
Summary

This thesis presents an extension of the popular XPath language which provides

ranked answers to �exible queries taking pro�t of fuzzy variants of and, or and avg

operators for XPath conditions, as well as two structural constraints, called down

and deep, for which a certain degree of relevance is associated. In practice, this

degree is very low for some answers weakly accomplishing with the original query,

and hence, they should not be computed in order to alleviate the computational

complexity of the information retrieval process. In order to improve the scalability of

our interpreter for dealing with massive XML �les, we make use of the ability of fuzzy

logic programming for prematurely disregarding those computations leading to non

signi�cant solutions (i.e., with a poor degree of relevance according the preferences

expressed by users when using the new command FILTER). Since our proposal has

been implemented with a fuzzy logic language, we have exploited the high expressive

resources of this declarative paradigm for performing �dynamic thresholding� in a

very natural and e�cient way. But apart from using our FLOPER environment

for developing the interpreter, we also propose an implementation coded with the

standard XQuery language. Basically, we have de�ned an XQuery library able to

di�usely handle XPath expressions in such a way that our proposed FuzzyXPath

can be encoded as XQuery expressions. The advantages of our approach is that any

XQuery processor can handle a fuzzy version of XPath by using the library we have

implemented.

On the other hand, we present a method for debugging XPath queries by describ-

ing how XPath expressions can be manipulated for obtaining a set of alternative

queries matching a given XML document. For each new proposed query, we give a

�chance degree� that represents an estimation on its deviation w.r.t. the initial ex-

pression. Our work is focused on providing to the programmers a repertoire of paths

(containing new commands for �JUMP/DELETE/SWAP� tags) which can be used

iii



iv

to retrieve answers. Our debugger is able to manage big XML documents by making

use of the new command FILTER which is intended to prematurely disregard those

computations leading to non signi�cant solutions (i.e., with a poor �chance degree�

according to the user's preferences). The key point again is the natural capability

for performing �dynamic thresholding� enjoyed by the fuzzy logic language used for

implementing the tool, which somehow connects with the so-called �top-k answering

problem� very well-known in the fuzzy logic and soft computing.

Regarding non standard applications, in the last block of this thesis we rein-

force the bi-lateral synergies between FuzzyXPath and FLOPER. In particular,

we deal with propositional fuzzy formulae containing several propositional symbols

linked with connectives de�ned in a lattice of truth degrees more complex than Bool.

We �rstly recall a fuzzy SMT (Satis�ability Modulo Theories) based method for auto-

matically proving theorems in relevant in�nitely-valued (including �ukasiewicz and

Gödel) logics. Next, instead of focusing on satis�ability (i.e., proving the existence of

at least one model) as usually done in a SAT/SMT setting, our interest moves to the

problem of �nding the whole set of models (with a �nite domain) for a given fuzzy

formula. We re-use a previous method based on fuzzy logic programming where the

formula is conceived as a goal whose derivation tree, provided by our FLOPER tool,

contains on its leaves all the models of the original formula, together with other inter-

pretations (by exhaustively interpreting each propositional symbol in all the possible

forms according the whole set of values collected on the underlying lattice of truth-

degrees). Next, we use the ability of the FuzzyXPath tool for exploring these

derivation trees once exported in XML format, in order to automatically discover

whether the formula is a tautology, satis�able, or a contradiction.


