [0, 1]. In order to

prove this property, we need the following auxiliary proposition.

Proposición 4.1.6. ⟨[0, 1],≤,←P,&P,←G,&G,←L,&L⟩ is a multi-adjoint lattice.

Note that even when the previous claim holds too for many other arbitrary multi-

adjoint lattices (L,≼), we prefer to accommodate it to the [0, 1] case because our

notion of TV trees simply relies on this concrete kind of basic truth degrees (i.e., real

numbers in the unit interval). Now, we are ready to establish the following theorem

proving our intended result.

Teorema 4.1.7. ⟨T ,≼T ,←T
P ,&

T
P ,←T

G ,&
T
G ,←T

L ,&
T
L ⟩ is a multi-adjoint lattice.

Proof. 1. Let be a non empty S ⊂ T , then inf(S) is de�ned as the empty TV tree

whenever all the elements of S are empty, otherwise as the TV tree whose root

is the in�mum of the roots of the non-empty elements of S, and the children

are the sequence un where ui = inf({wi|wn ∈ perm(s)n, s ∈ S}), where n =

maxChildren(S) represents the maximum number of children of the elements

of S, and perm(s)n is the set of all sequences of length n including ch(s)

as subsequence and empty trees in the other positions. Now, inf(S) ≼T s,

for all s ∈ S by construction: when s ∈ S then root(inf(S)) ≤ root(s) and

inf({wi|perm(s)n = wn, s ∈ S}) ≼T ch(s) given that ch(s) is a subsequence

of a sequence of perm(s). Now, inf(S) is the greatest lower bound: let us

suppose t ≼T s for all s ∈ S; now, root(t) ≤ root(s) for all s ∈ S; thus

root(inf(S)) ≤ root(t); in addition ch(t) ≼T ch(s) for all s ∈ S, and thus,

for all p ∈ perm(t)n and q ∈ perm(s)n we have that p ≼T q; and then

inf({wi|wn ∈ perm(s)n, s ∈ S}) ≼T p ≼T ch(t), concluding that inf(S) ≼T t.

Analogously, sup(S) is de�ned as the empty TV tree whenever all the elements

of S are empty, otherwise as the TV tree whose root is the supremum of the

roots of the non-empty elements of S, and the children are the sequence un

where ui = sup({wi|wn ∈ perm(s)n, s ∈ S}), where n = maxChildren(S). ⊤
of T is the empty tree and ⊥ is the (in�nite) tree with 0 in all nodes.

2. (a) &T
O, O ∈ {P, G, L} is non decreasing: by Proposition 4.1.6 whenever v ≼T

s, v′ ≼T s′ then root(v)&Oroot(v
′) ≤ root(s)&Oroot(s

′); in addition,

ci ≼T bi, c′k ≼T b′k, for subsequences cn of ap and c′
m

of a′
q
, where

ch(v) = ap, ch(s) = b
n
, ch(v′) = a′

q
and ch(s′) = b′

m
. Now, the children
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of &T
O(v, v

′) is ap + a′
q
, and the children of &T

O(s, s
′) is b

n
+ b′

m
, thus

&T
O(v, v

′) ≼T &T
O(s, s

′) taking the subsequence cn + c′
m
of ap + a′

q
.

(b) ←T
O, O ∈ {P, G, L} is non decreasing in the �rst argument and non in-

creasing in the second.

Let us see the �rst case: non decreasing w.r.t. the �rst argument; let

v ≼T s be non empty trees; then by Proposition 4.1.6: root(v) ≤ root(s)

and therefore ←O (root(s), root(t)) ≤←O (root(v), root(t)); in addition,

there exists a subsequence a′
m
of an such that a′i ≼T bi, 1 ≤ i ≤ m, where

ch(v) = an and ch(s) = b
m
. Now, let us suppose ch(t) = ck, and cj ̸≼T bj

of last(b
m
, k). cj ̸≼T a′j is satis�ed from a′j ≼T bj , otherwise by transi-

tivity we have a contradiction. Therefore ←T
O(v, t) contains as children

a′j , and this happens for each element bj of last(b
m
, k). Therefore, we can

prove ←T
O(v, t) ≼T ←T

O(s, t) taking the subsequence a′
m
. Similarly the

case k ≥ m taking a′
m
since empty trees are added to the left hand side.

When either v or s are empty then the property holds trivially.

Let us see the second case: non decreasing in the second argument; let

s ≼T v be then root(v) ≤ root(s) and therefore by Proposition 4.1.6

←O(root(t), root(s)) ≤ ←O(root(t), root(v)); in addition, there exists a

subsequence a′
m

of an such that a′i ≼T bi, 1 ≤ i ≤ m, where ch(v) = an

and ch(s) = b
m
. Now, let us suppose ch(t) = ck, and a′j ̸≼T cj , cj of

last(ck, n). Thus, bj ̸≼T cj is satis�ed from a′j ≼T bj , otherwise by tran-

sitivity we have a contradiction. Therefore ←T
O(t, s) contains as children

cj , when ←T
O(t, v) does. Thus, ←T

O(t, s) ≼T ←T
O(t, v) taking the subse-

quence ck. Similarly the case n ≥ k taking ck since empty trees are added

to the left hand side. When either s or v are empty the property holds

trivially.

(c) x ≼T (y←T
Oz) if and only if (x&T

Oz) ≼T y:

(⇒):

By Proposition 4.1.6 we have that if root(x) ≤ ←O(root(y), root(z))

then (root(x) &Oroot(z)) ≤ root(y); in addition, there exists a subse-

quence a′
m

of an such that a′i ≼T bi 1 ≤ i ≤ m where ch(x) = an

and ch(y←T
Oz) = b

m
. Now, let ch(y) = ck and ch(z) = d

p
be, by hy-

pothesis we have that there exists a′′
k−p

subsequence of a′
m

such that

a′′j ≼T cj , for each cj ∈ first(ck, k − p), 1 ≤ j ≤ k − p. In addition,

when c′j ∈ last(ck, p), 1 ≤ j ≤ p then either last(ck, p)\dp = last(ck, p)
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and there exists a′′′
p
subsequence of a′

m
such that either a′′′j ≼T c′j for

all 1 ≤ j ≤ p or last(ck, p)\dp is empty and dj ≼T c′j for all 1 ≤ j ≤ p.

Now, we can prove (x&T
Oz) ≼T y by taking the subsequence a′′

k−p
+ a′′′

p

in the �rst case, and a′′
k−p

+ d
p
in the second one. Similarly the case

p ≥ k taking a′′′
p
and d

p
in each one of the cases. When either x or y are

empty the result is trivial.

(⇐):

By Proposition 4.1.6 we have that if (root(x)&Oroot(z)) ≤ root(y) then

root(x) ≤ ←O(root(y), root(z)); in addition, there exists a subsequence

a′
m

of an such that a′i ≼T bi 1 ≤ i ≤ m where ch(x&Oz) = an and

ch(y) = b
m
. Now, we have two cases: either last(b

m
, k)\ck is empty

where ch(z) = ck and therefore for all b′j ∈ last(b
m
, k) cj ≼T b′j , 1 ≤ j ≤ k

or last(b
m
, k)\ck = last(b

m
, k) and therefore there exists a subsequence

a′′
k
of a′

m
such that a′′j ≼T b′j , 1 ≤ j ≤ k. Now, we can prove that

x ≼T (y←Oz) taking the subsequence first(a′
m
,m− k) in the �rst case,

and first(a′
m
,m− k)+a′′

k
in the second case. Similarly the case k ≥ m

taking the empty set in the �rst case, and a′′
k
in the second one. since

empty trees are added to the left hand side.

3. ⊤&T
Ov = v&T

O⊤ = v given that ⊤ is the empty tree.

4.1.3 FuzzyXPath in FLOPER

FuzzyXPath will be grounded in multi-adjoint logic programming with TV trees

as truth values, Product, �ukasiewicz and Gödel operators, and two extra monotonic

hybrid operators, particularly, @avg and @fuse.

Now, we would like to show how TV trees are used for representing computations of

results in our fuzzy variant of XPath, and how MALP rules are used for computing

results from XPath expressions.

1. XML documents are represented with MALP terms, which are identical to

Prolog terms. MALP represents XML trees with a term of the form:

element(tag, attributes, children)

where tagis the root of the tree, attributes is a list of attribute/value pairs,
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[element(hotels, [],

[element(hotel, [name='Melia'],

[element(close_to, [],

[

'Gran Via',

element(close_to,[],['Callao']),

element(close_to,[],['Plaza de Espana'])

],

element(services,[],

[

element(pool,[],[]),

element(metro,[],[150])

],

element(price,[],[100])

]

element(hotel,[name="NH"],

....

]

Figure 4.6: Example of XML data represented in MALP

and children is a list of children. For instance, the example of Figure 3.2 is

represented with the MALP term of Figure 4.6.

2. XPath expressions are also represented as MALP terms, particularly, with a

MALP list. For example, /hotel/services/pool is represented by

[hotel,services,pool], where some elements of the list can be also either

a list (for nested XPath expressions), an attribute name (like attr(name)), a

label relativePath for representing // or a fuzzy condition (represented by a

MALP term of the form tree(op,xpath,xpath)).

3. TV trees are represented as MALP terms of the form:

tv(truthvalue, [nodecontent, siblingtv, childrentv])

where truthvalue is the truth value of the current node, nodecontent is the

content of the node when it is included in the answer of the query, siblingtv

is the TV tree of the �rst sibling node, and childrentv is the TV tree of the

�rst children. We have to remark the following consideration: TV trees are

trees of truth values, according to the de�nition of previous section, however

TV trees in MALP include the content of the selected nodes in order to make

easier the implementation. Moreover, TV trees in MALP are represented as
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binary trees.

Figure 4.7 shows an example of TV tree computed by the fuzzyXPath predicate

for the query:

<< [DEEP = 0.5;DOWN = 0.9]//hotel[//close_to/text() = “Gran V ia”]/@name >>

tv(1.0, [[],

tv(0.5, [[tv(1.0,[]),['Melia']], [],

tv(0.9, [[tv(1.0,[]),['NH']], [],

tv(0.9, [[tv(1.0,[]),['Hilton']], [],

tv(0.9, [[tv(1.0,[]),['Tryp']], [],

tv(0.9, [[tv(1.0,[]),['Sheraton']],[],[]]) ]) ]) ])]), []])

Figure 4.7: Example of a TV structure in MALP

4. Now, a MALP predicate called fuzzyXPath that takes as input (a) an XPath

expression represented by a list, (b) an XML tree represented by a MALP term,

and (c) DEEP and DOWN values as TV trees (by default they are tv(1,[]). It

returns the TV tree associated to the query. For instance, a call to fuzzyXPath

for solving the previous query and thus returning the TV tree of Figure 4.7,

could have the following shape (where �XMLdata� refers to the MALP term

of Figure 4.6 representing the XML document in Figure 3.2):

fuzzyXPath([relativePath, hotel, tree(op(=

, [relativePath, close_to, text], “Gran V ia”), nil, nil), attr(name)], <<

XMLdata >>, tv(0.5, []), tv(0.9, []))

5. The de�nition of the fuzzyXPath predicate distinguishes cases with regard to

the XPath expression to be evaluated. Such MALP predicate basically tra-

verses the XML tree represented by the MALP term, and recursively computes

for each node the associated RSV.

