Analyzing Fuzzy Logic Computations with Fuzzy XPath

Jests M. Almendros-Jiménez, Alejandro Luna?, Ginés Moreno® and Carlos
Vazquez*

ljalmen@ual.es
Dpto. de Lenguajes y Computacion
Universidad de Almeria
04120 Almeria (Spain)
2 Alejandro.Luna@alu.uclm.es
3 Gines.Moreno@uclm.es
4 Carlos.Vazquez@uclm.es
Dept. of Computing Systems
University of Castilla-La Mancha
02071 Albacete (Spain)

Abstract: Implemented with a fuzzy logic language by using the FLOPBE®t t
developed in our research group, we have recently desigifiezzg dialect of the
popular XPath language for the flexible manipulation of XMacdments. In this
paper we focus on the ability &fuzzy XPattior exploring derivation trees generated
by FLOPER once they are exported in XML format, which somelsewes as a
debugging/analizing tool for discovering the set of fuzoynputed answers for a
given goal, performing depth/breadth-first traversalssosdgsociated derivation tree,
finding non fully evaluated branches, etc., thus reinfaydime bi-lateral synergies
betweerFuzzy XPattand FLOPER.

Keywords: XPath; Fuzzy (Multi-adjoint) Logic Programming; Debuggin

1 Introduction

Logic Programming(LP) [LIo87] is being widely used from several decades ago for problem
solving and knowledge representation, thus providing atgaenount of foundations and tech-
niques devoted to produce real world applications. Somesdbeyond, during the last years
important research efforts have been performed for intiduinside the LP paradigm some
techniques/constructs based on fuzzy logic in order toi@ipltreat with uncertainty and ap-
proximated reasoning in a natural way. Following this tradveral fuzzy logic programming
systems have been develop&®Ep2 BMP95, Voj0l, GMV04, MCS11], where the classical in-
ference mechanism of SLD—Resolution has been replaced byzg f/ariant which is able to
handle partial truth in a comfortable way.

This is the case too dflulti-Adjoint Logic ProgrammingMOV04], MALP in brief, where a
fuzzy program can be seen as a set of rules each one annoi#iets wwn truth degree (a value
of a complete lattice, for instance, the real interf@all]). Goals are evaluated in two separate
computational phases. During tbperationalphase,admissible stepga generalization of the

Analyzing Fuzzy Logic Computations with Fuzzy XPath 1/15

mailto:jalmen@ual.es
mailto:Alejandro.Luna@alu.uclm.es
mailto:Gines.Moreno@uclm.es
mailto:Carlos.Vazquez@uclm.es

classicalmodus ponenmference rule) are systematically applied by a backwaadaring pro-
cedure in a similar way to classical resolution steps in page programming. More precisely,
in an admissible step, for a selected athin a goal and a ruléH «—%; v) of the program, if there
is a most general unified of A andH, then atomA is substituted by the expression& %#)0,
where “&” is an adjoint conjunction evaluatingodus ponend-inally, the operational phase re-
turns a computed substitution together with an expresstoeravall atoms have been exploited.
This last expression is then interpreted under a givercéatturing what we call thmterpretive
phase, hence returning a pairuth degregsubstitution) which is the fuzzy counterpart of the
classical notion of computed answer traditionally useduregogic programming.

On the other hand, the eXtensible Markup Language (XML) idelyi used in many areas of
computer software to represent machine readable data. Xbiliges a very simple language to
represent the structure of data, using tags to label piddeztoal content, and a tree structure to
describe the hierarchical content. XML emerged as a solutialata exchange between appli-
cations where tags permit to locate the content. XML documare mainly used in databases.
The XPath languageBBC " 07] was designed as a query language for XML in which the path of
the tree is used to describe the query. XPath expressiorsecatorned with boolean conditions
on nodes and leaves to restrict the number of answers of #rg.g¢iPath is the basis of a more
powerful query language (called XQuery) designed to joiritiple XML documents and to give
format to the answer. IPALM11, ALM12a] we have presented an XPath interpreter (together
with a debugger, as documented KLM12b, ALM13]) extended with fuzzy commands which
somehow rely on the implementation based on fuzzy logiciamging by using FLOPER.

Whereas in Section® and 3 we summarize the main features of both thezy XPathin-
terpreter and the fuzzy logic programming environment FIERR respectively, in Sectiod
we go deeper on the feedbacks between both tools. More gxaetishow that, even when
FLOPER was used for implementirfgzzy XPathnow this last language is very useful for
formulating queries to be executed againts XML documerpsesenting derivation trees de-
picted by FLOPER, thus becoming into a “debugging” techaigtnich can be embedded into
the programming environment for analyzing some intergdtietails (fuzzy computed answers,
tree traversals, partial branches, etc.) about fuzzy logioputations. Finally, in Sectiohwe
conclude and present future work.

2 Fuzzy XPath

In this section we will summarize the main elements of ouppeed fuzzy XPath language de-
scribed in ALM12a, ALM11] (the tool can be freely downloaded and tested on-line in
htt p://dectau. ucl mes/fuzzyXPat h/). On this flexible dialect of XPath, we have
incorporated two structural constraints callemiw and beep to which a certain degree of rele-
vance is associated. So, whereaa provides a ranked set of answers depending on the path
they are found from “top to down” in the XML documemtep provides a ranked set of answers
depending on the path they are found from “left to right” ie ML document. Both structural
constraints can be used together, assigning degree of tiamperwith respect to the distance to
the root XML element. Secondly, our fuzzy XPath incorposafigzzy variants ofind and or

for XPath conditions. Crispndandor operators are used in standard XPath over boolean con-

Analyzing Fuzzy Logic Computations with Fuzzy XPath 2/15

ditions, and enable to impose boolean requirements on theess. XPath boolean conditions
can be referred to attribute values and node content, inotfme &f equality and range of literal
values, among others. However, tlied andor operators applied to two boolean conditions are
not precise enough when the programmer does not give the sloeeto both conditions. For
instance, some answers can be discarded when they couldriierest by the programmer, and
accepted when they are not of interest. Besides, prograsnwauld need to know in which
sense a solution is better than another. When several bootemlitions are imposed on a query,
each one contributes to satisfy the programmer’s prefeseimca different way and perhaps, the
programmer’s satisfaction is distinct for each solution.

