
Analyzing Fuzzy Logic Computations with Fuzzy XPath

Jesús M. Almendros-Jiménez1, Alejandro Luna 2, Ginés Moreno3 and Carlos
Vázquez4

1 jalmen@ual.es
Dpto. de Lenguajes y Computación

Universidad de Almería
04120 Almería (Spain)

2 Alejandro.Luna@alu.uclm.es
3 Gines.Moreno@uclm.es

4 Carlos.Vazquez@uclm.es
Dept. of Computing Systems

University of Castilla-La Mancha
02071 Albacete (Spain)

Abstract: Implemented with a fuzzy logic language by using the FLOPER tool
developed in our research group, we have recently designed afuzzy dialect of the
popular XPath language for the flexible manipulation of XML documents. In this
paper we focus on the ability ofFuzzy XPathfor exploring derivation trees generated
by FLOPER once they are exported in XML format, which somehowserves as a
debugging/analizing tool for discovering the set of fuzzy computed answers for a
given goal, performing depth/breadth-first traversals of its associated derivation tree,
finding non fully evaluated branches, etc., thus reinforcing the bi-lateral synergies
betweenFuzzy XPathand FLOPER.

Keywords: XPath; Fuzzy (Multi-adjoint) Logic Programming; Debugging

1 Introduction

Logic Programming(LP) [Llo87] is being widely used from several decades ago for problem
solving and knowledge representation, thus providing a great amount of foundations and tech-
niques devoted to produce real world applications. Some steps beyond, during the last years
important research efforts have been performed for introducing inside the LP paradigm some
techniques/constructs based on fuzzy logic in order to explicitly treat with uncertainty and ap-
proximated reasoning in a natural way. Following this trail, several fuzzy logic programming
systems have been developed [KS92, BMP95, Voj01, GMV04, MCS11], where the classical in-
ference mechanism of SLD–Resolution has been replaced by a fuzzy variant which is able to
handle partial truth in a comfortable way.

This is the case too ofMulti-Adjoint Logic Programming[MOV04], MALP in brief, where a
fuzzy program can be seen as a set of rules each one annotated with its own truth degree (a value
of a complete lattice, for instance, the real interval[0,1]). Goals are evaluated in two separate
computational phases. During theoperationalphase,admissible steps(a generalization of the

Analyzing Fuzzy Logic Computations with Fuzzy XPath 1 / 15

mailto:jalmen@ual.es
mailto:Alejandro.Luna@alu.uclm.es
mailto:Gines.Moreno@uclm.es
mailto:Carlos.Vazquez@uclm.es

classicalmodus ponensinference rule) are systematically applied by a backward reasoning pro-
cedure in a similar way to classical resolution steps in purelogic programming. More precisely,
in an admissible step, for a selected atomA in a goal and a rule⟨H←B;v⟩ of the program, if there
is a most general unifierθ of A andH, then atomA is substituted by the expression(v&B)θ ,
where “&” is an adjoint conjunction evaluatingmodus ponens. Finally, the operational phase re-
turns a computed substitution together with an expression where all atoms have been exploited.
This last expression is then interpreted under a given lattice during what we call theinterpretive
phase, hence returning a pair⟨truth degree;substitution⟩ which is the fuzzy counterpart of the
classical notion of computed answer traditionally used in pure logic programming.

On the other hand, the eXtensible Markup Language (XML) is widely used in many areas of
computer software to represent machine readable data. XML provides a very simple language to
represent the structure of data, using tags to label pieces of textual content, and a tree structure to
describe the hierarchical content. XML emerged as a solution to data exchange between appli-
cations where tags permit to locate the content. XML documents are mainly used in databases.
The XPath language [BBC+07] was designed as a query language for XML in which the path of
the tree is used to describe the query. XPath expressions canbe adorned with boolean conditions
on nodes and leaves to restrict the number of answers of the query. XPath is the basis of a more
powerful query language (called XQuery) designed to join multiple XML documents and to give
format to the answer. In [ALM11, ALM12a] we have presented an XPath interpreter (together
with a debugger, as documented in [ALM12b, ALM13]) extended with fuzzy commands which
somehow rely on the implementation based on fuzzy logic programming by using FLOPER.

Whereas in Sections2 and 3 we summarize the main features of both thefuzzy XPathin-
terpreter and the fuzzy logic programming environment FLOPER, respectively, in Section4
we go deeper on the feedbacks between both tools. More exactly we show that, even when
FLOPER was used for implementingfuzzy XPath, now this last language is very useful for
formulating queries to be executed againts XML documents representing derivation trees de-
picted by FLOPER, thus becoming into a “debugging” technique which can be embedded into
the programming environment for analyzing some interesting details (fuzzy computed answers,
tree traversals, partial branches, etc.) about fuzzy logiccomputations. Finally, in Section5 we
conclude and present future work.