For instance, Figure 4.8 shows the case in which the current root matches with

the current path. We can see that &T
P is used as fuzzy operator, to compute

DEEP and DOWN values for each recursive call. In addition, ←T
P is used as

implication connective, and @fuse is used for re-building the answer. The

weight of the MALP rules is always tv(1,[]).



4.1. Multi-Adjoint Logic Programming and FuzzyXPath 101

fuzzyXPath([Label|LabelRest],[element(Label,_,Children)|Siblings],Deep,Down) ←T
P

@fuse (

tv(1,[element(Label,Attr,Children), [], []]),

&T
P (Deep,fuzzyXPath(LabelRest,Children,Deep,Down)),

&T
P (Down,fuzzyXPath([Label|LabelRest],Siblings,Deep,Down))

) with tv(1,[])

Figure 4.8: Example of MALP rule

6. Figure 4.9 shows the case of MALP rules called from fuzzyXPath for evaluating

avg, where fuzzy conditions are handled by a predicate called execute_fcond.

For instance, given the query:

fuzzyXPath ([Label,tree(A,B,C)],[element(Label,Attr,Children)|Siblings],Deep,Down)

←T
P

@fuse(

execute_fcond(Label,tree(A,B,C),element(Label,Attr,Children)),

&T
P (Down,fuzzyXPath([Label,tree(A,B,C)],Siblings,Deep,Down))

) with tv(1,[])

execute_fcond(Label,tree(avg,T1,T2),element(Label,Attr,Children)) ←T
P

@avg(

execute_fcond(Label,T1,element(Label,Attr,Children)),

execute_fcond(Label,T2,element(Label,Attr,Children))

) with tv(1,[])

Figure 4.9: Examples of MALP rules for evaluating conditions

<< //hotel[services/pool avg services/metro]/@name >>
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the corresponding call to the fuzzyXPath predicate would be:

fuzzyXPath([relativePath, hotel, tree(avg,

tree(exist([services, pool]), nil, nil),

tree(exist([services,metro]), nil, nil)),

attr(name)], << XMLdata >>, tv(1.0, []), tv(1.0, []))

which eventually will invoke predicate execute_fcond (for evaluating the fuzzy

condition containing the avg operator) as follows:

execute_fcond(hotel, tree(avg,

tree(exist([services, pool]), nil, nil),

tree(exist([services,metro]), nil, nil)),

<< XMLdata >>, TV_Cond)

Figure 4.10 shows the resulting TV tree, which clearly resembles the XML �le

previously reported in Example 3.3.1.

tv(1.0,[[],

tv(1.0,[[tv(1.0, []), [Melia]], [],

tv(1.0,[[tv(1.0, []), [Tryp]], [],

tv(1.0,[[tv(1.0, []), [Sheraton]], [],

tv(1.0,[[tv(0.5, []), [NH]], [],

tv(1.0,[[tv(0.5, []), [Hilton]], [], []])])])])]), []])

Figure 4.10: Example of a TV obtained after evaluating a fuzzy condition

We have developed a prototype of our FuzzyXPath which is publicly available

from http://dectau.uclm.es/fuzzyXPath/, equipped with a Web interface from

which XPath queries can be tested.

Furthermore, we have incorporated a lattice de�nition according to the de�nitions

of Section 4.1.2, which is shown in Figure 4.11, where and, or and avg operators are

de�ned by Prolog rules. Figure 4.12 shows the Prolog compilation from FLOPER

of the rule of Figure 4.8. Finally, we have de�ned a predicate tv_to_elem to show

the result in a pretty way which transforms the returned TV tree to an XML tree.
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and_prod(tv(X1,X2),tv(Y1,Y2),tv(Z1,Z2)):−
pri_prod(X1,Y1,Z1),pri_app(X2,Y2,Z2).

and_luka(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):−
pri_add(X,Y,U1), pri_sub(U1,1,U2),

pri_max(U2,0.0,Z), pri_app(Elem1, Elem2, Elem0).

and_godel(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):−
pri_min(X,Y,Z), pri_app(Elem1,Elem2,Elem0).

or_prod(tv(X1,X2),tv(Y1,Y2),tv(Z1,Z2)):− pri_prod(X1,Y1,U1),

pri_add(X1,Y1,U2),pri_sub(U2,U1,Z1),

pri_app(X2,Y2,Z2).

or_luka(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):−
pri_add(X,Y,U1), pri_min(U1,1,Z),

pri_app(Elem1,Elem2,Elem0).

or_godel(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):−
pri_max(X,Y,Z), pri_app(Elem1,Elem2,Elem0).

agr_aver(tv(X1,X2),tv(Y1,Y2),tv(Z1,Z2)):− pri_add(X1,Y1,Aux),

pri_div(Aux,2,Z1),pri_app(X2,Y2,Z2).

agr_avg(tv(V1,E1),tv(V2,E2),tv(T1,F1),tv(T2,F2),tv(V3,G)):−
V3 is (V1∗T1 + V2∗T2)/(T1+T2),pri_app(E1,E2,A1),
pri_app(F1,F2,A2),pri_app(A1,A2,G).

pri_add(X,Y,Z) :− Z is X+Y. pri_sub(X,Y,Z) :−Z is X−Y.

pri_prod(X,Y,Z) :− Z is X ∗ Y. pri_div(X,Y,Z) :− Z is X/Y.

pri_app([],[],[]):−!.

pri_app([],A,A):−!.

pri_app(A,[],A):−!.

pri_app([Element,TV_Son,[]],TV_SibA,[Element,TV_Son,TV_SibA]):−!.

pri_app([Element,TV_Son,TV_sib],TV_SibA,[Element,TV_Son,TV_SibR]):−
pri_app(TV_sib,TV_SibA,[Element,TV_Son,TV_SibR]),!.

Figure 4.11: Multi-adjoint lattice for FuzzyXPath (�le �tv.pl�)

4.2 XQuery Library FuzzyXPath

The implementation of our fuzzy extension of XPath is based on an XQuery library

too, the functions including deep and down operators, as well as the fuzzy operators
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fuzzyXPath([Label|LabelRest],[element(Label,_,Children)|Siblings],Deep,Down,TV_Iam):−
fuzzyXPath(LabelRest,Children,Deep,Down,TV_Son),

and_prod(Deep,TV_Son,TV_Son0),

fuzzyXPath([Label|LabelRest],Siblings,Deep,Down,TV_Bro),

and_prod(Down,TV_Bro,TV_Bro0),

agr_fuse(tv(1,[element(Label,Attr,Children),[],[]]),TV_Son0,TV_Bro0,TV_body),

and_prod(tv(1,[]),TV_body,TV_Iam).

Figure 4.12: Prolog clause obtained by FLOPER after compiling a MALP rule

and+, and-, and, or+, or-, or and avg. Using this library the user can replace

Boolean operators by fuzzy versions in XPath expressions, as well as he (she) can

call to deep and down operators, in order to obtain ranked sets of answers. The

answers are shown with a Retrieval State Value (RSV) representing the degree of

satisfaction. The answers can also be ordered with respect to the RSV making use

of descending XQuery expression, as well as �ltered with regard to a threshold.

The implementation of our fuzzy extension of XPath is based on an XQuery

library of functions including deep and down operators, as well as the fuzzy operators

and+, and-, and, or+, or-, or and avg. Using this library the user can replace

Boolean operators by fuzzy versions in XPath expressions, as well as he (she) can

call to deep and down operators, in order to obtain ranked sets of answers. The

answers are shown with a Retrieval State Value (RSV) representing the degree of

satisfaction. The answers can also be ordered with respect to the RSV making use

of descending XQuery expression, as well as �ltered with regard to a threshold.

The input documents in our proposal are crisp XML documents, but the answers

to a query o�er fuzzy information, that is, a RSV for each answer. Therefore our

approach is focused on the handling of standard XML documents, in which the user

can retrieve information, ranked by a certain degree of satisfaction. We have decided

to implement FuzzyXPath within XQuery by providing an XQuery library of fuzzy

operators. It makes possible that our library can be used from any XQuery processor

to query any XML document with crisp information.

Although the input of a query is a crisp XML document, the library assign

internally and, in a transparent way to the user, a RSV to each of node of interest in

the document. The RSVs assigned to each node of interest are used to compute the

RSV of the answer. It makes the implementation a non-trivial task. Starting from

a crisp XML document as input, our implementation annotates at run-time a RSV

to each node of the query result. It also involves to dynamically annotate RSVs of
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nodes in subqueries. Additionally, where and return expressions of XQuery become

XQuery functions in order to handle fuzzy conditions and RSVs, respectively.

We can summarize the elements of the implementation as follows:

4.2.1 Elements of the Library

1. The deep and down operators become XQuery functions that take as arguments

a context node, an XPath expression and the value (a real number in [0,1])

assigned to deep and down, respectively. For combining deep and down an

XQuery function is de�ned having as argument two real values in [0,1]:

declare function f:deep($node,$xpath,$deep)

declare function f:down($node,$xpath,$down)

declare function f:deep_down($node,$xpath,$deep,$down)

2. Fuzzy versions of Boolean operators and, or have been de�ned as XQuery func-

tions, each one for each fuzzy logic we have considered (i.e., Product, �ukasie-

wicz and Gödel):

declare function f:andP($left,$right)

declare function f:orP($left,$right)

declare function f:andG($left,$right)

declare function f:orG($left,$right)

declare function f:andL($left,$right)

declare function f:orL($left,$right)

3. Operators avg and avg{a,b} have been de�ned as XQuery functions:

declare function f:avg($left,$right)

declare function f:avg_ab($left,$right,$a,$b)

4. Fuzzy versions of XQuery expressions where and return have been de�ned.

In order to make transparent to the user the incorporation of RSVs, we have

de�ned a new version of the return expression, called returnF, which trans-

parently carries out the computation of the RSVs of the answers. Similarly,

since XQuery works with a Boolean logic, the introduction of fuzzy versions of

the operators, force us to de�ne a new version of the where expression, called
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whereF, which transparently carries out the computation of the RSVs from

fuzzy conditions. ReturnF has as parameters the context node and an XPath

expression. WhereF has as parameters the context node and a fuzzy condition.

declare function f:whereF($node,$fuzzycond)

declare function f:returnF($node,$xpath)

5. Fuzzy versions of comparison operators for XPath expressions have been de-

�ned as XQuery functions. Similarly to whereF, comparison operators have

been adapted to handle the RSVs:

declare function f:equalF($left,$right)

declare function f:lessF($left,$right)

declare function f:greaterF($left,$right)

4.2.2 Implementation of the Library

In order to implement our library in XQuery we have used the XQuery Module

available in the BaseX processor [Grü14]. In particular, we make use of the function

eval that makes possible the manipulation of XPath expressions. This function is

also available for Exist [Mei03] and Saxon [KL90] processors. For instance, down is

de�ned as follows:

declare function f:down($nodes,$query, $down){

let $docDown := document{f:down_aux($nodes/∗,$down,(),())}
let $docQ := xquery:eval(concat('$x',$query), map { '$x' :=$docDown})

let $docL := xquery:eval(concat('$x',$query), map { '$x' :=$nodes})

return f:putListRSV($docL,f:getListRSV($docQ))