We have enriched the arsenal of operators of XPath with fuazyants ofandandor. Partic-
ularly, we have considered three versionsantt and+, and and- (and the same foor : or+,
or, or-) which make more flexible the composition of fuzzy condiiohree versions for each
operator that come for free from our adaptation of fuzzyddgi the XPath paradigm. One of
the most known elements of fuzzy logic is the introductiofiuazy versions of classical boolean
operators.Product tukasiewiczand Godelfuzzy logics are considered as the most prominent
logics and give a suitable semantics to fuzzy operators. dOniribution is now to give sense
to fuzzy operators into the XPath paradigm, and particylarlprogrammer’s preferences. We
claim that in our work the fuzzy versions provide a mechanisrforce (and debilitate) condi-
tions in the sense that stronger (and weaker) programmérenees can be modeled with the
use of stronger (and weaker) fuzzy conditions. The comininaif fuzzy operators in queries
permits to specify a ranked set of fuzzy conditions accgrdinprogrammer’s requirements.

Furthermore, we have equipped XPath with an additionalaipethat is also traditional in
fuzzy logic: the average operatarvg This operator offers the possibility to explicitly give
weight to fuzzy conditions. Rating such conditions dyg solutions increase its weight in a
proportional way. However, from the point view of the pragraer’s preferences, it forces the
programmer to quantify his(er) wishes which, in some oaresi can be difficult to measure.
For this reason, fuzzy versions afhdandor are better choices in some circumstances.

Finally, we have equipped our XPath based query languadeawitechanism for thresholding
programmer’s preferences, in such a way that programmereazgrest that requirements are
satisfied over a certain percentage.

The proposed fuzzy XPath is described by the following synta

xpath := [['deep-down]’ Jpath

path := literal | text() | node@att | nodépath | nodépath

node := QName | QName[cond]

cond := xpath op xpath | xpath num-op number

deep := DEEP=NUMber

down := pow=number

deep-down := deep | down | deepdown
num-op ;= >|=|<|<>
fuzzy-op := and|and+|and-|or |or+ | or- | avg | avg{number,number}
op:= num-op | fuzzy-op

Basically, our proposal extends XPath as follows:

Analyzing Fuzzy Logic Computations with Fuzzy XPath 3/15

Figure 1: Fuzzy Logical Operators

&p(X,y) = Xxy p(X,Y) = X+Yy—Xxy Product: and/or
&c(X,y) = min(xy) le(X,y) = max(X,y) Godel: and+/or-
&p(x,y) = maxx+y—1,0) [|.(xy) = min(x+y,1) tuka.: and-/or+

— Structural constraints. A given XPath expression can be adorned witber¢ = r1; bow
=ry]» which means that theeepnessf elements is penalized by and that theorder of
elements is penalized by, and such penalization is proportional to the distance, (he
length of the branch and the weight of the tree, respeciivdly particular, «peep = 1;
DOWN = I2]» can be used for penalizing only w.r.t. document ordegr works for //, that
is, the deepness in the XML tree is only computed when desecenmbdes are explored,
while bom works for both/ and//. Let us remark thateer andoowm can be used several
times on the maipathexpression and/or any othsub-pathincluded in conditions.

— Flexible operators in conditions We consider three fuzzy versions for each one of
the classical conjunction and disjunction operators (fand t-conorms, respectively
[SS83 KMPOQ), also called connectives or aggregators, descripegsimisticrealistic
and optimistic scenarios, see Figue In XPath expressions the fuzzy versions of the
connectives make harder to hold boolean conditions, aréftire can be used to debil-
itate/force boolean conditions. Furthermore, assumirggdivenRSVs (Retrieval Status
Valued r1 andr,, theavg operator is obviously defined with a fuzzy taste(as+r2)/2,
whereas itpriority-basedvariant, i.e.avg{ p1, p2}, acts agpy«ri+ pzxra2)/(p1+ p2).

Figure 2: Input XML document in our examples

<bi b>
<nane>Cl assi c Literature</nanme>
<book year="2001" price="45.95">
<title>Don Quijote de |a Mancha</title>
<aut hor >M guel de Cervantes Saavedra</ aut hor >
<ref erences>
<novel year="1997" price="35.99">
<nane>La Gal at ea</ nane>
<aut hor >M guel de Cervantes Saavedra</ aut hor>
<ref erences>
<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Sigisnmnda</title>
<aut hor >M guel de Cervantes Saavedra</aut hor >
</ book>
</references>
</ novel >
</references>
</ book>
<novel year="1999" price="25.65">
<title>La Celestina</title>
<aut hor >Fer nando de Roj as</ aut hor >
</ novel >
</ bi b>

Analyzing Fuzzy Logic Computations with Fuzzy XPath 4/15

Figure 3: Execution of query «/bitger=0.8 pom=0.9]//title»

Document RSV computation
<resul t>
<title rsv="0.8000">Don Quijote de |la Mancha</title> 0.8000= 0.8
<title rsv="0.7200">La Celestina</title> 0.7200=0.8x0.9
<title rsv="0.2949">Los trabajos de Persiles...</title> 0.2949=0.8°%0.9
</result>