2 Fuzzy XPath

In this section we will summarize the main elements of our proposed fuzzy XPath language de-
scribed in [ALM12a, ALM11] (the tool can be freely downloaded and tested on-line in
http://dectau.uclm.es/fuzzyXPath/). On this flexible dialect of XPath, we have
incorporated two structural constraints calledDOWN andDEEP to which a certain degree of rele-
vance is associated. So, whereasDOWN provides a ranked set of answers depending on the path
they are found from “top to down” in the XML document,DEEP provides a ranked set of answers
depending on the path they are found from “left to right” in the XML document. Both structural
constraints can be used together, assigning degree of importance with respect to the distance to
the root XML element. Secondly, our fuzzy XPath incorporates fuzzy variants ofand andor
for XPath conditions. Crispandandor operators are used in standard XPath over boolean con-

Analyzing Fuzzy Logic Computations with Fuzzy XPath 2 / 15

ditions, and enable to impose boolean requirements on the answers. XPath boolean conditions
can be referred to attribute values and node content, in the form of equality and range of literal
values, among others. However, theandandor operators applied to two boolean conditions are
not precise enough when the programmer does not give the samevalue to both conditions. For
instance, some answers can be discarded when they could be ofinterest by the programmer, and
accepted when they are not of interest. Besides, programmers would need to know in which
sense a solution is better than another. When several boolean conditions are imposed on a query,
each one contributes to satisfy the programmer’s preferences in a different way and perhaps, the
programmer’s satisfaction is distinct for each solution.

We have enriched the arsenal of operators of XPath with fuzzyvariants ofandandor. Partic-
ularly, we have considered three versions ofand: and+, and, and- (and the same foror : or+ ,
or, or-) which make more flexible the composition of fuzzy conditions. Three versions for each
operator that come for free from our adaptation of fuzzy logic to the XPath paradigm. One of
the most known elements of fuzzy logic is the introduction offuzzy versions of classical boolean
operators.Product, ŁukasiewiczandGödel fuzzy logics are considered as the most prominent
logics and give a suitable semantics to fuzzy operators. Ourcontribution is now to give sense
to fuzzy operators into the XPath paradigm, and particularly in programmer’s preferences. We
claim that in our work the fuzzy versions provide a mechanismto force (and debilitate) condi-
tions in the sense that stronger (and weaker) programmer preferences can be modeled with the
use of stronger (and weaker) fuzzy conditions. The combination of fuzzy operators in queries
permits to specify a ranked set of fuzzy conditions according to programmer’s requirements.

Furthermore, we have equipped XPath with an additional operator that is also traditional in
fuzzy logic: the average operatoravg. This operator offers the possibility to explicitly give
weight to fuzzy conditions. Rating such conditions byavg, solutions increase its weight in a
proportional way. However, from the point view of the programmer’s preferences, it forces the
programmer to quantify his(er) wishes which, in some occasions, can be difficult to measure.
For this reason, fuzzy versions ofandandor are better choices in some circumstances.

Finally, we have equipped our XPath based query language with a mechanism for thresholding
programmer’s preferences, in such a way that programmer canrequest that requirements are
satisfied over a certain percentage.

The proposed fuzzy XPath is described by the following syntax:

xpath := [‘[’deep-down‘]’]path
path := literal | text() | node |@att | node/path | node//path
node := QName | QName[cond]
cond := xpath op xpath | xpath num-op number
deep := DEEP=number

down := DOWN=number
deep-down := deep | down | deep ‘;’ down

num-op := > | = | < | <>
fuzzy-op := and | and+ | and- | or | or+ | or- | avg | avg{number,number}

op := num-op | fuzzy-op

Basically, our proposal extends XPath as follows:

Analyzing Fuzzy Logic Computations with Fuzzy XPath 3 / 15

Figure 1: Fuzzy Logical Operators

&P(x,y) = x∗y ∣P(x,y) = x+y−x∗y Product: and/or
&G(x,y) = min(x,y) ∣G(x,y) = max(x,y) Gödel: and+/or-
&L(x,y) = max(x+y−1,0) ∣L(x,y) = min(x+y,1) Łuka.: and-/or+

– Structural constraints. A given XPath expression can be adorned with «[DEEP = r1; DOWN
= r2]» which means that thedeepnessof elements is penalized byr1 and that theorder of
elements is penalized byr2, and such penalization is proportional to the distance (i.e., the
length of the branch and the weight of the tree, respectively). In particular, «[DEEP = 1;
DOWN = r2]» can be used for penalizing only w.r.t. document order.DEEP works for//, that
is, the deepness in the XML tree is only computed when descendant nodes are explored,
while DOWN works for both/ and//. Let us remark thatDEEP andDOWN can be used several
times on the mainpathexpression and/or any othersub-pathincluded in conditions.