};

deep is de�ned as follows:

declare function f:deep($doc as node()∗, $query, $deep as xs:double){

let $docDeep := document{f:deep_aux($doc/∗,$deep,1)}
let $docQ := xquery:eval(concat('$x',$query), map { '$x' :=$docDeep})

let $docL := xquery:eval(concat('$x',$query), map { '$x' :=$doc})

return f:putListRSV($docL,f:getListRSV($docQ))

};
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and deep_down is de�ned as follows:

declare function f:deep_down($nodes as node()∗,$query, $deep as xs:double,

$down as xs:double){

let $docDown := document{f:down_aux($nodes/∗,$down,(),())}
let $docDeep := document{f:deep_aux($docDown/∗,$deep,1)}
let $docQ := xquery:eval(concat('$x',$query), map { '$x' :=$docDeep})

let $docL := xquery:eval(concat('$x',$query), map { '$x' :=$nodes})

return f:putListRSV($docL,f:getListRSV($docQ))

};

Each fuzzy operator has been de�ned as a function, for instance, and (Product

logic), or+ (Gödel logic), avg, and avg{a,b} are de�ned as follows:

declare function f:andP($cond1,$cond2)

{

let $tv1 := f:truthValue($cond1)

let $tv2 := f:truthValue($cond2)

return $tv1∗$tv2
};

declare function f:orG($cond1,$cond2)

{

let $tv1 := f:truthValue($cond1)

let $tv2 := f:truthValue($cond2)

return

if ($tv1 > $tv2) then $tv1

else $tv2

};

declare function f:avg($cond1,$cond2)

{

let $tv1 := f:truthValue($cond1)

let $tv2 := f:truthValue($cond2)

return (xs:double($tv1)+xs:double($tv2)) div (2)

};
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declare function f:avg_ab($cond1,$cond2, $a, $b)

{

let $tv1 := f:truthValue($cond1)

let $tv2 := f:truthValue($cond2)

return (xs:double($tv1)∗$a+xs:double($tv2)∗$b) div ($a+$b)

};

4.2.3 Examples of FuzzyXPath in XQuery

Now, we show how the previous FuzzyXPath queries can be written in XQuery.

Let us now suppose the following FuzzyXPath query:

<< /hotels/hotel[[DOWN = 0.9]close_to/text() = “Sol”]/@name >>

We can now write the same query in XQuery as follows:

for $x in doc('hotels.xml')/hotels/hotel

let $y := f:whereF($x,f:equalF(f:down($x,'/close_to',0.9),'Sol'))

let $z := f:returnF($y,'/@name')

order by $y/@rsv descending

return $z

We can see that FuzzyXPath expressions are written as XQuery expressions. This

is the same kind of transformation from crisp XPath to XQuery. For instance:

<< /hotels/hotel[close_to/text() = “Sol”]/@name >

can be translated into:

for $x in doc("hotels.xml")/hotels/hotel

where $x/close_to/text()="Sol"

return $x/@name

In the fuzzy case, �=� is transformed into equalF, and where as well as return

become XQuery functions, with an extra argument to represent the context node.

The query makes use of the function down of the library to compute the RSVs

associated to close_to. In addition, the attribute rsv, which has been (internally)
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added to the output document, can be handled to show the answer in a sorted way,

and even to de�ne a threshold.

Let us now consider the following query, that uses deep and down:

<< /hotels/hotel[[DEEP = 0.5;DOWN = 0.9]//close_to/text() = “Callao”]/@name >>

We can now write the same query in XQuery using the function deep_down:

for $x in doc('hotels.xml')/hotels/hotel

let $y :=

f:whereF($x, f:equalF(f:deep_down($x,'//close_to',0.5,0.9),'Callao'))

let $z := f:returnF($y,'/@name')

order by $y/@rsv descending

return $z

Let us now suppose the following FuzzyXPath expression that makes use of the

avg operator.

<< //hotel[services/pool avg services/metro]/@name >>

Here, we use the function avg of the library, having as parameters both sides of the

fuzzy condition:

for $x in doc('hotels.xml')//hotel

let $y := f:whereF($x, f:avg($x/services/pool,$x/services/metro))

let $z := f:returnF($y,'/@name')

order by $y/@rsv descending

return $z

The same can be said for the following query, using avg{a,b} having as parameters

a and b.

<< //hotel[services/pool avg{1, 2} services/metro]/@name >>

for $x in doc('hotels.xml')//hotel

let $y := f:whereF($x,f:avg_ab($x/services/pool, $x/services/metro,1,2))

let $z := f:returnF($y,'/@name')

order by $y/@rsv descending

return $z
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Let us now suppose the following queries that combine deep and avg, and deep

and and+, respectively:

<< //hotel[[DEEP = 0.8]//close_to/text() = “Sol”avg{1, 2} //price/text() < 150]/@name >>

for $x in doc('hotels.xml')//hotel

let $y := f:whereF($x, f:avg_ab(f:equalF(f:deep($x,'//close_to',0.8),'Sol'),

$x//price/text()<150,1,2))

let $z := f:returnF($y,'/@name')

order by $y/@rsv descending

return $z

<< //hotel[([DEEP = 0.5]//close_to/text() = ”GranV ia”) and+ (//pool avg{3, 2} //metro/text() < 200)]/@name >>

for $x in doc('hotels.xml')//hotel

let $y := f:whereF($x,f:andG(f:equalF(f:deep($x,'//close_to',0.5),'GranVia'),

f:avg_ab($x//pool,$x//metro<200,3,2)))

let $z := f:returnF($y,'/@name')

order by $y/@rsv descending

return $z

4.2.4 Benchmarks

Now, we would like to show the benchmarks we have obtained using our library. We

have tested our library using data sets of di�erent sizes. We have used as data sets

traces of execution of MALP programs developed under our FLOPER tool. The

FLOPER tool generates traces in XML format, with a high degree of tag nesting

when a recursive program is executed. These data sets facilitate the testing of our

structural based operators deep and down.

In Figure 4.13 we can see the results, where we indicate the number of nodes

examined in each tree, as well as the depth of the tree. We have compared the

execution times for two XPath expressions in crisp and fuzzy versions.

The �rst query is Q1:

<< //node/goal >>
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Query 16Kb 700Kb 4.8Mb 15.4Mb

Examined nodes in Q1 28 148 298 448

Examined nodes in Q2 25 145 295 445

Tree Depth 21 101 201 301

Q1 7.09 ms 25.47 ms 123.66 ms 461.6 ms

down in Q1 12.52 ms 107.1 ms 481.24 ms 2853.36 ms

deep in Q1 10.08 ms 74.17 ms 510.74 ms 1953.31 ms

deep and down in Q1 69.97 ms 102.0 ms 685.87 ms 7315.59 ms

Q2 5.77 ms 57.96 ms 172.03 ms 529.18 ms

avg in Q2 36.59 ms 1266.99 ms 9729.49 ms 60426.28 ms

Figure 4.13: Benchmarks

and the second query is Q2:

<< //node[goal[contains(text(), ”p(”)] and substitution[contains(text(), ”g(”)]]//goal >>

We have used the BaseX Query processor in a Intel Core 2 Duo 2.66 GHz Mac

OS machine.
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Chapter 5

The FuzzyXPath debugger

The XPath language [BBC+07] was designed as a query language for XML in which

the path of the tree is used to describe the query. In spite of the simplicity of the

XPath language, the programmer usually makes mistakes when (s)he describes the

path in which the data are allocated. Tipically, (s)he omits some of the tags of the

path, s(he) adds more than necessary, and (s)he also uses similar but wrong tag

names. When the query does not match to the tree structure of the XML tree, the

answer is empty. However, we can also �nd the case in which the query matches to

the XML tree but the answer does not satisfy the programmer. Due to the inherent

�exibility of XML documents, the same tag can occur at several positions, and the

programmer could �nd answers that do not correspond to her(is) expectations. In

other words, (s)he �nds a correct path, but a wrong answer. We can also consider the

case in which a boolean condition is wrong, expressing a wrong range, and several

conditions that do not hold at the same time. When the programmer does not �nd

the answer (s)he is looking for, there is a mechanism that (s)he can try to debug

the query. In XPath there exists an operator, denoted by `//', that permits to look

for the tag from that position. However, it is useless when the tag is present at

several positions, since even though the programmer �nds answers, (s)he does not

know whether they are close to h(er) expectations.

XPath debugging has to take into account the previous considerations. Par-

ticularly, there is an underlying notion of chance degree. When the programmer

makes mistakes, the number of bugs can be higher or lower, and the chance degree

is proportional to them. Moreover, there are several ways on which each bug can

113
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be solved, and therefore the chance degree is also dependent from the number of

solutions for each bug, and the quality of each solution. The quality of a solution

describes the number of changes to be made. Finally, there is a case in which we

have also focused our work. The case in which the mistake comes from a similar but

wrong tag. Here, the chance degree represents the semantic similarity between the

tag expressed in the query and the tag which really appears in the XML document.

We will describe how we can manipulate an XPath expression in order to obtain

a set of alternative XPath expressions that match to a given XML document. For

each alternative XPath expression we will give a chance degree that represents the

degree in which the expression deviates from the initial expression. Thus, our work

is focused on providing the programmer a repertoire of paths that (s)he can use to

retrieve answers.

We propose that XPath debugging is guided by the programmer that initially

establishes a value (a real value between 0 and 1), that the debugger uses to penalize

each bug. Each bug found is penalized with such a value, and thus the chance degree

is proportional to the value. Additionally, we assume that the debugger is equipped

with a table of similarities, that is, a table in which pairs of similar words are

assigned to a value between 0 and 1. It makes possible that chance degree is also

computed from similarity degrees. The debugger reports a set of annotated paths in

an extended XPath syntax in which we have incorporated three annotations: JUMP,

SWAP and DELETE. JUMP is used to represent that some tags have been added

to the original expression, SWAP is used to represent that a tag has been changed

by another, and DELETE is used to represent that a tag has been removed. The

reported XPath expressions update the original XPath expression, that is, the case

JUMP incorporates `//' at the position in which the bug is found, the case SWAP

includes the new tag, and the case DELETE removes the wrong tag.

Additionally, our proposal permits the programmer tests the reported XPath ex-

pressions. The annotated XPath expressions can be executed obtaining a ranked set

of answers with respect to the chance degree. It facilitates the process of debugging

because the programmer can visualize the answers to each query.

The approach has been implemented and tested (see http://dectau.uclm.es/

fuzzyXPath/?q=DebuggerXPathTest). Additionally, our proposal permits the pro-

grammer to test the reported XPath expressions. The annotated XPath expressions

can be executed in our tool (http://dectau.uclm.es/fuzzyXPath/) in order to

obtain a ranked set of answers w.r.t. the chance degree. It facilitates the pro-
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cess of debugging because programmers can visualize answers to each query in a

very easy way. Our implementation has been developed on top of the recently

proposed FuzzyXPath extension [ALM11a, ALM12c], which uses fuzzy logic pro-

gramming to provide a fuzzy taste to XPath expressions. The implementation has

been coded with the fuzzy logic programming language MALP and developed

with the FLOPER tool designed in our research group and freely accessible from

http://dectau.uclm.es/floper/.