Figure 4: Execution of query «//book[@year<2000 avg{3,1pr@e<50]/title»

Document RSV computation
<resul t>
<title rsv="1.00">Los trabajos de Persiles...</title> | 1.00=(3x1+1x1)/(3+1)
<title rsv="0.25">Don Quijote de |a Mancha</title> 0.25=(3x0+1x1)/(3+1)
</resul t>

Figure 5: Execution of query «/bitder=0.5]//book[@year<2000 avg{3,1} @price<50]/title»

Document RSV computation
<resul t>
<title rsv="0.25">Don Quijote de la Mancha</title> 0.25=(3x0+1x1)/(3+1)

<title rsv="0.0625">Los trabajos de Persiles...</title> | 0.0625=05%(3+x1+1x1)/(3+1)
</result>

In general, a fuzzy XPath expression defines, w.r.t. an XMtudwent, a sequence of subtrees
of the XML document where each subtree has an associated XXath conditions, which are
defined as fuzzy operators applied to XPath expressiongpui@a new RSV from the RSVs of
the involved XPath expressions, which at the same time ges\a RSV to the node. In order to
illustrate these explanations, let us see some exampleasr gfroposed fuzzy version of XPath
according to the XML document shown of Figute

Examplel Let us consider the fuzzy XPath query of Figieequestingitle’s penalizing the
occurrences from the document root by a proportio®.8fand0.9 by nesting and ordering,
respectively, and for which we obtain the file listed in Fig@ In such document we have
included as attribute of each subtree, its corresponding. RBe highest RSVs correspond to
the mainbooksof the document, and the lowest RSVs represenbtisksoccurring in nested
positions (those annotated as relatef@rencep

Example2 Figure 4 shows the answer associated to a search of books, possiéhgmeed

directly or indirectlyfrom other books, whose publishing year and price are ratdwat the year
is three times more important than the price. Finally, inufég5 we combine both kinds of
(structural/conditional) operators, and the ranked listadutions is reversed.

Finally, we can use commandr«[TER = r]» at the beginning of a query for filtering its final set
of solutions in the sense that only those ones with RSV nogtdheanr will conform the output.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 5/15

3 Fuzzy Logic Programming with MALP and FLOPER

Multi-Adjoint Logic ProgrammindMOV04], MALP in brief, can be thought as a fuzzy ex-
tension of Prolog and it is based on a first order languagfe,containing variables, func-
tion/constant symbols, predicate symbols, and severitramp connectives such as implica-
tions (¢—1,42,...,<—m), conjunctions (&,&>,...,&y), disjunctions {¢1,V2,...,V|), and gen-
eral hybrid operators (“aggregators”;@., ..., @), used for combining/propagating truth val-
ues through the rules, and thus increasing the languagessipeness. Additionally, our lan-
guage.Z contains the values of multi-adjoint latticein the form (L, <,+1,&1,...,4n,&n),
equipped with a collection dddjoint pairs («—,&;) where each &is a conjunctor intended to
the evaluation omodus ponengsS83 KMPOO, MOV04]. A rule is a formula ‘A < 2 with a”,
whereAis an atomic formula (usually called thead, £ (which is called théody) is a formula
built from atomic formulass,...,B, (n > 0), truth values of. and conjunctions, disjunctions
and general aggregations, and finaltye L is the “weight” ortruth degreeof the rule. The set
of truth valued. may be the carrier of any complete bounded lattice, as féamee occurs with
the set of real numbers in the intenjal 1] with their corresponding orderingr. Consider,
for instance, the following progran®?, with associated multi-adjoint latticg0, 1], <r, <—p, &p)
(where labeP means foProduct logicwith the following connective definitions for implication
and conjunction symbols, respectively—5 (x,y) = min(1,x/y)”, “& p(X,y) = x*y", as well as
‘@aver (X,Y) = (X+Y)/27):

Ky oc(X) <- g(X)&prod (f(X) @averwX)) withl.

Hy . s(madrid) with 0.8. Hs: s(tokyo with 0.9.
H3 . f(madrid) with 0.8. Ke f(tokyo with 0.7.
Ry w(madrid) with 0.9. H7:. w(tokyo with 0.6.
Hg . S(istambul with 0.3. F11: S(baku with 0.3.
Ho . f(istambul) with 0.4. K12 f(baku with 0.2.
10 W(istambul with 0.8. F13: w(baku with 0.5.

This program models, through predicate/1, the chances of a city for being an “olympic city”
(i.e., for hosting olympic games). Predicate/1 is defined in ruleZ1, whose body collects the
information from three other predicates/1, f /1 andw/1, modeling, respectively, thacurity
level, thefacilities and the goodeather of a certain city. These predicates are defined is rule
%, 10 913 for four cities Madrid, Istambul TokyoandBaky, in such a way that, for each city,
the characteristic modeled by each predicate is betterrtsay the truth value of the rule.

In order to run and manage MALP programs, during the lastsyear have designed the
FLOPER systemNIM08, MMPV10, MMPV11], which is freely accessible from the Web site
http://dectau.uclm.es/floperThe parser of our tool has been implemented by using thsictds
DCG's (Definite Clause Grammaysesource of the Prolog language, since it is a convenient
notation for expressing grammar rules. Once the applicagitpaded inside a Prolog interpreter,
it shows a menu which includes options for loading/compiliparsing, listing and saving fuzzy
programs, as well as for executing/debugging fuzzy goals.th&se actions are based on the
compilationof the fuzzy code into standard Prolog code.