– Flexible operators in conditions. We consider three fuzzy versions for each one of
the classical conjunction and disjunction operators (t-norms and t-conorms, respectively
[SS83, KMP00]), also called connectives or aggregators, describingpessimistic, realistic
and optimistic scenarios, see Figure1. In XPath expressions the fuzzy versions of the
connectives make harder to hold boolean conditions, and therefore can be used to debil-
itate/force boolean conditions. Furthermore, assuming two givenRSV’s (Retrieval Status
Values) r1 andr2, theavgoperator is obviously defined with a fuzzy taste as(r1+ r2)/2,
whereas itspriority-basedvariant, i.e.avg{p1, p2}, acts as(p1∗ r1+ p2∗ r2)/(p1+ p2).

Figure 2: Input XML document in our examples

<bib>
<name>Classic Literature</name>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<references>

<novel year="1997" price="35.99">
<name>La Galatea</name>
<author>Miguel de Cervantes Saavedra</author>
<references>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Sigismunda</title>
<author>Miguel de Cervantes Saavedra</author>

</book>
</references>

</novel>
</references>

</book>
<novel year="1999" price="25.65">

<title>La Celestina</title>
<author>Fernando de Rojas</author>

</novel>
</bib>

Analyzing Fuzzy Logic Computations with Fuzzy XPath 4 / 15

Figure 3: Execution of query «/bib[DEEP=0.8;DOWN=0.9]//title»

Document RSV computation

<result>
<title rsv="0.8000">Don Quijote de la Mancha</title>
<title rsv="0.7200">La Celestina</title>
<title rsv="0.2949">Los trabajos de Persiles...</title>

</result>

0.8000= 0.8
0.7200= 0.8∗0.9
0.2949= 0.85 ∗0.9

Figure 4: Execution of query «//book[@year<2000 avg{3,1} @price<50]/title»

Document RSV computation

<result>
<title rsv="1.00">Los trabajos de Persiles...</title>
<title rsv="0.25">Don Quijote de la Mancha</title>

</result>

1.00= (3∗1+1∗1)/(3+1)
0.25= (3∗0+1∗1)/(3+1)

Figure 5: Execution of query «/bib[DEEP=0.5]//book[@year<2000 avg{3,1} @price<50]/title»

Document RSV computation

<result>
<title rsv="0.25">Don Quijote de la Mancha</title>
<title rsv="0.0625">Los trabajos de Persiles...</title>

</result>

0.25= (3∗0+1∗1)/(3+1)
0.0625= 0.54 ∗ (3∗1+1∗1)/(3+1)

In general, a fuzzy XPath expression defines, w.r.t. an XML document, a sequence of subtrees
of the XML document where each subtree has an associated RSV.XPath conditions, which are
defined as fuzzy operators applied to XPath expressions, compute a new RSV from the RSVs of
the involved XPath expressions, which at the same time, provides a RSV to the node. In order to
illustrate these explanations, let us see some examples of our proposed fuzzy version of XPath
according to the XML document shown of Figure2.

Example1 Let us consider the fuzzy XPath query of Figure3 requestingtitle’s penalizing the
occurrences from the document root by a proportion of0.8 and 0.9 by nesting and ordering,
respectively, and for which we obtain the file listed in Figure 3. In such document we have
included as attribute of each subtree, its corresponding RSV. The highest RSVs correspond to
the mainbooksof the document, and the lowest RSVs represent thebooksoccurring in nested
positions (those annotated as relatedreferences).

Example2 Figure 4 shows the answer associated to a search of books, possibly referenced
directly or indirectlyfrom other books, whose publishing year and price are relevant but the year
is three times more important than the price. Finally, in Figure 5 we combine both kinds of
(structural/conditional) operators, and the ranked list of solutions is reversed.