Although our approach can be applied to standard (crisp) XPath expressions,

chance degrees in XPath debugging �ts well with our proposal. Particularly, XPath

debugging annotations can be seen as annotations of XPath expressions similary

to the proposed DEEP and DOWN of FuzzyXPath [ALM11a, ALM12c]. DEEP

and DOWN serve to annotate XPath expressions and to obtain a ranked set of

answers depending on they occur, more deeply and from top to down. Each answer

is annotated with a RSV (Retrieval Status Value) which describes the degree of

satisfaction of the answer. Here JUMP, SWAP and DELETE penalize the answers

of annotated XPath expressions. DEEP and JUMP have, in fact, the same behavior:

JUMP proportionally penalizes answers as deep as they occur. Moreover, in order

to cover with SWAP, we have incorporated to our framework similarity degrees.

5.1 Debugging XPath

In this section we propose a debugging technique for XPath expressions. Our debug-

ging process accepts as inputs a query Q preceded by the [DEBUG = r] command,

where r is a real number in the unit interval. For instance,

<< [DEBUG = 0.5]/bib/book/title >>

Assuming an input XML document like the one depicted in Figures 5.2 and 5.1,

the debugging produces a set of alternative queries Q1, ..., Qn packed into an output

XML document, like the one shown in Figure 5.3. The document has the following

structure:
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<bib>

<name>Classic Literature</name>

<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>

<author>Miguel de Cervantes Saavedra</author>

<references>

<novel year="1997" price="35.99">

<name>La Galatea</name>

<author>Miguel de Cervantes Saavedra</author>

<references>

<book year="1994" price="25.99">

<title>Los trabajos de Persiles y Sigismunda</title>

<author>Miguel de Cervantes Saavedra</author>

</book>

</references>

</novel>

</references>

</book>

<novel year="1999" price="25.65">

<title>La Celestina</title>

<author>Fernando de Rojas</author>

</novel>

</bib>

Figure 5.1: Input XML document in our examples with Debug

Book

Title

Author

Name

Name

References

AuthorNovel

BIB

Title

References

AuthorBook

Novel

Title

Author

Figure 5.2: XML skeleton represented as a tree
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<result>

<query cd="r1" attributes1> Q1 </query>

. . .

<query cd="rn" attributesn> Qn </query>

</result>

where the set of alternatives is ordered with respect to the CD key. This value

measures the chance degree of the original query with respect to the new one, in the

sense that as much changes are performed on Qi and as more traumatic they are

with respect to Q, then the CD value becomes lower.

<result>

<query cd="1.0">/bib/book/title</query>

<query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>

<query cd="0.5" book="//">/bib/[JUMP=0.5]//title</query>

<query cd="0.5" bib="//">/[JUMP=0.5]//book/title</query>

<query cd="0.45" book="" title="name">/bib/[DELETE=0.5][SWAP=0.9]name</query>

<query cd="0.4" bib="//" book="novel">/[JUMP=0.5]//[SWAP=0.8]novel/title</query>

<query cd="0.25" book="" title="//">/bib/[DELETE=0.5][JUMP=0.5]//title</query>

<query cd="0.25" book="//" book="">/bib/[JUMP=0.5]//[DELETE=0.5]title</query>

<query cd="0.25" bib="" book="//">/[DELETE=0.5][JUMP=0.5]//book/title</query>

<query cd="0.25" bib="//" book="//">/[JUMP=0.5]//[JUMP=0.5]//title</query>

<query cd="0.25" bib="//" bib="">/[JUMP=0.5]//[DELETE=0.5]book/title</query>

<query cd="0.225" title="//" title="//" title="name">/bib/book/[JUMP=0.5]//[JUMP=0.5]//[

SWAP=0.9]name</query>

<query cd="0.225" bib="" book="//" title="name">/[DELETE=0.5][JUMP=0.5]//[SWAP=0.9]

name</query>

<query cd="0.225" bib="//" book="" title="name">/[JUMP=0.5]//[DELETE=0.5][SWAP=0.9]

name</query>

<query cd="0.2" bib="" book="//" book="novel">/[DELETE=0.5][JUMP=0.5]//[SWAP=0.8]

novel/title</query>

.........

</result>

Figure 5.3: Debugging of the query �[DEBUG=0.5]/bib/book/title�

In Figure 5.3, the �rst alternative, with the highest CD, is just the original query,

thus, the CD is 1, whose further execution with FuzzyXPath returns �Don Quijote

de La Mancha�. As was commented before, we have assumed the debugger is ran

even when the set of answers is not empty, like in this case. The remaining options

give di�erent CD's depending on the chance degree, and provide XPath expressions

annotated with JUMP, DELETE and SWAP commands.
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In order to explain the way in which our technique generates the attributes and

content of each query tag in the output XML document, let us consider a generic

path Q of the form:

<< [DEBUG = r]/tag1/.../tagi/tagi+1/... >>

where we say that tagi is at level i in the original query. So, assume that during the

exploration of the input query Q and the XML document D, we �nd that tagi in Q

does not occurs at level i in (a branch of) D. Then, we consider the following three

situations:

Swapping case: Instead of tagi, we �nd tag′i at level i in the input XML document

D, being tagi and tag′i two similar terms with similarity degree s. Then, we generate

an alternative query by adding the attribute tagi ="tag′i" and replacing in the

original path the occurrence "tagi/" by "[SWAP = s]tag′i/".

The second query proposed in Figure 5.3 illustrates this case:

< query cd = “0.8” book = “novel” > /bib/[SWAP = 0.8]novel/title < /query >

Let us observe that : 1) we have included the attribute �book=�novel"� in order

to suggest that instead of looking now for a book, �nding a novel should be also a

good alternative, 2) in the path we have replaced the tag book by novel and we have

appropriately annotated the exact place where the change has been performed with

the annotation [SWAP = 0.8] and 3) the CD of the new query has been adjusted

with the similarity degree 0.8 of the exchanged tags.

Now, we can run the (fuzzy) XPath queries �/bib/novel/title� and even

�/bib/[SWAP = 0.8]novel/title� (see Figure 5.4). In both cases we obtain the

same result, i.e., �La Celestina�, but with di�erent RSV (or Retrieval Status Value):

1 and 0.8, respectively.

<result>

<title rsv="0.8">La Celestina</title>

</result>

Figure 5.4: Execution of the query �/bib/[SWAP = 0.8]novel/title�
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Jumping case: Even when tagi is not found at level i in the input XML document

D, tagi+1 appears at a deeper level (i.e., greater than i) in a branch of D. Then,

we generate an alternative query by adding the attribute tagi="//", which means

that tagi has been jumped, and replacing in the path the occurrence "tag_i/" by

"[JUMP = r]//", being r the value associated to DEBUG.

<result>

<title rsv="0.5">Don Quijote de la Mancha</title>

<title rsv="0.5">La Celestina</title>

<title rsv="0.03125">Los trabajos de Persiles y Sigismunda</title>

</result>

Figure 5.5: Execution of the query �/bib/[JUMP = 0.5]//title�

<result>

<title rsv="0.5">Don Quijote de la Mancha</title>

<title rsv="0.03125">Los trabajos de Persiles y Sigismunda</title>

</result>

Figure 5.6: Execution of the query �/[JUMP = 0.5]//book/title�

This situation is illustrated by the third and fourth queries in Figure 5.3, where

we propose to jump the tags book and bib. The execution of the queries returns

di�erent results, as shown in Figures 5.5 and 5.6, where JUMP produces similar

e�ects to the DEEP command explained in the previous section, that is, as more tags

are jumped their resulting CD's become lower.

Deletion case: This situation emerges when at level i in the input XML document

D, we found tagi+1 instead of tagi. So, the intuition tell us that tagi should be

removed from the original query Q and hence, we generate an alternative query by

adding the attribute tagi="" and replacing in the path the occurrence "tag_i" by

"[DELETE = r]", being r the value associated to DEBUG.

This situation is illustrated by the �fth query in Figure 5.3, where the deletion

of the tag book is followed by a swapping of similar tags title and name. The CD

0.45 associated to this query is de�ned as the product of the values associated to

both DELETE (0.5) and SWAP (0.9), and hence the chance degree of the original

one is lower than the previous examples.
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As seen in Figure 5.7, the execution of our new query is able to retrieve the

information contained in the �rst branch of the input XML document listed in

Figures 5.2 and 5.1. Here we illustrate that execution of debugged XPath expressions

reveals hidden answers that can ful�ll the programmer expectations.

<result>

<name rsv="0.45">Classic Literature</name>

</result>

Figure 5.7: Execution of the query �/bib/[DELETE = 0.5][SWAP = 0.9]name�

As we have seen in the previous example, the combined use of one or more

debugging commands (SWAP, JUMP and DELETE) is not only allowed but also

frequent. In other words, it is possible to �nd several debugging points. In Figure

5.8, we can see the execution of the query:

< query cd = “0.225” bib = “” book = “//” title = “name” >

/[DELETE = 0.5][JUMP = 0.5]//[SWAP = 0.9]name < /query >

The CD 0.225 is quite low, and therefore the chance degree is low, since it has

been obtained by multiplying the three values associated to the deletion of the tag

bib (0.5), jumping the tag book (0.5) and the swapping of title by name (0.9).

<result>

<name rsv="0.225">Classic Literature</name>

<name rsv="0.028125">La Galatea</name>

</result>

Figure 5.8: Execution of the query �/[DELETE = 0.5][JUMP = 0.5]//[SWAP = 0.9]name�

The wide range of alternatives (Figure 5.3 is still incomplete), reveals the �ex-

ibility of our technique. The programmer is free to use the alternative queries to

execute them, and to inspect results up to the expectations are covered.

Finally, we would like to remark that even when we have worked with a very sim-

ple query with three tags in our examples, our technique works with more complex

queries with large paths and connectives in boolean conditions, as well as DEBUG

used in several places on the query.
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For instance, in Figure 5.9 (compare it with Figure 5.3) we show the result of

debugging the following query:

�[DEBUG = 0.7]/bib/[DEBUG = 0.6]book/[DEBUG = 0.5]title�

<result>

<query cd="1.0">/bib/book/title</query>

<query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>

<query cd="0.7" bib="//">/[JUMP=0.7]//book/title</query>

<query cd="0.6" book="//">/bib/[JUMP=0.6]//title</query>

<query cd="0.56" bib="//" book="novel">/[JUMP=0.7]//[SWAP=0.8]novel/title</query>

<query cd="0.54" book="" title="name">/bib/[DELETE=0.6][SWAP=0.9]name</query>

<query cd="0.42" bib="" book="//">/[DELETE=0.7][JUMP=0.6]//book/title</query>

<query cd="0.42" bib="//" book="//">/[JUMP=0.7]//[JUMP=0.6]//title</query>

<query cd="0.378" bib="" book="//" title="name">

/[DELETE=0.7][JUMP=0.6]//[SWAP=0.9]name</query>

<query cd="0.378" bib="//" book="" title="name">

/[JUMP=0.7]//[DELETE=0.6][SWAP=0.9]name</query>

<query cd="0.336" bib="" book="//" book="novel">

/[DELETE=0.7][JUMP=0.6]//[SWAP=0.8]novel/title</query>

<query cd="0.3" book="" title="//">/bib/[DELETE=0.6][JUMP=0.5]//title</query>

<query cd="0.2646" bib="//" bib="" book="" title="name">

/[JUMP=0.7]//[DELETE=0.7][DELETE=0.6][SWAP=0.9]name</query>

.........