The FLOPER system is able to manage programs with very diffdattices. In order to
associate a certain lattice with its corresponding progrsunh lattice must be loaded into the

Analyzing Fuzzy Logic Computations with Fuzzy XPath 6/15

 http://dectau.uclm.es/floper/

Figure 6: Execution tree for progra? and goaloc (X)

BPIO(SG0,@averTR wig))
$AnG

&prod(D.8, @avertimadtid) wimadrd) EprodiD.s @aver(fito kyo),wita kyo)h &prod(D.3, @avertfistambuly wiistambulyy Eprod(D.3, @averdibaku) wibaku)i
f¥imadrid ¥1/madrid} {¥tokyo X1 /tokyo} {histambul X1fistambul} [¥ihaku X1 haku}

prod(D.8,@aver(7 witokya)))

Eprod(D. 8, @aver(l.wirmadrid)
{¥tokyo X1 /tokyo}

&prod(D.3, @aver(d.4 uwistarmbul &prodiD. 3 @aver(. 2 wibakuy)
f¥imadrid ¥1/madrid}

{histambul X1fistambul} [¥ihaku X1 haku}

Bprod(0.9, @aver0.7,0.8))
{¥takyo X1 /tokyo}

&prod(0.3, @aver(0.4,0.8))
{histambul X1fistambul}

&prod(0.3,@aver(0.2,0.5%
{¥ihaku X1 baku}

Bprod(D.8 @aver(0.8,0.9)
{¥imadrid ¥1/madrid}

0.6800000000000002
{¥imadrid ¥1/madrid}

0.585
{¥takyo X1 /tokyo}

0.18000000000000002
{histambul X1fistambul}

0105
{¥ihaku X1 baku}

tool as a pure Prolog program. As an example, the followiagsts show the program modeling
the lattice of the real intervdD, 1] with the usual ordering relation and connectives (where the
meaning of the mandatory predicatesber, t op, bot andi eq iS obvious):

menber (X): - nunber (X), 0=<X, X=<1. bot (0) .
leq(X Y):- X=<V. top(1).
and_prod(X,Y,2Z):- pri_prod(XY,2). pri_prod(X, Y,2):- Zis X * Y.
or_prod(X, Y,2Z):- pri_prod(X Y,Ul), pri_add(X,Y,U2),pri_sub(U2, UL, Z2).
pri_add(X,Y,2Z):- Zis X+Y. pri_sub(X,Y,2):- Zis X-Y.

FLOPER includes two main ways for evaluating a goal, given ALM? program and its cor-
responding lattice. Optiorr‘un” translates the whole program into a pure Prolog program and
evaluates the (also translated) goal, thus obtaining & $etzy computed answers, whereas, on
the other hand, optiort‘r ee” displays the execution (or derivation) tree for the inteddjoat.

For the purpose of this paper, we will focus on this last aptioorder to obtain a tree (detailing
the whole computational behaviour) for being afterwardsyaed with fuzzy XPath.

1 Users can select the deepest level to be built, which is oistjanandatory when trees are infinite.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 7115

Let us consider the previously described progréfm and goal 6c¢(X) ", that asks for the
eligibility of each one of the four cities i”? as “Olympic City”. We use optiont‘r ee” to
obtain the execution tree, which is generated by FLOP ERreetdifferent formats. Firstly the
tree is displayed in graphical mode, as a PNG file, as showigur&6. The tree is composed
by two kinds of nodes. Yellow nodes represent states redohé&d OPER following the state
transition system that describes the operational sensaafidd ALP [MOV04]. The up-most
node represents the first state (that is, the goal and théitidsnbstitution), and subsequent
lower nodes are its children states (that is, states reatbhedthe goal). A state contains a
formula in the upper side and a substitution (the record b$stutions applied from the original
goal to reach that state) at the bottom. A final state, if redgcls a fuzzy computed answer, that
is, its formula is an element of the lattice. Blue roundedesothat intermediate between a pair
of yellow nodes (a pair of states) represent program rufesgifically, the program rule that is
exploited in order to go from one state (the upper state) tdhen (the lower one). These rules
are named with letterR’ plus its position in the program. For example, observe ftah the
initial state to the next state, rul#, of the program has been exploited, as shown in the blue
intermediate node. As an exception, when all atoms have begloited in (the formula of)
a certain state, the following blue node indicateg$sul t ”, informing that the next state is a
fuzzy computed answer.

FLOPER can also generate the execution tree in two textualdts. The first one contains
a plain description of the tree, while the second one prevate XML structure to that descrip-
tion, therefore becoming the focus of interest of this paperthis XML format we define the
tag “node” to contain all the information of a node, such as the ruldqrered to reach that
state (that is RO” in the case of the first state), the formula of the state, twimulated sub-
stitution and the children nodes, given by the tagsl“e”, “goal ", “substi t uti on” and
“chi | dr en”, respectively. The content of tagsdl e”, “goal "and “substituti on”isa
string, while the content of the taghi | dr en”is a set of tagstiode”, as seen in the following
lines, corresponding to the XML file associated to the the thepicted in Figuré.