Finally, we can use command «[FILTER = r]» at the beginning of a query for filtering its final set
of solutions in the sense that only those ones with RSV not lower thanr will conform the output.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 5 / 15

3 Fuzzy Logic Programming with MALP and FLOPER

Multi-Adjoint Logic Programming[MOV04], MALP in brief, can be thought as a fuzzy ex-
tension of Prolog and it is based on a first order language,L , containing variables, func-
tion/constant symbols, predicate symbols, and several arbitrary connectives such as implica-
tions (←1,←2, . . . ,←m), conjunctions (&1,&2, . . . ,& k), disjunctions (∨1,∨2, . . . ,∨l), and gen-
eral hybrid operators (“aggregators” @1,@2, . . . ,@n), used for combining/propagating truth val-
ues through the rules, and thus increasing the language expressiveness. Additionally, our lan-
guageL contains the values of amulti-adjoint latticein the form⟨L,⪯,←1,&1, . . . ,←n,&n⟩,
equipped with a collection ofadjoint pairs⟨←i ,& i⟩ where each &i is a conjunctor intended to
the evaluation ofmodus ponens[SS83, KMP00, MOV04]. A rule is a formula “A←i B with α”,
whereA is an atomic formula (usually called thehead), B (which is called thebody) is a formula
built from atomic formulasB1, . . . ,Bn (n≥ 0), truth values ofL and conjunctions, disjunctions
and general aggregations, and finallyα ∈ L is the “weight” ortruth degreeof the rule. The set
of truth valuesL may be the carrier of any complete bounded lattice, as for instance occurs with
the set of real numbers in the interval[0,1] with their corresponding ordering⪯R. Consider,
for instance, the following program,P, with associated multi-adjoint lattice⟨[0,1],⪯R,←P,&P⟩
(where labelP means forProduct logicwith the following connective definitions for implication
and conjunction symbols, respectively: “←P (x,y) = min(1,x/y)”, “& P(x,y) = x∗y”, as well as
“@aver(x,y) = (x+y)/2”):

R1 : oc(X) <- s(X) & prod (f (X) @aver w(X)) with 1.
R2 : s(madrid) with 0.8. R5 : s(tokyo) with 0.9.
R3 : f (madrid) with 0.8. R6 : f (tokyo) with 0.7.
R4 : w(madrid) with 0.9. R7 : w(tokyo) with 0.6.
R8 : s(istambul) with 0.3. R11 : s(baku) with 0.3.
R9 : f (istambul) with 0.4. R12 : f (baku) with 0.2.
R10 : w(istambul) with 0.8. R13 : w(baku) with 0.5.

This program models, through predicateoc/1, the chances of a city for being an “olympic city”
(i.e., for hosting olympic games). Predicateoc/1 is defined in ruleR1, whose body collects the
information from three other predicates,s/1, f/1 andw/1, modeling, respectively, thesecurity
level, thef acilities and the goodweather of a certain city. These predicates are defined in rules
R2 to R13 for four cities (Madrid, Istambul, TokyoandBaku), in such a way that, for each city,
the characteristic modeled by each predicate is better the greater the truth value of the rule.

In order to run and manage MALP programs, during the last years we have designed the
FLOPER system [MM08, MMPV10, MMPV11], which is freely accessible from the Web site
http://dectau.uclm.es/floper/. The parser of our tool has been implemented by using the classical
DCG’s (Definite Clause Grammars) resource of the Prolog language, since it is a convenient
notation for expressing grammar rules. Once the application is loaded inside a Prolog interpreter,
it shows a menu which includes options for loading/compiling, parsing, listing and saving fuzzy
programs, as well as for executing/debugging fuzzy goals. All these actions are based on the
compilationof the fuzzy code into standard Prolog code.

The FLOPER system is able to manage programs with very different lattices. In order to
associate a certain lattice with its corresponding program, such lattice must be loaded into the

Analyzing Fuzzy Logic Computations with Fuzzy XPath 6 / 15

 http://dectau.uclm.es/floper/

Figure 6: Execution tree for programP and goaloc(X)

tool as a pure Prolog program. As an example, the following clauses show the program modeling
the lattice of the real interval[0,1] with the usual ordering relation and connectives (where the
meaning of the mandatory predicatesmember, top, bot andleq is obvious):

member(X):- number(X), 0=<X, X=<1. bot(0).
leq(X,Y):- X=<Y. top(1).
and_prod(X,Y,Z):- pri_prod(X,Y,Z). pri_prod(X,Y,Z):- Z is X * Y.
or_prod(X,Y,Z):- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).
pri_add(X,Y,Z):- Z is X+Y. pri_sub(X,Y,Z):- Z is X-Y.

FLOPER includes two main ways for evaluating a goal, given a MALP program and its cor-
responding lattice. Option “run” translates the whole program into a pure Prolog program and
evaluates the (also translated) goal, thus obtaining a set of fuzzy computed answers, whereas, on
the other hand, option “tree” displays the execution (or derivation) tree for the intended goal1.
For the purpose of this paper, we will focus on this last option in order to obtain a tree (detailing
the whole computational behaviour) for being afterwards analyzed with fuzzy XPath.