</result>

Figure 5.9: Debugging of the query �[DEBUG = 0.7]/bib/[DEBUG = 0.6]book/[DEBUG = 0.5]title�

5.2 MALP and the XPath Debugger

The core of our debugger is coded with MALP rules by reusing most modules of

our FuzzyXPath interpreter [ALM11a, ALM11b]. And, of course, the parser of

our debugger has been extended to recognize the new keywords DEBUG, SWAP,

DELETE and JUMP, with their proper arguments.

Now, we would like to show how the new �XPath debugging� predicate admits

an elegant de�nition by means of fuzzy MALP rules. Each rule de�ning predicate:

debugQuery(ListXPath, Tree, Penalty)

receives three arguments: (1) ListXPath is the Prolog representation of an XPath

expression, (2) Tree is the term representing an input XML document and (3)
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Penalty represents the chance degree. A call to this predicate returns a truth-value

(i.e., a tv tree) like the following one:

tv(1.0,[[/,[]],

tv(1.0, [[tag(bib),[]],

tv(1.0,[[tag(book),[]],

tv(1.0,[[tag(title),[]],[],

...

tv(0.8,[[tag(novel),[book=novel]],

...

tv(0.5,[['[DELETE=0.5]',[book='']],

tv(0.9,[[tag(name),[title=name]],[],

...

[]])]),

[]])]),

[]])])])]),

[]])

Basically, the debugQuery predicate traverses the XML document, checking the

validity of the original query tag-by-tag, and trying to match each tag to the ones

occurring in the XML document and thus producing e�ects of DELETE, JUMP and

SWAP.

The de�nition of such predicate includes several rules for distinguishing the three

debugging cases. As an example the case of swapping is de�ned as follows:

debugQuery([Label|LabelRest],[element(Label2,_,Children)|Siblings],Penalty) <prod

@fuse(

similarity(Label, Label2),

debugQuery(LabelRest, Children, Penalty),

debugQuery([Label|LabelRest], Siblings, Penalty)

) with tv(1,[]).

which becomes into the following Prolog clause after compilation into FLOPER:

debugQuery([Label|LabelRest],[element(Label2,_,Children)|Siblings], Penalty, TV_Iam):−
similarity(Label, Label2, TV_Similarity),

debugQuery(LabelRest, Children, Penalty, TV_Son),

debugQuery([Label|LabelRest], Siblings, Penalty, TV_Sib),

agr_fuse(TV_Similarity, TV_Son, TV_Sib, TV_Iam).

Basically, similarity is checked with the atom similarity(Label, Label2), and two re-

cursive calls are achieved for debugging both children (debugQuery(LabelRest, Chil-

dren, Penalty)) and siblings (debugQuery([Label|LabelRest], Siblings, Penalty, 1)),

whose tv trees are �nally combined (fused) with the node content.

Finally, for showing the result in a pretty way (see Figures 5.3), and transforming

a tv tree into an XML �le, a predicate tv_to_element has been implemented.
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Records

FILTER (FuzzyXPath interpreter)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.766 1.696 1.734 0.842 0.469 0.268 0.221 0.087 0.056

2000 6.628 6.432 6.998 3.242 1.439 0.677 0.599 0.168 0.122

3000 14.532 14.02 14.05 6.306 2.831 1.257 1.101 0.253 0.179

4000 25.535 24.68 24.72 10.88 4.827 1.918 1.794 0.345 0.242

5000 41.522 37.78 37.16 16.20 7.242 2.993 2.516 0.427 0.281

6000 58.905 55.35 55.59 24.41 10.993 4.207 3.554 0.554 0.373

7000 85.167 85.65 82.73 37.74 14.436 5.083 4.653 0.649 0.460

8000 137.73 102.8 102.7 69.40 26.680 8.273 5.894 0.690 0.481

9000 175.27 131.8 131.0 56.93 22.601 7.869 7.329 0.824 0.549

10000 195.61 185.2 167.6 95.28 26.649 9.516 9.595 0.973 0.742

Records

FILTER (FuzzyXPath debugger)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 2.857 0.443 0.341 0.381 0.340 0.386 0.349 0.394 0.295

2000 5.833 0.951 0.777 0.794 0.707 0.827 0.716 0.803 0.596

3000 9.422 1.411 1.059 1.243 1.053 1.251 1.100 1.233 0.881

4000 11.742 1.800 1.405 1.597 1.422 1.592 1.463 1.595 1.202

5000 15.646 2.466 1.735 1.786 1.931 1.758 2.143 1.771 1.500

6000 19.315 2.723 2.115 2.522 2.111 2.540 2.112 2.500 1.802

7000 22.599 3.397 2.505 3.025 2.475 2.468 2.783 2.442 2.561

8000 24.234 3.595 2.852 3.115 2.836 3.173 2.857 3.219 2.374

9000 30.305 3.137 4.212 3.184 5.072 3.169 3.174 3.811 2.675

10000 33.329 4.942 3.543 3.573 3.878 3.559 4.211 3.518 2.962

Figure 5.10: Performance of the FuzzyXPathinterpreter (up) and debugger (down)

by using FILTER on XML �les with growing sizes

5.3 Dynamic Filters for the Thresholded Debugging

of Queries

In [JMMO10, JMM+13] we have reported some thresholding techniques specially

tailored for the MALP language, where the main idea consists in to dynamically

create and evaluate �lters for prematurely disregarding those super�uous computa-

tions leading to non-signi�cant solutions. Somehow inspired by the same guidelines,

in [ALM14a] we have recently equipped our FuzzyXPathinterpreter with a new

command with syntax �[FILTER=r]� (being r a real number between 0 and 1) which

can be used just at the beginning of a query for indicating that only those answers

with RSV greater of equal than r must be generated and reported. In the present
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Figure 5.11: Runtime for the execution of several FuzzyXPathqueries varying DEEP

and FILTER

work, we show the bene�ts of using the same command that we have just imple-

mented into the FuzzyXPathdebugger too (now, only alternative queries to a given

one whose CDs are greater of equal than r must be generated during the debugging

process).

So, if we execute a FuzzyXPathquery with the following form

�[FILTER=0.4]//book[@year<2000 avg @price<50]/title�, we obtain nine answers, but

only �ve if we �x �[FILTER=0.8]�. Obviously, we would hope that the runtime of the

second case should be lower than the �rst one since, as our approach does, there is

no need for computing all solutions and then �ltering the best ones. This desired dy-

namic behaviour when avoiding useless computations is re�ected in Figure 5.10 which

considers the e�ort needed for executing (up) and debugging1 (down) a query like

�[FILTER=r]//book[(@price>25 and @price<30) avg (@year<2000 or @year>2006)]�

where each row represents the size of several XML �les accomplishing with the same

structure of our running example (but considering di�erent nesting levels of tags

book, title, author and references), and each column refers to a di�erent degree of the

FILTER command. Here, the runtime is measured in seconds excluding the extra pars-

ing/compiling time (the benchmarks have been performed using a computer with

processor Intel Core Duo, with 2 GB RAM and Windows Vista) and each record in

1In this last case we have used �[DEBUG=0.9]� just after �FILTER�.
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Figure 5.12: Runtime for the debugging of several FuzzyXPathqueries varying DEBUG
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the input �le refers to a di�erent book (that is, the number of records coincides with

the number of occurrences of tag book) which might contain other books inside its

references tag. The size of the �les in the �gure moves from 323Kb (1000 records)

till 3223 Kb (10000 records), but our application works �ne even when �les of 33Mb

(100000 records), which reveals the interest of our results.

Moreover, in Figure 5.11 we continue with a similar query to the previous one,

but also considering the DEEP command2. Here, for a large XML document with a

�xed size, we express the number of seconds needed for executing such query when

varying FILTER and DEEP, where it is easy to see that the behaviour of the interpreter

is more and more improved whenever FILTER grows and DEEP decreases, as wanted. On

the other hand, Figure 5.12 re�ects similar e�ects that occur in our debugger, where

the contrast now is established between the FILTER and DEBUG commands.

2This kind of statistics can be produced on-line for several XML �les and

FuzzyXPathqueries via the following couple of URLs that we have just prepared

for the interested reader: http://dectau.uclm.es/fuzzyXPath/?q=FuzzyXPathStatistics and

http://dectau.uclm.es/fuzzyXPath/?q=DebugStatistics (regarding the interpreter and the debug-

ger, respectively).
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Chapter 6

Applications

In this chapter we focus on the ability of FuzzyXPath for exploring derivation

trees generated by FLOPER once they are exported in XML format, which some-

how serves as a debugging/analizing tool for discovering the set of fuzzy computed

answers for a given goal, performing depth/breadth-�rst traversals of its associated

derivation tree, �nding non fully evaluated branches, etc., thus reinforcing the bi-

lateral synergies between FuzzyXPath and FLOPER.

Then we deal with propositional fuzzy formulae containing several propositional

symbols linked with connectives de�ned in a lattice of truth degrees more complex

than Bool. Instead of focusing on satis�ability (i.e., proving the existence of at

least one model) as usually done in a SAT/SMT setting, our interest moves to the

problem of �nding the whole set of models (with a �nite domain) for a given fuzzy

formula. We re-use a previous method based on fuzzy logic programming where

the formula is conceived as a goal whose derivation tree, provided by our FLOPER

tool, contains on its leaves all the models of the original formula, together with other

interpretations. Next, we use the ability of the FuzzyXPath tool (developed in our

research group with FLOPER) for exploring these derivation trees once exported

in XML format, in order to discover whether the formula is a tautology, satis�able,

or a contradiction.
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6.1 Exploring Derivation Trees with FuzzyXPath

Consider, for instance, the following with associated multi-adjoint lattice ⟨[0, 1],≼R

,←P,&P⟩ (where label P means for Product logic with the following connective

de�nitions for implication and conjunction symbols, respectively: �←P (x, y) =

min(1, x/y)�, �&P(x, y) = x ∗ y�, as well as �@aver(x, y) = (x+ y)/2�):

R1 : oc(X) <- s(X) &prod (f(X) @aver w(X)) with 1.

R2 : s(madrid) with 0.8. R5 : s(tokyo) with 0.9.

R3 : f(madrid) with 0.8. R6 : f(tokyo) with 0.7.

R4 : w(madrid) with 0.9. R7 : w(tokyo) with 0.6.

R8 : s(istambul) with 0.3. R11 : s(baku) with 0.3.

R9 : f(istambul) with 0.4. R12 : f(baku) with 0.2.

R10 : w(istambul) with 0.8. R13 : w(baku) with 0.5.

Figure 6.1: Execution tree for program P and goal oc(X)

This program models, through predicate oc/1, the chances of a city for being an

�olympic city� (i.e., for hosting olympic games). Predicate oc/1 is de�ned in rule
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R1, whose body collects the information from three other predicates, s/1, f/1 and

w/1, modeling, respectively, the security level, the f acilities and the good weather of

a certain city (other criteria like continental rotation, political/economical aspects,

etc... can be easily �aggregated� to the de�nition of oc/1). These predicates are

de�ned in rules R2 to R13 for four cities (Madrid, Istambul, Tokyo and Baku), in

such a way that, for each city, the feature modeled by each predicate is better the

greater the truth value of the rule.