<node>
<rul e>R0</rul e>
<goal >oc(X) </ goal >
<substitution>{}</substitution>
<chi | dren>
<node>
<rul e>R1</rul e>
<goal >and_prod(s(X), agr_aver (f(X),w X))) </ goal >
<substitution>{ X1/ X}</substitution>
<chi | dren>
<node>
<rul e>R2</rul e>
<goal >and_prod(0. 8, agr _aver (f(madrid), wmadrid)))</goal >
<substitution>{X nedrid, X1/ madri d} </ substitution>
<chi | dren>
<node>
<rul e>R3</rul e>
<goal >and_prod(0. 8, agr _aver (0. 8, W nadri d))) </ goal >
<substitution>{X madrid, X1/ madri d} </ substitution>
<chi | dren>
<node>
<rul e>R4</rul e>
<goal >and_prod(0. 8, agr_aver(0.8,0.9))</goal >

Analyzing Fuzzy Logic Computations with Fuzzy XPath 8/15

<substitution>{X nmadrid, X1/ madri d}</subtitution>
<chi | dren>
<node>
<rul e>resul t</rul e>
<goal >0. 6800000000000002</ goal >
<substitution>{ X/ madri d, X1/ madri d}
</ substitution>
<chi | dren>
</ chil dren>
</ node>
</ chil dren>
</ node>
</chi |l dren>
</ node>
</ chil dren>
</ node>

<node>
<rul e>resul t</rul e>
<goal >0. 585</ goal >
<substi tution>{ X/t okyo, X1/t okyo}
</ substitution>
<chi | dren>
</ chil dren>
</ node>

</ node>
</ chil dren>
</ node>

4 Exploring Derivation Trees with Fuzzy XPath

In this section we present a very powerful method to autarabyi exploring the behaviour of
a MALP program using théuzzy XPathool described in SectioB. The idea is to uséuzzy
XPathover the execution tree generated by FLOPER for a certaigrano and goal. That tree
is obtained through optiont‘t ee” using the XML format just explained before in SectiGn
For instance, an easy but interesting XPath query should badde/ r ul €” which lists all
the rules exploited along the execution of a goal (in the chslee tree depicted in Figuig we
would obtain the whole set of rules defined in the progréhof our running example).

Assume now that we plan to obtain the whole set of fuzzy coegpanhswers for a given goal
and program. This information, always collected in the ésaof execution trees (even when
there exists the possibility of finding leaves non contarfizzy computed answers, as we will
see afterwards) as illustrated in Figufecan be retrieved by means of thezzy XPathguery
“/I'I node[/rul e/ text()=resul t]”, meaning that, return eaaiodesuch that the content
of its rule tag is “result”. The XML text shown below Figurérepresents the output of ofuzzy
XPathinterpreter for that query, where the selected nodes hase bighlighted inside a blue
cloud into the drawn tree above. Note that the resuting XMi.ddntains four solutions (one for
each city), where attribute sv” indicates how much each city fulfills the original query {iis
example, this value is the same in all cases, that is, jushdeeémum one 1).

Strongly related with the previous experiment, but notallyefocusing now on fuzzy com-
puted answers, query f node[chi | dren[not (text ())]] "returns the leaves of the tree.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 9/15

Figure 7: Executing queries «//node[/rule/text()=rdsu#tnd «//node[children[not(text())]]»

MW rsv=1

&nrod(s(, @aver(iEa.wea)
109

Eprod(0.2, @aver{fimadrid),w{madrid))) Eprod (0.9 @aver(fitokyo) wiiokyo)) Eprod(0.3 @avertflistambul)w(istambul))) Eprod{0.3, @aver(ftbaku) wihakul))
{edmadrid }1/madrid} {¥tokyo X1 /tokya} {fistambul X1Jistambul} {dbakuxbaku)

o

&prod (0.8, @aver{0.8 wimadrid))) &prod (0.9, @aver(0.7 witakya))) &prod(0.3,@aver(0. 4 wiistambuly &prod(0.3,@aver(0.2,wibaku))}
Péimadrid X1/macrid} [tokyo X ftokya} istambul X1Jistambul} BehakuX1haku)

&pron{0.3, @averD.4,0.8)
distambul K1istambul

&prod(0.3,@aver(0.2,0.5)
e aku X1 haku)

&prod{0 6, @aver(0.8,0.9)
{madrid }1/madrid}

&prod(0.9,@aver(0.7 0.6))
tokyo X ftokya}

0.105
{20 aku, X1 fhaku)

0.18000000000000002
pistambul }istambuly

0.585
DOtokyn 1 ftokyo)

0,6800000000000002
Dimadric 1 (madrid)

<resul t>

<node rsv="1.0">
<rul e>resul t</rul e>
<goal >0. 6800000000000002</ goal >
<substitution>{X/ nadrid, X1/ madrid}</substitution>
<chi | dren></chi | dren>

</ node>

<node rsv="1.0">
<rul e>resul t</rul e>
<goal >0. 585</ goal >
<substitution>{ X/ tokyo, X1/tokyo}</substitution>
<chi | dren></chi | dren>

</ node>

<node rsv="1.0">
<rul e>resul t</rul e>
<goal >0. 18000000000000002</ goal >
<substitution>{X/istanbul, X1/istanbul}</substitution>
<chi | dren></chi | dren>

</ node>

<node rsv="1.0">
<rul e>resul t</rul e>
<goal >0. 105</ goal >
<substitution>{ X/ baku, X1/baku}</substitution>
<chi | dren></chi | dren>

</ node>

</result>

Note that, in the case of our current prografhand goal 6c¢(X) ", the corresponding output
for this query is, once again, the same than the one reporéxibpsly in Figure7 but, as said
in the previous paragraph, this is not the general case. cinige can formulate a query like

Analyzing Fuzzy Logic Computations with Fuzzy XPath 10/15

Figure 8: Executing query «[FILTER=0.5][DEEP=0.9]//négieal»

Wrsv=1

Il rsv=0.81

I rsv =0.6561
rsv =0.531441

Eprod(s00, @aver(o.wid)
AN

aprad(8, @averdimadrid), wmadric)) &prod(0.8,@aver(iaky) switakyo)) | &prod(1.3,@aver(listambuly.wistambul)y &ptod(0. 3, @averfiibaku) wehaku))
{omadrid)1 imadrid} {¥takyo, 1 fakyo) {istambul 31 fistambul) {ptaku 1 fhaku)