1 Users can select the deepest level to be built, which is obviously mandatory when trees are infinite.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 7 / 15

Let us consider the previously described programP, and goal “oc(X)”, that asks for the
eligibility of each one of the four cities inP as “Olympic City”. We use option “tree” to
obtain the execution tree, which is generated by FLOPER in three different formats. Firstly the
tree is displayed in graphical mode, as a PNG file, as shown in Figure6. The tree is composed
by two kinds of nodes. Yellow nodes represent states reachedby FLOPER following the state
transition system that describes the operational semantics of MALP [MOV04]. The up-most
node represents the first state (that is, the goal and the identity substitution), and subsequent
lower nodes are its children states (that is, states reachedfrom the goal). A state contains a
formula in the upper side and a substitution (the record of substitutions applied from the original
goal to reach that state) at the bottom. A final state, if reached, is a fuzzy computed answer, that
is, its formula is an element of the lattice. Blue rounded nodes that intermediate between a pair
of yellow nodes (a pair of states) represent program rules; specifically, the program rule that is
exploited in order to go from one state (the upper state) to another (the lower one). These rules
are named with letter “R” plus its position in the program. For example, observe thatfrom the
initial state to the next state, ruleR1 of the program has been exploited, as shown in the blue
intermediate node. As an exception, when all atoms have beenexploited in (the formula of)
a certain state, the following blue node indicates “result”, informing that the next state is a
fuzzy computed answer.

FLOPER can also generate the execution tree in two textual formats. The first one contains
a plain description of the tree, while the second one provides an XML structure to that descrip-
tion, therefore becoming the focus of interest of this paper. In this XML format we define the
tag “node” to contain all the information of a node, such as the rule performed to reach that
state (that is “R0” in the case of the first state), the formula of the state, the accumulated sub-
stitution and the children nodes, given by the tags “rule”, “ goal”, “ substitution” and
“children”, respectively. The content of tags “rule”, “ goal” and “substitution” is a
string, while the content of the tag “children” is a set of tags “node”, as seen in the following
lines, corresponding to the XML file associated to the the tree depicted in Figure6.

<node>
<rule>R0</rule>
<goal>oc(X)</goal>
<substitution>{}</substitution>
<children>

<node>
<rule>R1</rule>
<goal>and_prod(s(X),agr_aver(f(X),w(X)))</goal>
<substitution>{X1/X}</substitution>
<children>

<node>
<rule>R2</rule>
<goal>and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>
<substitution>{X/madrid,X1/madrid}</substitution>
<children>

<node>
<rule>R3</rule>
<goal>and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>
<substitution>{X/madrid,X1/madrid}</substitution>
<children>

<node>
<rule>R4</rule>
<goal>and_prod(0.8,agr_aver(0.8,0.9))</goal>

Analyzing Fuzzy Logic Computations with Fuzzy XPath 8 / 15

<substitution>{X/madrid,X1/madrid}</subtitution>
<children>

<node>
<rule>result</rule>
<goal>0.6800000000000002</goal>
<substitution>{X/madrid,X1/madrid}

</substitution>
<children>
</children>

</node>
</children>

</node>
</children>

</node>
</children>

</node>
...

<node>
<rule>result</rule>
<goal>0.585</goal>
<substitution>{X/tokyo,X1/tokyo}

</substitution>
<children>
</children>

</node>
...

</node>
</children>

</node>

4 Exploring Derivation Trees with Fuzzy XPath

In this section we present a very powerful method to automatically exploring the behaviour of
a MALP program using thefuzzy XPathtool described in Section2. The idea is to usefuzzy
XPathover the execution tree generated by FLOPER for a certain program and goal. That tree
is obtained through option “tree” using the XML format just explained before in Section3.
For instance, an easy but interesting XPath query should be “//node/rule” which lists all
the rules exploited along the execution of a goal (in the caseof the tree depicted in Figure6, we
would obtain the whole set of rules defined in the programP of our running example).

Assume now that we plan to obtain the whole set of fuzzy computed answers for a given goal
and program. This information, always collected in the leaves of execution trees (even when
there exists the possibility of finding leaves non containing fuzzy computed answers, as we will
see afterwards) as illustrated in Figure7, can be retrieved by means of thefuzzy XPathquery
“//node[/rule/text()=result]”, meaning that, return eachnodesuch that the content
of its rule tag is “result”. The XML text shown below Figure7 represents the output of ourfuzzy
XPath interpreter for that query, where the selected nodes have been highlighted inside a blue
cloud into the drawn tree above. Note that the resuting XML file contains four solutions (one for
each city), where attribute “rsv” indicates how much each city fulfills the original query (inthis
example, this value is the same in all cases, that is, just themaximum one 1).