The FLOPER system is able to manage programs with very di�erent lattices. In

order to associate a certain lattice with its corresponding program, such lattice

must be loaded into the tool as a pure Prolog program. As an example, the following

clauses show the program modeling the lattice of the real interval [0, 1] with the usual

ordering relation and connectives (where the meaning of the mandatory predicates

member, top, bot and leq is obvious):

member(X):- number(X), 0=<X, X=<1. bot(0).

leq(X,Y):- X=<Y. top(1).

and_prod(X,Y,Z):- pri_prod(X,Y,Z). pri_prod(X,Y,Z):- Z is X * Y.

or_prod(X,Y,Z):- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

pri_add(X,Y,Z):- Z is X+Y. pri_sub(X,Y,Z):- Z is X-Y.

FLOPER includes two main ways for evaluating a goal, given a MALP program

and its corresponding lattice. Option �run� translates the whole program into a pure

Prolog program and evaluates the (also translated) goal, thus obtaining a set of fuzzy

computed answers, whereas, on the other hand, option �tree� displays the execution

(or derivation) tree for the intended goal1. For the purpose of this chaper, we will

focus on this last option in order to obtain a tree (detailing the whole computational

behaviour) for being afterwards analyzed with FuzzyXPath.

Let us consider the previously described program P, and goal �oc(X)�, that asks

for the eligibility of each one of the four cities in P as �Olympic City�. We use option

�tree� to obtain the execution tree, which is generated by FLOPER in three di�er-

ent formats. Firstly the tree is displayed in graphical mode, as a PNG �le, as shown

in Figure 6.1. The tree is composed by two kinds of nodes. Yellow nodes represent

states reached by FLOPER following the state transition system that describes the

operational semantics of MALP [MOV04]. The up-most node represents the �rst

state (that is, the goal and the identity substitution), and subsequent lower nodes

are its children states (that is, states reached from the goal). A state contains a

1Users can select the deepest level to be built, which is obviously mandatory when trees are

in�nite.
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formula in the upper side and a substitution (the record of substitutions applied

from the original goal to reach that state) at the bottom. A �nal state, if reached,

is a fuzzy computed answer, that is, its formula is an element of the lattice. Blue

rounded nodes that intermediate between a pair of yellow nodes (a pair of states)

represent program rules; speci�cally, the program rule that is exploited in order to

go from one state (the upper state) to another (the lower one). These rules are

named with letter �R� plus its position in the program. For example, observe that

from the initial state to the next state, rule R1 of the program has been exploited,

as shown in the blue intermediate node. As an exception, when all atoms have

been exploited in (the formula of) a certain state, the following blue node indicates

�result�, informing that the next state is a fuzzy computed answer.

FLOPER can also generate the execution tree in two textual formats. The

�rst one contains a plain description of the tree, while the second one provides an

XML structure to that description. In this XML format we de�ne the tag �node�

to contain all the information of a node, such as the rule performed to reach that

state (that is �R0� in the case of the �rst state), the formula of the state, the ac-

cumulated substitution and the children nodes, given by the tags �rule�, �goal�,

�substitution� and �children�, respectively. The content of tags �rule�, �goal�

and �substitution� is a string, while the content of the tag �children� is a set of

tags �node�, as seen in the following lines, corresponding to the XML �le associated

to the the tree depicted in Figure 6.1.
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<node>

<rule>R0</rule>

<goal>oc(X)</goal>

<substitution>{}</substitution>

<children>

<node>

<rule>R1</rule>

<goal>and_prod(s(X),agr_aver(f(X),w(X)))</goal>

<substitution>{X1/X}</substitution>

<children>

<node>

<rule>R2</rule>

<goal>and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>

<substitution>{X/madrid,X1/madrid}</substitution>

<children>

<node>

<rule>R3</rule>

<goal>and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>

<substitution>{X/madrid,X1/madrid}</substitution>

<children>

<node>

<rule>R4</rule>

<goal>and_prod(0.8,agr_aver(0.8,0.9))</goal>

<substitution>{X/madrid,X1/madrid}</subtitution>

<children>

<node>

<rule>result</rule>

<goal>0.6800000000000002</goal>

<substitution>{X/madrid,X1/madrid}

</substitution>

<children>

</children>

</node>

</children>

</node>

</children>

</node>

</children>

</node>

...

<node>

<rule>result</rule>

<goal>0.585</goal>

<substitution>{X/tokyo,X1/tokyo}

</substitution>

<children>

</children>

</node>

...

</node>

</children>

</node>
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<result>

<node rsv="1.0">

<rule>result</rule>

<goal>0.6800000000000002</goal>

<substitution>{X/madrid, X1/madrid}</substitution>

<children></children>

</node>

<node rsv="1.0">

<rule>result</rule>

<goal>0.585</goal>

<substitution>{X/tokyo, X1/tokyo}</substitution>

<children></children>

</node>

<node rsv="1.0">

<rule>result</rule>

<goal>0.18000000000000002</goal>

<substitution>{X/istambul, X1/istambul}</substitution>

<children></children>

</node>

<node rsv="1.0">

<rule>result</rule>

<goal>0.105</goal>

<substitution>{X/baku, X1/baku}</substitution>

<children></children>

</node>

</result>

Figure 6.2: Executing queries �//node[/rule/text()=result]� and �//n-

ode[children[not(text())]]�
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Now, we present a very powerful method to automatically exploring the be-

haviour of a MALP program using the FuzzyXPath tool described in Section 3.1.

The idea is to use FuzzyXPath over the execution tree generated by FLOPER

for a certain program and goal. That tree is obtained through option �tree� using

the XML format just explained before in Section 4.1.3. For instance, an easy but

interesting XPath query should be �//node/rule� which lists all the rules exploited

along the execution of a goal (in the case of the tree depicted in Figure 6.1, we would

obtain the whole set of rules de�ned in the program P of our running example).

Assume now that we plan to obtain the whole set of fuzzy computed answers for a

given goal and program. This information, always collected in the leaves of execution

trees (even when there exists the possibility of �nding leaves non containing fuzzy

computed answers, as we will see afterwards) as illustrated in Figure 6.2, can be

retrieved by means of the FuzzyXPath query �//node[/rule/text()=result]�,

meaning that, return each node such that the content of its rule tag is �result�.

The XML text shown below Figure 6.2 represents the output of our FuzzyXPath

interpreter for that query, where the selected nodes have been highlighted inside a

blue cloud into the drawn tree above. Note that the resuting XML �le contains four

solutions (one for each city), where attribute �rsv� indicates how much each city

ful�lls the original query (in this example, this value is the same in all cases, that

is, just the maximum one 1).

Strongly related with the previous experiment, but not directly focusing now on fuzzy

computed answers, query �//node[children[not(text())]]� returns the leaves of

the tree. Note that, in the case of our current program P and goal �oc(X)�, the

corresponding output for this query is, once again, the same than the one reported

previously in Figure 6.2 but, as said in the previous paragraph, this is not the

general case. In fact, we can formulate a query like �//node[children[not(text())]

and rule/text()<> "result"]/goal�, helping us to know whether the tree has any

partially evaluated leaf (i.e., non reporting a fuzzy computed answer) since it returns

nodes at the end of a branch that are not labeled with the rule tag containing

�result�. The important meaning of this query resides on its capability for �nding

possible sources of in�nite loops. So, consider the example of Figure 6.4, where an

in�nite branch (leaf in orange) is clearly observable between two leaves (in yellow)

containing fuzzy computed answers. This �gure corresponds to the execution tree

(since it is in�nite in depth, FLOPER allows us to �x the number of levels to be

drawn) for goal �p(X)� w.r.t. program:
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<result>

<goal rsv="1.0">oc(X)</goal>

<goal rsv="0.81">and_prod(s(X),agr_aver(f(X),w(X)))</goal>

<goal rsv="0.6561">and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>

<goal rsv="0.6561">and_prod(0.9,agr_aver(f(tokyo),w(tokyo)))</goal>

<goal rsv="0.6561">and_prod(0.3,agr_aver(f(istambul),w(istambul)))</goal>

<goal rsv="0.6561">and_prod(0.3,agr_aver(f(baku),w(baku)))</goal>

<goal rsv="0.531441">and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>

<goal rsv="0.531441">and_prod(0.9,agr_aver(0.7,w(tokyo)))</goal>

<goal rsv="0.531441">and_prod(0.3,agr_aver(0.4,w(istambul)))</goal>

<goal rsv="0.531441">and_prod(0.3,agr_aver(0.2,w(baku)))</goal>

</result>

Figure 6.3: Executing query �[FILTER=0.5][DEEP=0.9]//node/goal�

p(a) with 0.8.

p(X) <prod p(s(s(s(X)))) with 0.9.

p(b) with 0.6.

Note that, in this �gure, the search for nodes with an empty �children� �eld by

using query �//node[children[not(text())]]/goal� returns three solutions, i.e.,

the three leaves of the tree without distinguishing whether they correspond to fully

or partially evaluated goals. Query �//node[rule/text()="result"]/goal� allows

us to retrieve only the fca's of the tree, as seen in Figure 6.4. Finally, in order to
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Executing query �//node[children[not(text())]]/goal�
<result>

<goal>0.4</goal>

<goal>agr_aver(0,and_prod(0.9,...p(s(...(s(X))))))</goal>

<goal>0.3</goal>

</result>

Executing query �//node[children[not(text())] and rule/text()<>�result�]/goal�
<result>

<goal>agr_aver(0,and_prod(0.9,...p(s(...(s(X))))))</goal>

</result>

Executing query �//node[rule/text()=�result�]/goal�
<result>

<goal>0.4</goal>

<goal>0.3</goal>

</result>

Figure 6.4: Example of tree with an in�nite branch



136 Chapter 6. Applications

<result>

<goal rsv="1.0">oc(X)</goal>

<goal rsv="1.0">and_prod(s(X),agr_aver(f(X),w(X)))</goal>

<goal rsv="1.0">and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>

<goal rsv="1.0">and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>

<goal rsv="1.0">and_prod(0.8,agr_aver(0.8,0.9))</goal>

<goal rsv="1.0">0.6800000000000002</goal>

<goal rsv="0.7">and_prod(0.9,agr_aver(f(tokyo),w(tokyo)))</goal>

<goal rsv="0.7">and_prod(0.9,agr_aver(0.7,w(tokyo)))</goal>

<goal rsv="0.7">and_prod(0.9,agr_aver(0.7,0.6))</goal>

<goal rsv="0.7">0.585</goal>

</result>

Figure 6.5: Executing query �[FILTER=0.5][DOWN=0.7]//node/goal�

obtain the �nal node in the central (in�nite) branch, we must use the more involved

second query shown in the Figure, that is, �//node[children[not(text())] and

rule/text()<>"result"]/goal�.

In order to take advantage of the enrichments introduced in the FuzzyXPath

language, the following query makes use of �DEEP� and �FILTER� commands in

order to perform a partial breadth-�rst traversal on execution trees as shown in Figure

6.3. In the resulting XML output, 10 nodes have been selected from the execution

tree with di�erent �rsv� values, varying from 1 in the case of the original goal (that

has not been penalized) till 0.531441 for the fourth row, representing nodes whose

depth (�DEEP-level�) remains above the �lter. Note that the use of the directive
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�DEEP� segregates the nodes of the tree from top to bottom, since lower nodes in

the tree are represented deeper in the input XML �le.