&prod(0.8,@aver(d 8 wimadrid)) | [&nrod(0.8,@aver(d. 7 witokyo))) [&prod(0.3.@aver(0.4 wistambulyy | Epran(0 3, @aver (.2 wioal))
{0madrid)1 imadrid} {¥takyn, X1 fakyo) {istambul 31 fistambul) : | {ptmaku 1 fhaku)

&prodd(0 3, @aver(04,0 &)
{istambul 31 fistambul)

&prod(0.9,@aver(0.7.06)
{takyo)1 fokyo)

&nrod (0.3 @aver(d.2,0.5)
{tmal 1 thaku)

&prod(0 8. @aver(0.8,095)
{omadrid j¢1imadrid}

0.18000000000000002
{sistambul 31 fistambul)

0.105
{taku 1 fhaku)

0585
{¥takyo, 1 fokyo)

0.6800000000000002
{0madrid)1 imadrid}

<result>
<goal rsv="1.0">oc(X)</goal >
<goal rsv="0.81">and_prod(s(X), agr_aver (f(X), W X))) </ goal >
<goal rsv="0.6561">and_prod(0. 8, agr _aver (f(nmadrid), wmadrid)))</goal >
<goal rsv="0.6561">and_prod(0.9, agr _aver (f(tokyo), wtokyo)))</goal >
<goal rsv="0.6561">and_prod(0. 3, agr _aver (f(istanmbul),wistanbul)))</goal >
<goal rsv="0.6561">and_prod(0. 3, agr _aver (f (baku), W baku))) </ goal >
<goal rsv="0.531441">and_prod(0. 8, agr_aver (0.8, M nadri d))) </ goal >
<goal rsv="0.531441">and_prod(0.9, agr_aver (0.7, W t okyo))) </ goal >
<goal rsv="0.531441">and_prod(0. 3, agr_aver (0.4, Wi stanbul)))</goal >
<goal rsv="0.531441">and_prod(0. 3, agr _aver (0. 2, m baku))) </ goal >
</result>

“/'I node[children[not (text())] and rule/text()<>"result"]/goal”, helping us
to know whether the tree has any partially evaluated leaf, (hon reporting a fuzzy computed
answer) since it returns nodes at the end of a branch thaataebeled with theule tag con-
taining “r esul t . The important meaning of this query resides on its cafigibidr finding
possible sources of infinite loops. For instance, if we woitk\& program containing a rule like
“p <- p”,when using FLOPER for generating an execution tree drnwith any depth level,
it will always contain at least a leaf reported by the presifuzzy XPatlguery.

In order to take advantage of the enrichments introducetherfuzzy XPathHanguage, the
following query makes use oDEEP” and “FI LTER’ commands in order to performgartial
breadth-first traversabn execution trees as shown in Figue In the resulting XML output,
10 nodes have been selected from the execution tree wittreliff + sv” values, varying from
1 in the case of the original goal (that has not been penalidé@.531441 for the fourth row,
representing nodes whose depth (“DEEP-level”) remainyealtiwe filter. Note that the use of

Analyzing Fuzzy Logic Computations with Fuzzy XPath 11/15

the directive DEEP” segregates the nodes of the tree from top to bottom, singerlaodes in
the tree are represented deeper in the input XML file.

Analogously, in Figuré® we use DOWN’ instead of ‘DEEP” for producingpartial depht-first
traversalson execution trees. In this case, our query segregates thesritom left to right in
columns, since the more left the node appears in the treajpgper is it in the XML output

and, thus, the less penalized BHOWN'. As previously, 10 nodes have been selected again with
“r sv” ranging from 1 -upper nodes in the XM file- in the left columitl, 0.7, as shown in the
second column.
Figure 9: Executing query «[FILTER=0.5][DOWN=0.7]//nddeal»
Wrsv=1
W rsv=0.7

Eprod(s (4 @aver{,wi))
[nd

Eprod(0.8 @avertiimadrid) wimadridy) Eprod{0.9,@aver(ftokyo) witokyo))) Eprod(0.3 @aver(fistambulywlistambul))) Eprod(0.3, @averifibaku) wibaku)))
{madrid %t imadrid} {itokyo i1 ftokya) {fistambul X1 /istambul} {itiaku 2 faku}

—SEE

&prod{0.8,@aver(0.8wimadrid)) | Bprad(0.9,@aver(.7 witakyo) &prod(0.3,@aver(0.4,wiistambulyy) Eprod(0.3, @aver(D.2 wibaku)i
{madrid ¥t imadrid} (it 1 ftokyo)

{Histarmbul X1 istarmbul} {tiaku 2 faku}

i i}
&nrod(0.8,@aver(0.8,0.9) &prod(0.9,@aver(0.7,0.8)
{madrid ¥ imadrid} {itokyo 1 ftokya)

Eprad(0.3.@aver(0.2,0.5)
{tiaku 2 faku}

Eprod(0.3,@aver(0.4,0.8))
{istarmbul X1 fistarmbul)

0.18000000000000002
{istarmbul X1 distarmbul)

0.6800000000000002 0.585 &
{dmadrid X1imadrid} {Hitokyo {1 ftokyo)