Strongly related with the previous experiment, but not directly focusing now on fuzzy com-
puted answers, query “//node[children[not(text())]]” returns the leaves of the tree.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 9 / 15

Figure 7: Executing queries «//node[/rule/text()=result]» and «//node[children[not(text())]]»

<result>
<node rsv="1.0">

<rule>result</rule>
<goal>0.6800000000000002</goal>
<substitution>{X/madrid, X1/madrid}</substitution>
<children></children>

</node>
<node rsv="1.0">

<rule>result</rule>
<goal>0.585</goal>
<substitution>{X/tokyo, X1/tokyo}</substitution>
<children></children>

</node>
<node rsv="1.0">

<rule>result</rule>
<goal>0.18000000000000002</goal>
<substitution>{X/istambul, X1/istambul}</substitution>
<children></children>

</node>
<node rsv="1.0">

<rule>result</rule>
<goal>0.105</goal>
<substitution>{X/baku, X1/baku}</substitution>
<children></children>

</node>
</result>

Note that, in the case of our current programP and goal “oc(X)”, the corresponding output
for this query is, once again, the same than the one reported previously in Figure7 but, as said
in the previous paragraph, this is not the general case. In fact, we can formulate a query like

Analyzing Fuzzy Logic Computations with Fuzzy XPath 10 / 15

Figure 8: Executing query «[FILTER=0.5][DEEP=0.9]//node/goal»

<result>
<goal rsv="1.0">oc(X)</goal>
<goal rsv="0.81">and_prod(s(X),agr_aver(f(X),w(X)))</goal>
<goal rsv="0.6561">and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>
<goal rsv="0.6561">and_prod(0.9,agr_aver(f(tokyo),w(tokyo)))</goal>
<goal rsv="0.6561">and_prod(0.3,agr_aver(f(istambul),w(istambul)))</goal>
<goal rsv="0.6561">and_prod(0.3,agr_aver(f(baku),w(baku)))</goal>
<goal rsv="0.531441">and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>
<goal rsv="0.531441">and_prod(0.9,agr_aver(0.7,w(tokyo)))</goal>
<goal rsv="0.531441">and_prod(0.3,agr_aver(0.4,w(istambul)))</goal>
<goal rsv="0.531441">and_prod(0.3,agr_aver(0.2,w(baku)))</goal>

</result>

“//node[children[not(text())] and rule/text()<>"result"]/goal”, helping us
to know whether the tree has any partially evaluated leaf (i.e., non reporting a fuzzy computed
answer) since it returns nodes at the end of a branch that are not labeled with therule tag con-
taining “result”. The important meaning of this query resides on its capability for finding
possible sources of infinite loops. For instance, if we work with a program containing a rule like
“p <- p”, when using FLOPER for generating an execution tree for “p” with any depth level,
it will always contain at least a leaf reported by the previous fuzzy XPathquery.

In order to take advantage of the enrichments introduced in the fuzzy XPathlanguage, the
following query makes use of “DEEP” and “FILTER” commands in order to perform apartial
breadth-first traversalon execution trees as shown in Figure8. In the resulting XML output,
10 nodes have been selected from the execution tree with different “rsv” values, varying from
1 in the case of the original goal (that has not been penalized) till 0 .531441 for the fourth row,
representing nodes whose depth (“DEEP-level”) remains above the filter. Note that the use of

Analyzing Fuzzy Logic Computations with Fuzzy XPath 11 / 15

the directive “DEEP” segregates the nodes of the tree from top to bottom, since lower nodes in
the tree are represented deeper in the input XML file.

Analogously, in Figure9 we use “DOWN” instead of “DEEP” for producingpartial depht-first
traversalson execution trees. In this case, our query segregates the nodes from left to right in
columns, since the more left the node appears in the tree, theupper is it in the XML output
and, thus, the less penalized by “DOWN”. As previously, 10 nodes have been selected again with
“rsv” ranging from 1 -upper nodes in the XM file- in the left column,till 0 .7, as shown in the
second column.