<result>

<goal rsv="1.0">and_prod(0.3,agr_aver(f(istambul),w(istambul)))</goal>

<goal rsv="1.0">and_prod(0.3,agr_aver(0.4,w(istambul)))</goal>

<goal rsv="0.6667">and_prod(0.3,agr_aver(0.4,0.8))</goal>

<goal rsv="0.6667">0.18000000000000002</goal>

<goal rsv="0.3333">and_prod(s(X),agr_aver(f(X),w(X)))</goal>

<goal rsv="0.3333">and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>

<goal rsv="0.3333">and_prod(0.9,agr_aver(f(tokyo),w(tokyo)))</goal>

<goal rsv="0.3333">and_prod(0.3,agr_aver(f(baku),w(baku)))</goal>

<goal rsv="0.3333">and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>

<goal rsv="0.3333">and_prod(0.9,agr_aver(0.7,w(tokyo)))</goal>

<goal rsv="0.3333">and_prod(0.3,agr_aver(0.2,w(baku)))</goal>

</result>

Figure 6.6: Execution of the query �node[/goal[contains(text(),�w(�)] aver{1,2} substi-

tution[contains(text(),�istambul�)]]//goal�

Analogously, in Figure 6.5 we use �DOWN� instead of �DEEP� for producing partial

depth-�rst traversals on execution trees. In this case, our query segregates the nodes

from left to right in columns, since the more left the node appears in the tree, the

upper is it in the XML output and, thus, the less penalized by �DOWN�. As previously,

10 nodes have been selected again with �rsv� ranging from 1 -upper nodes in the

XM �le- in the left column, till 0.7, as shown in the second column.
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In order to illustrate the high expressive power of the FuzzyXPath language,

in the following we try to model queries joining several concepts (for instance, the

topics of �weather� and �Istambul� modeled in P as predicate �w� and constant

�istambul�, respectively). Assume that we are �rstly interested on nodes informing

about �weather�, i.e., focusing on the fourth rows of our execution tree, thus meaning

that sub-string �w(� must appear in tag �goal�, while our second preference asks for

nodes in the branch containing the word �istambul� in tag �substitution�. In order to

join these two constraints, instead of using crisp �or/and� operators (or even di�erent

fuzzy variants of such connectives already implemented in FuzzyXPath), we prefer

to use an arithmetical average giving twice importance to the second requirement

than to the �rst one. The FuzzyXPath formulation of our query entitles Figure 6.6,

where we graphically show the set of solutions as well as the output in the resulting

XML �le.

6.2 FuzzyXPath for the Automatic Search of Fuzzy

Formulae Models

Research on SAT (Boolean Satis�ability) and SMT (Satis�ability Modulo Theo-

ries) [BSST09] represents a successful and large tradition in the development of

highly e�cient automatic theorem solvers for classic logic. More recently there also

exist attempts for covering fuzzy logics, as occurs with the approaches presented

in [ABMV12, VBG12]. Moreover, if automatic theorem solving supposes too a

starting point for the foundations of logic programming as well as one of its impor-

tant application �elds [Llo87, Sti88, Bra00, Apt90], in [BMVV13] we showed some

preliminary guidelines about how fuzzy logic programming [KS92, Ger01, AF02,

MOV04, MCS11] can face the automatic proving of fuzzy theorems by making use

of the FLOPER environment .

Let us start our discussion with an easy motivating example. Assume that we

have a very simple digital chip with just a single input port and just one output

port, such that it reverts on Out the signal received from In. The behaviour of such

chip can be represented by the following propositional formula F : (¬In ∧ Out) ∨
(In ∧ ¬Out). Depending on how we interpret each propositional symbol, we obtain

the following �nal set of interpretations for the whole formula:
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I1 : {In = 0, Out = 0} ⇒ F = 0 I2 : {In = 0, Out = 1} ⇒ F = 1

I3 : {In = 1, Out = 0} ⇒ F = 1 I4 : {In = 1, Out = 1} ⇒ F = 0

A SAT solver easily proves that F is satis�able since, in fact, it has two models (i.e.,

interpretations of the propositional variables In and Out that assign 1 to the whole

formula) represented by I2 and I3. An alternative way for explicitly obtaining such

interpretations consists of using the fuzzy logic environment FLOPER developed in

our research group. As we will explain in the rest of the chapter, when FLOPER

executes the following goal representing formula F �(@not(i(In)) & i(Out)) |

(i(In) & @not(i(Out)))� with respect to a fuzzy logic program composed by just

two rules: �i(1) with 1� and �i(0) with 0�, it generates an execution tree where

models I2 and I3 appear as leaves (see [BMVV13]). Each branch in the tree starts

by interpreting variables In and Out and continues with the evaluation of operators

(connectives) appearing in F .

Note that whereas formula F describes the behaviour of our chip in an �implicit

way�, the whole set of models I2 and I3 �explicitly� describes how the chip suc-

cessfully works (any other interpretation not being a model, represents an abnormal

behaviour of the chip), hence the importance of �nding the whole set of models for

a given formula.

Assume now that we plan to model an �analogic� version of the chip, where both

the input and output signals might vary in an in�nite range of values between 0 and

1, such that Out will simply represent the �complement� of In. The new behaviour

of the chip can be expressed again by the same previous formula, but taking into

account now that connectives involved in F could be de�ned in a fuzzy way as

follows:

¬x = 1− x Product logic's negation

x ∧ y = min(x, y) Gödel logic's conjunction

x ∨ y = min(x+ y, 1) �ukasiewicz logic's disjunction

Here we could use an SMT solver to prove that F is satis�able, as done in [ABMV12,

BMVV13], but the goal of this chapter is to use techniques based on fuzzy logic

programming for discovering models.
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member(bottom). member(alpha).

member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha).

leq(beta,beta). leq(X,top).

and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom):-!.

pri_inf(alpha,X,alpha):-leq(alpha,X),!.

pri_inf(beta,X,beta):-leq(beta,X),!.

pri_inf(top,X,X):-!.

pri_inf(X,Y,bottom).

Figure 6.7: Lattice of truth degrees F modeled in Prolog.

6.3 Looking for Models with FuzzyXPath

The subset of the MALP language detailed in Section 2.2 su�ces for developing a

simple fuzzy theorem prover, where it is important to remark that our tool can cope

with di�erent lattices (not only the real interval [0,1]) containing a �nite number of

elements -marked in �members�- maintaining full or partial ordering among them.

Hence, we can use FLOPER for enumerating the whole set of interpretations and

models of fuzzy formulae. To this end, only a concrete lattice L is required in

order to automatically build a program composed by a set of facts of the form

�i(α) with α�, for each α ∈ L. For instance, the MALP program associated to

lattice F in Figure 6.7 looks like:

i(top) with top.

i(alpha) with alpha.

i(beta) with beta.

i(bottom) with bottom.
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Once the lattice and the residual program have been loaded into FLOPER, the

formula to be evaluated is introduced as a goal to the system following some con-

ventions:

• If P is a propositional variable in the original formula, then it is denoted as

�i(P)� in the goal F .

• If & is a conjunction of a certain logic �label� in the original formula, then it

is denoted as �&label� in goal F .

• For disjunctions, negations and implications, use respectively the patterns

�|label�, �@no_label� and �@im_label� in F .

• For other aggregators use �@label� in F .

In what follows we discuss some examples related with the lattice shown in Figure 6.7

and its residual MALP program just seen before. Firstly, if we execute goal �i(P)�

into FLOPER, we obtain the four interpretations for P shown in Figure 6.8. On

the other hand, consider now the propositional formula P ∨ Q, which is translated

into the MALP goal �(i(P) | i(Q))� and after being executed with FLOPER,

the tool returns a tree as seen in Figure 6.9 whose 16 leaves represent the whole

set of interpretations, where 9 of them -inside blue clouds- are models (see part

of the corresponding XML �le produced by FLOPER in Figure 6.10). Here, each

state contains its corresponding goal and substitution components and they are

drawn inside yellow circles. Admissible steps, coloured in blue, are labelled with

the program rule they exploit. Finally, those blue circles annotated with word �is�,

correspond to interpretive steps. Sometimes we include blue circles labelled with

�result� which represents a chained sequence of interpretive steps.

With our FuzzyXPath tool we have executed �//node[goal='top']/sub�

against the XML �le shown in Figure 6.10, which was generated by FLOPER

when producing the proof tree drawn in Figure 6.9, thus returning as output the

new XML document listed in Figure 6.11. As illustrated in Figure 6.10, note that

the XML �les representing proof trees exported by FLOPER, are always rooted

with the node label, whose children are based on four kinds of `tags' (this structure

is nested as much as needed):

• rule, which indicates the program rule exploited to reach the current node

(the virtual rule R0 is pointed out only in the initial node),
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Figure 6.8: A work-session with FLOPER solving goal i(P).

• goal, which contains the MALP expression under evaluation, that is, the for-

mula that the system is trying to prove on its current initial/intermediate/�nal

step. Note that, when in our example such value is top, then we have found a

model, where the values assigned to the propositional symbols of the formula

are collected in the following tag...

• sub, acronym of �substitution�, which accumulates the variable bindings per-

formed along a fuzzy logic derivation (i.e., chain of computational steps along a

branch of the execution tree) and whose meaning in our target setting, reveals

the way of interpreting the propositions contained on a formula for obtaining

its models. See for instance Figure 6.11, where the nine solutions labeled with

this tag and reported in the output XML document, indicate each one the

truth values for the propositional variables that satisfy the formula with the

maximum truth degree. And �nally,
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Figure 6.9: A work-session with FLOPER solving formula P∨Q (16 interpretations,

9 models).

• children, which contains the set of underlying nodes of the tree in a nested

way.

Consider now the more involved formula P ∧ Q → P ∨ Q which becomes into

the MALP goal �(i(P) & i(Q)) @impl (i(P) | i(Q))�. When interpreted by

FLOPER, the system returns a list of answers having all them the maximum truth

degree �top�, which proves that this formula is a tautology, as wanted. Assume now

a more general version with the following shape Fn = P1 ∧ . . .∧Pn → P1 ∨ . . .∨Pn.

With respect to the e�ciency of the method presented here, we have studied the be-

haviour of formula Fn in the table of Figure 6.12. In the horizontal axis we represent

the number n of di�erent propositional variables appearing in the formula, whereas

the vertical axis refers to the number of seconds needed to obtain the whole set of

interpretations (all them are models in this case) for the formula. The benchmarks

have been performed using a computer with processor Intel Core Duo, with 2 GB

RAM and Windows Vista. Both the red and blue lines refers to the method just

commented along this chapter, but whereas the red line indicates that the derivation

tree has been produced by performing admissible and interpretive steps according

De�nitions 2.1.2 and 2.1.5, respectively, the blue line refers to the execution of the

Prolog code obtained after compiling with FLOPER the MALP program and goal

associated to our intended formula.