0105
Libaku A haku}

<result>
<goal rsv="1.0">oc(X)</goal >
<goal rsv="1.0">and_prod(s(X),agr_aver (f(X),wX)))</goal >
<goal rsv="1.0">and_prod(0. 8, agr_aver (f(madrid), w nadrid)))</goal >
<goal rsv="1.0">and_prod(0. 8, agr_aver (0.8, wnadrid)))</goal >
<goal rsv="1.0">and_prod(0. 8, agr_aver (0. 8,0.9))</goal >
<goal rsv="1.0">0.6800000000000002</goal >
<goal rsv="0.7">and_prod(0.9, agr_aver (f(tokyo), W tokyo)))</goal >
<goal rsv="0.7">and_prod(0.9, agr_aver (0.7, wWtokyo)))</goal >
<goal rsv="0.7">and_prod(0.9, agr_aver(0.7,0.6))</goal >
<goal rsv="0.7">0.585</goal >
</result>

In order to illustrate the high expressive power of thezy XPatHanguage, in the following we
try to model queries joining several concepts (for instatioe topics of “weather” and “Istam-
bul” modeled inZ? as predicatew” and constant istambul, respectively). Assume that we are
firstly interested on nodes informing about “weather”,,ifecusing on the fourth rows of our

execution

tree, thus meaning that sub-strimg ™ must appear in tagdoal’, while our second

Analyzing Fuzzy Logic Computations with Fuzzy XPath 12/15

preference asks for nodes in the branch containing the wastl &nbul ” in tag “substitutior.
In order to join these two constraints, instead of usingoct@/and’ operators (or even differ-
ent fuzzy variants of such connectives already implemeintéazzy XPath we prefer to use an

arithmetical average giving twice importance to the seaeggdirement than to the first one. The
fuzzy XPattformulation of our query entitles Figurkd, where we graphically show the set of

solutions as well as the output in the resulting XML file.

Figure 10:«node[/goal[contains(text(),“w(")] aver{1,2} substtian[contains(text(),“istambul”)]]//goal»

Wirsv=1
W rsv=0.67
rsv =0.33
Eprod{s0d,@everio,wia)
| A
&prod{ B, @aver(fimadrid) wiradridyy) i &prod{0 9, @aver(fitokyo) witokya))) &prod{0.3 @aver(fistambulywiistambul))) &pvﬂ(ﬂ 3, @averifibaku) wibaku)))
{madrid 4 timadrid} {Hitokyo 1 okyo} p {Hlistarmbul X1 distambul} Libaku 0 fhaku}

&pro{0.8,@aver(8 wimadrid)) | Bprod(0.8,@aver(7 witokyo))) &prod (0.3, @ave (0.4l stanbuly)) Bprad(0.3,@aven.2 wihaku)
{dmadrid lmadridy | | {takya,<1Hakyo) 3 {ifistambul 11 fistambul} | fihaku X1 fhaku)

Bprod(0 8, @aver(0.8,09)
{madrid 4 timadrid}

Apro{0.9,@aver(0.7,0.6)) pror(. 3, @aver(D.4,0.8) Bprod(0.3,@aver0.2,0.5)
{Htakyo.<1Hakyo) {ifistambul 11 fistambul} fihaku X1 haku)

0585 0.18000000000000002 0.105
{takyo 1l takyo) {Histambul X1 fistambul) Dthaku i haku)

0,6800000000000002
{Hmadrid ®timadrid}

<result>
<goal rsv="1.0">and_prod(0. 3, agr_aver (f(istanbul),w(istanbul)))</goal >
<goal rsv="1.0">and_prod(0. 3, agr_aver (0.4, w(i stanbul))) </ goal >
<goal rsv="0.6667">and_prod(0. 3, agr _aver (0. 4, 0. 8)) </ goal >
<goal rsv="0.6667">0.18000000000000002</goal >
<goal rsv="0.3333">and_prod(s(X), agr_aver(f(X), W X)))</goal >
<goal rsv="0.3333">and_prod(0. 8, agr _aver (f(nmadrid), wmadrid)))</goal >
<goal rsv="0.3333">and_prod(0.9, agr_aver (f(tokyo), wtokyo)))</goal >
<goal rsv="0.3333">and_prod(0. 3, agr _aver (f (baku), W baku))) </ goal >
<goal rsv="0.3333">and_prod(0. 8, agr _aver (0.8, w(nmadrid)))</goal >
<goal rsv="0.3333">and_prod(0.9, agr_aver (0.7, Mt okyo))) </ goal >
<goal rsv="0.3333">and_prod(0. 3, agr _aver (0. 2, W baku))) </ goal >

</result>

5 Conclusions and Future Work

In this paper we have shown the mutual benefits between tMereiift fuzzy tools developed
in our research group, that is, the FLOPER programming enment and thduzzy XPath

interpreter. Initially FLOPER was conceived as a tool fopiementing flexible software ap-

Analyzing Fuzzy Logic Computations with Fuzzy XPath

13/15

plications -as it is the case @fizzy XPath coded with the fuzzy logic language MALP and
offering options for compiling fuzzy rules to standard Pgtlauses, running goals and drawing
execution trees. Such trees, once modeled in XML formatingie proper FLOPER tool, can
be then analyzed by tHezzy XPathinterpreter -by means of simple XPath queries augmented
with fuzzy commands- in order to discover details (such agylcomputed answers, possible
infinite branches and so on) of the computational behavibMALP programs after being exe-
cuted into FLOPER. In this sense, we plan to integrate amojptiside the FLOPER menu for
allowing the possibility of performing debugging tasksdsnfuzzy XPath

On the other hand, ilLM12b, ALM13] we have recently presenteduzy XPattdebugger
(beyond thefuzzy XPathinterpreter) that, for a given XPath expression, the tofirefa set
of alternative queries, each one associated to a chanceedemglicating the deviations of each
proposal w.r.t. the original query (we usaw, DELETE andswar operators for covering the main
cases of programming errors when describing a path aboulindécument). Thus, our tool is
focused on providing the programmer a repertoire of pathis()he can use to retrieve answers.
Since in this paper we have seen thatfiezy XPattinterpreter might act as a debugger of fuzzy
computations developed with FLOPER, for the near future l@a poo to study the role that
the propeifuzzy XPatldebugger should play for helping the development of apjiina using
FLOPER.