Figure 9: Executing query «[FILTER=0.5][DOWN=0.7]//node/goal»

<result>
<goal rsv="1.0">oc(X)</goal>
<goal rsv="1.0">and_prod(s(X),agr_aver(f(X),w(X)))</goal>
<goal rsv="1.0">and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>
<goal rsv="1.0">and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>
<goal rsv="1.0">and_prod(0.8,agr_aver(0.8,0.9))</goal>
<goal rsv="1.0">0.6800000000000002</goal>
<goal rsv="0.7">and_prod(0.9,agr_aver(f(tokyo),w(tokyo)))</goal>
<goal rsv="0.7">and_prod(0.9,agr_aver(0.7,w(tokyo)))</goal>
<goal rsv="0.7">and_prod(0.9,agr_aver(0.7,0.6))</goal>
<goal rsv="0.7">0.585</goal>

</result>

In order to illustrate the high expressive power of thefuzzy XPathlanguage, in the following we
try to model queries joining several concepts (for instance, the topics of “weather” and “Istam-
bul” modeled inP as predicate “w” and constant “istambul”, respectively). Assume that we are
firstly interested on nodes informing about “weather”, i.e., focusing on the fourth rows of our
execution tree, thus meaning that sub-string “w(” must appear in tag “goal”, while our second

Analyzing Fuzzy Logic Computations with Fuzzy XPath 12 / 15

preference asks for nodes in the branch containing the word “istambul” in tag “substitution”.
In order to join these two constraints, instead of using crisp “or/and” operators (or even differ-
ent fuzzy variants of such connectives already implementedin fuzzy XPath), we prefer to use an
arithmetical average giving twice importance to the secondrequirement than to the first one. The
fuzzy XPathformulation of our query entitles Figure10, where we graphically show the set of
solutions as well as the output in the resulting XML file.

Figure 10:«node[/goal[contains(text(),“w(”)]aver{1,2} substitution[contains(text(),“istambul”)]]//goal»

<result>
<goal rsv="1.0">and_prod(0.3,agr_aver(f(istambul),w(istambul)))</goal>
<goal rsv="1.0">and_prod(0.3,agr_aver(0.4,w(istambul)))</goal>
<goal rsv="0.6667">and_prod(0.3,agr_aver(0.4,0.8))</goal>
<goal rsv="0.6667">0.18000000000000002</goal>
<goal rsv="0.3333">and_prod(s(X),agr_aver(f(X),w(X)))</goal>
<goal rsv="0.3333">and_prod(0.8,agr_aver(f(madrid),w(madrid)))</goal>
<goal rsv="0.3333">and_prod(0.9,agr_aver(f(tokyo),w(tokyo)))</goal>
<goal rsv="0.3333">and_prod(0.3,agr_aver(f(baku),w(baku)))</goal>
<goal rsv="0.3333">and_prod(0.8,agr_aver(0.8,w(madrid)))</goal>
<goal rsv="0.3333">and_prod(0.9,agr_aver(0.7,w(tokyo)))</goal>
<goal rsv="0.3333">and_prod(0.3,agr_aver(0.2,w(baku)))</goal>

</result>

5 Conclusions and Future Work

In this paper we have shown the mutual benefits between two different fuzzy tools developed
in our research group, that is, the FLOPER programming environment and thefuzzy XPath
interpreter. Initially FLOPER was conceived as a tool for implementing flexible software ap-

Analyzing Fuzzy Logic Computations with Fuzzy XPath 13 / 15

plications -as it is the case offuzzy XPath- coded with the fuzzy logic language MALP and
offering options for compiling fuzzy rules to standard Prolog clauses, running goals and drawing
execution trees. Such trees, once modeled in XML format inside the proper FLOPER tool, can
be then analyzed by thefuzzy XPathinterpreter -by means of simple XPath queries augmented
with fuzzy commands- in order to discover details (such as fuzzy computed answers, possible
infinite branches and so on) of the computational behaviour of MALP programs after being exe-
cuted into FLOPER. In this sense, we plan to integrate an option inside the FLOPER menu for
allowing the possibility of performing debugging tasks based onfuzzy XPath.

On the other hand, in [ALM12b, ALM13] we have recently presented afuzzy XPathdebugger
(beyond thefuzzy XPathinterpreter) that, for a given XPath expression, the tool offers a set
of alternative queries, each one associated to a chance degree indicating the deviations of each
proposal w.r.t. the original query (we useJUMP, DELETE andSWAP operators for covering the main
cases of programming errors when describing a path about an XML document). Thus, our tool is
focused on providing the programmer a repertoire of paths that (s)he can use to retrieve answers.
Since in this paper we have seen that thefuzzy XPathinterpreter might act as a debugger of fuzzy
computations developed with FLOPER, for the near future we plan too to study the role that
the properfuzzy XPathdebugger should play for helping the development of applications using
FLOPER.

Acknowledgements: This work has been partially supported by the EU, under FEDER, and
the Spanish Science and Innovation Ministry (MICINN) undergrant TIN2008-06622-C03-03,
as well as by Ingenieros Alborada IDI under grant TRA2009-0309, and the JUNTA ANDALU-
CIA administration under grant TIC-6114 (proyecto de excelencia). Carlos Vázquez and Ginés
Moreno received grants for International mobility from theUniversity of Castilla-La Mancha
(CYTEMA project and “Vicerrectorado de Profesorado”).