The results achieved in Figure 6.12 show that our method has a nice behaviour

in both cases, even for formulae with a big number of propositional variables. Of

course, the method does not try to compete with SAT techniques (which are always

faster and can deal with more complex formulae containing many more propositional

variables), but it is important to remark again that in our case, we face the problem
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<node>

<rule>R0</rule>

<goal>or_godel(i(P),i(Q))</goal>

<substitution>{}</sub>

<children>

<node>

<rule>R1</rule>

<goal>or_godel(bottom,i(Q))</goal>

<sub>{P/bottom}</sub>

<children>

<node>

<rule>R1</rule>

<goal>or_godel(bottom,bottom)</goal>

<sub>{Q/bottom,P/bottom}

</sub>

<children>

<node>

<rule>result</rule>

<goal>bottom</goal>

<sub>{Q/bottom,P/bottom}

</sub>

<children>

</children>

</node>

</children>

</node>

...

Figure 6.10: Part of the XML �le representing the execution tree shown in Figure

6.9.

of �nding the whole set of models for a given formula, instead of only focusing on

satis�ability.

We address now formula Fn because it illustrates one key point of this chapter.

Note that there are |L|n interpretations for that formula, where |L| is the cardinality
of the carrier set of lattice L that models truth degrees. For our example lattice of

Figure 6.7, with four elements, we have 4n interpretations. Consider, for example,

that we are interested in proving that a certain formula, say F5, is a tautology. In

[BMVV13] we would have to search at least one interpretation that is not model of F5

to prove that it is not a tautology, but since there exist 45 = 1024 interpretations,

this task is not suitable to be made by hand. To overcome this problem we use
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<result>

<sub rsv=1>{Q/top,P/top}</sub>

<sub rsv=1>{Q/alpha,P/top}</sub>

<sub rsv=1>{Q/beta,P/top}</sub>

<sub rsv=1>{Q/bottom,P/top}</sub>

<sub rsv=1>{Q/top,P/alpha}</sub>

<sub rsv=1>{Q/beta,P/alpha}</sub>

<sub rsv=1>{Q/top,P/beta}</sub>

<sub rsv=1>{Q/alpha,P/beta}</sub>

<sub rsv=1>{Q/top,P/bottom}</sub>

</result>

Figure 6.11: XML �le obtained after evaluating an XPath query.

FuzzyXPath to automatically search in the XML �le generated by FLOPER.

The manual task, then, is reduced to designing the FuzzyXPath query. In this

case, since we are interested in proving that F5 is a tautology, our FuzzyXPath

query should be //node[rule=`result' & goal<>`top']/sub, that is, the system

searches nodes whose rule tag contain the text �result� (i.e., we are looking for

leaves in the tree) and whose tag goal is not �top� (in order to exclude models). If

the output of this query is an empty list of nodes, as it actually is, the formula F5

is proven to be a tautology, as desired.

FuzzyXPath can also be used for determining the satis�ability of a formula.

Consider again formula P ∨Q whose set of interpretations are shown in Figure 6.9.

The query //node[rule=`result' & goal<>`top']/sub seen above, shows that

this formula is not a tautology, since its further evaluation returns the non-empty

set:

<result>

<sub rsv=1>{Q/alpha,P/alpha}</sub>

<sub rsv=1>{Q/bottom,P/alpha}</sub>

<sub rsv=1>{Q/beta,P/beta}</sub>

<sub rsv=1>{Q/bottom,P/beta}</sub>

<sub rsv=1>{Q/alpha,P/bottom}</sub>

<sub rsv=1>{Q/beta,P/bottom}</sub>

<sub rsv=1>{Q/bottom,P/bottom}</sub>

</result>

Consider now the new query (which is almost antagonist to the previous one)

//node[rule=`result' & goal=`top']/sub. In this case, if the output is the
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Figure 6.12: E�ciency of the method.

empty set, the tested formula is a contradiction (i.e., there is no interpretation

satisfying it). Otherwise, it is satis�able. Furthermore, with FuzzyXPath we can

come back to the main purpose of [BMVV13], that is listing the set of models of a

formula instead of just deciding whether it is satis�able or not. In particular, the

query to list the set of models is the one presented for deciding the satis�ability of

the formula at the beginning of this paragraph. Observe in Figure 6.11 the output

of this query w.r.t. formula P ∨Q.

Until now we have made use of FuzzyXPath to decide immediately the satis�a-

bility or not of a certain formula. With respect to the queries we have presented, we

were interested only in whether their answer set were empty or not. Now we present

a query which, by making use of the fuzzy capabilities of FuzzyXPath, returns the

list of interpretations together with extra information (into the rsv attribute) about

the extent in which they satisfy the formula or not. Consider again formula P ∨Q,

part of whose derivation tree is represented in the form of the XML �le provided by

FLOPER in Figure 6.10. This formula is satis�able but not a tautology, that is,
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some of its interpretations satisfy it but other ones do not.

Let us focus now on query //node[rule=`result'&(goal=`top' avg{3,1},

goal<>`top')]/sub for such formula. Here, we ask for those states which are

leaves of the tree (condition rule=`result') and which are either models (con-

dition goal=`top') or not (condition goal<>`top'), with the particularity that if

the leaf is a model, it ful�ls the query at a 75% and, if it is not, with a 25%. The

result is the set of interpretations with a rsv value (the degree in which they ful�l

the query) between 0.75 and 0.25, as shown in the following table:

<result>

<sub rsv=0.75>{Q/top,P/top}</sub>

<sub rsv=0.75>{Q/alpha,P/top}</sub>

<sub rsv=0.75>{Q/beta,P/top}</sub>

<sub rsv=0.75>{Q/bottom,P/top}</sub>

<sub rsv=0.75>{Q/top,P/alpha}</sub>

<sub rsv=0.75>{Q/beta,P/alpha}</sub>

<sub rsv=0.75>{Q/top,P/beta}</sub>

<sub rsv=0.75>{Q/alpha,P/beta}</sub>

<sub rsv=0.75>{Q/top,P/bottom}</sub>

<sub rsv=0.25>{Q/alpha,P/alpha}</sub>

<sub rsv=0.25>{Q/bottom,P/alpha}</sub>

<sub rsv=0.25>{Q/beta,P/beta}</sub>

<sub rsv=0.25>{Q/bottom,P/beta}</sub>

<sub rsv=0.25>{Q/alpha,P/bottom}</sub>

<sub rsv=0.25>{Q/beta,P/bottom}</sub>

<sub rsv=0.25>{Q/bottom,P/bottom}</sub>

</result>

This set of answers brie�y show the set of interpretations of the formula. For formulas

like F5, whose XML �le of 5.5 MB would be impossible to check by hand, this method

o�ers a quick look of the answers, even when they are very numerous.
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Chapter 7

Conclusions and Future Work

In this thesis we have described the foundations and implementation of a �exible

extension based on fuzzy logic programming of the well-known XPath language. The

new FuzzyXPath dialect takes pro�t of the underlying source MALP language for

easily modeling a wide range of �exible operators representing di�erent versions of

conjunctions, disjunctions and other highly expressive hybrid operators for retrieving

data from XML documents, as well as for constraining queries with structural and

thresholding conditions. We have shown with examples how FuzzyXPath is able to

express queries in which user preferences are encoded as combination of the de�ned

�exible operators, as well as how the language ranks answers according to them.

We have described the implementation which has been coded as a set of MALP

rules developed under the FLOPER system. We have shown how the operators

de�ned in FuzzyXPath have a correspondence in MALP, and how MALP is used

to compute ranked answers. The main element of the implementation is the adoption

of truth value trees for representing truth values in each node of an XML tree, which

are used to compute the retrieval status value of each answer.

Moreover, FuzzyXPath has been integrated in the MALP framework by pro-

viding semantics to fuzzy logic programs that work with trees with truth values.

This has required to study the semantics of trees with truth values and operations

on them in the context of multi-adjoint logic programming.

Additionally, we have studied an XQuery based implementation of our proposed

FuzzyXPath . An XQuery library has been implemented enabling the execution of

FuzzyXPath expressions in an XQuery interpreter. The implementation in XQuery

149
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of FuzzyXPath required to introduce fuzzy connectives in the Boolean language

XQuery, as well as represent and work with trees with truth values in XQuery.

We have also studied an approach for XPath debugging. The result of the debug-

ging process of a XPath expression is a set of alternative queries, each one associated

to a chance degree. We have proposed JUMP, DELETE and SWAP operators that cover the

main cases of programming errors when describing a path about a XML document.

Our implemented and tested approach has a fuzzy taste in the sense that XPath

expressions are debugged by relaxing the shape of path queries with chance degrees.

Our debugging technique gives to programmers a chance degree for each proposed

alternative by annotating wrong-points on XPath expressions.

With regard to performance of the proposed FuzzyXPath language, a fuzzy

command for �ltering the set of ranked answers in a dynamic way has been studied, in

order to reduce the runtime and complexity of computations when dealing with large

�les. Our idea was to create �lters for prematurely disregarding those super�uous

computations dealing with non-signi�cant solutions. We have shown benchmarks of

performance of our system, improved by dynamic �ltering.

Additionally, we have shown the mutual bene�ts between two di�erent fuzzy

tools developed in our research group, that is, the FLOPER programming environ-

ment and the FuzzyXPath interpreter. Initially FLOPER was conceived as a tool

for implementing �exible software applications -as it is the case of FuzzyXPath-

coded with the fuzzy logic languageMALP and o�ering options for compiling fuzzy

rules to standard Prolog clauses, running goals and drawing execution trees. Such

trees, once modeled in XML format inside the proper FLOPER tool, can be then

analyzed by the FuzzyXPath interpreter in order to discover details (such as fuzzy

computed answers, possible in�nite branches and so on) of the computational be-

havior of MALP programs after being executed into FLOPER. Moreover, we have

applied this last capability of FuzzyXPath focusing exclusively on derivation trees

associated to fuzzy formulae. As a result, we have presented an automatic technique

useful for determining important features of such formulae (tautology, contradiction,

etc...) by making use of XPath queries with a fuzzy taste.

As future work we plan the following research lines. Firstly, we are interested to

extend our FuzzyXPath with the handling of text content in the same line as Full-

text XPath [CDH+11]. In our current proposal, a string used in a query has exactly

mach to the content of a node to be included in the answer. Full text XPath makes

possible to use �fuzzy� versions of string matching to which an score is associated.
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String comparison techniques have been largely studied in many other contexts, and

they can be adapted to our work.

Also, we would like to extend our FuzzyXPath with other fuzzy logic mechanism

(vagueness, similarity, among others). Path and content matching in our proposed

FuzzyXPath are merely syntactic, however using vague concepts and enabling sim-

ilarity can lead to better results. In this line, we also �nd that MALP and FLOPER

can be used in ontologies and the Semantic Web, following [Str05b, LS08, For11],

making possible a semantic based matching of paths and content.

Additionally, we are interested in top-k answering. Top-k answering has been al-

ready studied for fuzzy logic programming [SM12], and can be adapted to FLOPER.

Top-k answering determines the top k answers to a query without computing the

-usually wider, possibly in�nite- whole set of solutions, which is strongly related with

the FILTER command.

Finally, we are interested to incorporate more mechanisms of searching, rank-

ing, debugging and �ltering to the standard XQuery language. Extensions of the

proposed XQuery library can be implemented in the future to include other fuzzy

mechanisms (vagueness, similarity, etc), as well as XQuery debugging (JUMP, DELETE

and SWAP), and �ltering (including Top-k answering).
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