Acknowledgements: This work has been partially supported by the EU, under FEDdER
the Spanish Science and Innovation Ministry (MICINN) undesint TIN2008-06622-C03-03,
as well as by Ingenieros Alborada IDI under grant TRA20009)&nd the JUNTA ANDALU-
CIA administration under grant TIC-6114 (proyecto de egpela). Carlos Vazquez and Ginés
Moreno received grants for International mobility from tbeiversity of Castilla-La Mancha
(CYTEMA project and “Vicerrectorado de Profesorado”).

Bibliography

[ALM11] J. Almendros-Jiménez, A. Luna, G. Moreno. A FlexdbKPath-based Query Lan-
guage Implemented with Fuzzy Logic ProgrammingPhoc. of 5th International
Symposium on Rules: Research Based, Industry FocusedviRlle Barcelona,
Spain, July 19-21Pp. 186-193. Springer Verlag, LNCS 6826, 2011.

[ALM12a] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzgic Programming for Im-
plementing a Flexible XPath-based Query Langué&gdectr. Notes Theor. Comput.
Sci.282:3-18, 2012.

[ALM12b] J. M. Almendros-Jiménez, A. Luna, G. Moreno. A XR&ebugger Based on Fuzzy
Chance Degrees. 1®n the Move to Meaningful Internet Systems: Proceedings
OTM 2012 Workshops, Rome, Italy, September 1(Pp4669-672. Springer Ver-
lag, LNCS 7567, 2012.

[ALM13] J. Almendros-Jiménez, A. Luna, G. Moreno. AnnatatiFuzzy Chance Degrees
when Debugging XPath Queries. Auvances in Computational Intelligence - Proc

Analyzing Fuzzy Logic Computations with Fuzzy XPath 14 /15

of the 12th International Work-Conference on Artificial KaWNetworks, IWANN
2013 (Special Session on Fuzzy Logic and Soft Computingcapph), Tenerife,
Spain, June 12-14Pp. 300-311. Springer Verlag, LNCS 7903, Part Il, 2013.

[BBC*07] A.Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. KiyRobie, J. Siméon.
XML path language (XPath) 2.0/3C 2007.

[BMP95] J. F. Baldwin, T. P. Martin, B. W. Pilswortlfril- Fuzzy and Evidential Reasoning
in Artificial Intelligence John Wiley & Sons, Inc., 1995.

[GMVO04] S. Guadarrama, S. Mufioz, C. Vaucheret. Fuzzy ProfagNew Approach Using
Soft Constraints PropagatioRuzzy Sets and Systefd¥$4(1):127-150, 2004.

[KMP00] E. Klement, R. Mesiar, E. Pafriangular Norms Trends in logic, Studia logica
library. Springer, 2000.
http://books.google.es/books?id=rlyqcjfKMN4C

[KS92] M. Kifer, V. Subrahmanian. Theory of generalized atated logic programming
and its applicationsJournal of Logic Programming2:335-367, 1992.

[LIo87] J. Lloyd. Foundations of Logic Programmin@pringer-Verlag, Berlin, 1987.

[MCS11] S. Mufioz-Hernandez, V. P. Ceruelo, H. Strass. RFEufyntax, semantics and
implementation details of a simple and expressive fuzzydwer Prolog.Inf. Sci.
181(10):1951-1970, 2011.

[MMO8] P. Morcillo, G. Moreno. Programming with Fuzzy LogiRules by using the
FLOPER Tool. In al. (ed.)Proc of the 2nd. Rule Representation, Interchange
and Reasoning on the Web, International Symposium, RulgdPp. 119-126.
Springer Verlag, LNCS 3521, 2008.

[MMPV10] P. Morcillo, G. Moreno, J. Penabad, C. Vazquez. Acical Management of Fuzzy
Truth Degrees using FLOPER. In al. (ed?)pc. of 4nd Intl Symposium on Rule In-
terchange and Applications, RuleML'1Bp. 20-34. Springer Verlag, LNCS 6403,
2010.

[MMPV11] P. Morcillo, G. Moreno, J. Penabad, C. Vazquez. fuZomputed Answers Col-
lecting Proof Information. In al. (ed.)Advances in Computational Intelligence -
Proc of the 11th International Work-Conference on Artificdeural Networks,
IWANN 2011 Pp. 445-452. Springer Verlag, LNCS 6692, 2011.

[MOV04] J. Medina, M. Ojeda-Aciego, P. Vojtas. Similaribased Unification: a multi-
adjoint approachi-uzzy Sets and Syste##6:43—62, 2004.

[SS83] B. Schweizer, A. SklaRrobabilistic Metric SpacesCourier Dover Publ., 1983.
http://books.google.es/books?id=8LUd6Txuu5sC

[Vojo1] P. VojtasS. Fuzzy Logic Programmindruzzy Sets and Systerh24(1):361-370,
2001.

Analyzing Fuzzy Logic Computations with Fuzzy XPath 15/15

http://books.google.es/books?id=rIyqcjfKMN4C
http://books.google.es/books?id=8LUd6Txuu5sC

	Introduction
	Fuzzy XPath
	Fuzzy Logic Programming with MALP and FLOPER
	Exploring Derivation Trees with Fuzzy XPath
	Conclusions and Future Work