Bibliography

[ALM11] J. Almendros-Jiménez, A. Luna, G. Moreno. A Flexible XPath-based Query Lan-
guage Implemented with Fuzzy Logic Programming. InProc. of 5th International
Symposium on Rules: Research Based, Industry Focused, RuleML’11. Barcelona,
Spain, July 19–21. Pp. 186–193. Springer Verlag, LNCS 6826, 2011.

[ALM12a] J. M. Almendros-Jiménez, A. Luna, G. Moreno. FuzzyLogic Programming for Im-
plementing a Flexible XPath-based Query Language.Electr. Notes Theor. Comput.
Sci.282:3–18, 2012.

[ALM12b] J. M. Almendros-Jiménez, A. Luna, G. Moreno. A XPath Debugger Based on Fuzzy
Chance Degrees. InOn the Move to Meaningful Internet Systems: Proceedings
OTM 2012 Workshops, Rome, Italy, September 10-14. Pp. 669–672. Springer Ver-
lag, LNCS 7567, 2012.

[ALM13] J. Almendros-Jiménez, A. Luna, G. Moreno. Annotating Fuzzy Chance Degrees
when Debugging XPath Queries. InAdvances in Computational Intelligence - Proc

Analyzing Fuzzy Logic Computations with Fuzzy XPath 14 / 15

of the 12th International Work-Conference on Artificial Neural Networks, IWANN
2013 (Special Session on Fuzzy Logic and Soft Computing Application), Tenerife,
Spain, June 12-14. Pp. 300–311. Springer Verlag, LNCS 7903, Part II, 2013.

[BBC+07] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, J. Siméon.
XML path language (XPath) 2.0.W3C, 2007.

[BMP95] J. F. Baldwin, T. P. Martin, B. W. Pilsworth.Fril- Fuzzy and Evidential Reasoning
in Artificial Intelligence. John Wiley & Sons, Inc., 1995.

[GMV04] S. Guadarrama, S. Muñoz, C. Vaucheret. Fuzzy Prolog: A New Approach Using
Soft Constraints Propagation.Fuzzy Sets and Systems144(1):127–150, 2004.

[KMP00] E. Klement, R. Mesiar, E. Pap.Triangular Norms. Trends in logic, Studia logica
library. Springer, 2000.
http://books.google.es/books?id=rIyqcjfKMN4C

[KS92] M. Kifer, V. Subrahmanian. Theory of generalized annotated logic programming
and its applications.Journal of Logic Programming12:335–367, 1992.

[Llo87] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

[MCS11] S. Muñoz-Hernández, V. P. Ceruelo, H. Strass. RFuzzy: Syntax, semantics and
implementation details of a simple and expressive fuzzy tool over Prolog.Inf. Sci.
181(10):1951–1970, 2011.

[MM08] P. Morcillo, G. Moreno. Programming with Fuzzy LogicRules by using the
FLOPER Tool. In al. (ed.),Proc of the 2nd. Rule Representation, Interchange
and Reasoning on the Web, International Symposium, RuleML’08. Pp. 119–126.
Springer Verlag, LNCS 3521, 2008.

[MMPV10] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. A Practical Management of Fuzzy
Truth Degrees using FLOPER. In al. (ed.),Proc. of 4nd Intl Symposium on Rule In-
terchange and Applications, RuleML’10. Pp. 20–34. Springer Verlag, LNCS 6403,
2010.

[MMPV11] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Fuzzy Computed Answers Col-
lecting Proof Information. In al. (ed.),Advances in Computational Intelligence -
Proc of the 11th International Work-Conference on Artificial Neural Networks,
IWANN 2011. Pp. 445–452. Springer Verlag, LNCS 6692, 2011.

[MOV04] J. Medina, M. Ojeda-Aciego, P. Vojtáš. Similarity-based Unification: a multi-
adjoint approach.Fuzzy Sets and Systems146:43–62, 2004.

[SS83] B. Schweizer, A. Sklar.Probabilistic Metric Spaces. Courier Dover Publ., 1983.
http://books.google.es/books?id=8LUd6Txuu5sC

[Voj01] P. Vojtáš. Fuzzy Logic Programming.Fuzzy Sets and Systems124(1):361–370,
2001.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 15 / 15

http://books.google.es/books?id=rIyqcjfKMN4C
http://books.google.es/books?id=8LUd6Txuu5sC

	Introduction
	Fuzzy XPath
	Fuzzy Logic Programming with MALP and FLOPER
	Exploring Derivation Trees with Fuzzy XPath
	Conclusions and Future Work

