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Abstract In this paper we present a fuzzy variant of the XPath query
language for the �exible information retrieval on XML documents. Our
main purpose is to provide a repertoire of operators that o�er the possibil-
ity of managing satisfaction degrees by adding structural constraints and
fuzzy operators inside conditions, in order to produce a ranked sorted list
of answers according to user's preferences when composing queries. By
using the FLOPER system designed in our research group, our proposal
has been implemented with a fuzzy logic language to take pro�t of the
clear synergies between both target and source fuzzy languages.
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�1 Introduction
User's preferences play a key role in information retrieval. In modern

Web based information retrieval systems, user expects to introduce his(er) key

words and preferences to in�uence the search results. However, while the tech-

nology is still improving, users get sometimes frustrated with those retrieval



2 Jesús M. ALMENDROS-JIMÉNEZ, Alejandro LUNA and Ginés MORENO

systems which only o�er a poor/rigid set of expressive resources. Therefore the

need for �exible query languages arises, in which the user can formulate queries

according to his(er) preferences, being adaptable to data schema but without

increasing complexity. In addition, �exible query languages should be equipped

with a mechanism for obtaining a certain ranked list of answers. The ranking of

answers can provide satisfaction degrees depending on several factors.

The XPath language 11) has been proposed as a standard for XML query-

ing and it is based on the description of the path in the XML tree to be retrieved.

XPath allows to specify the name of nodes (i.e., tags) and attributes to be present

in the XML tree together with boolean conditions about the content of nodes

and attributes.

XPath querying mechanism is based on a boolean logic: the nodes re-

trieved from an XPath expression are those matching the path of the XML tree.

Therefore, the user should know the XML schema in order to specify queries.

However, even when the XML schema exists, it may not be available for users.

Moreover, XML documents with the same XML schema can be very di�erent

in structure. Let us suppose the case of XML documents containing the cur-

riculum vitae of a certain group of persons. Although they can share the same

schema, each one can decide to include studies, jobs, training, etc. organized

in several ways: by year, by relevance, and with di�erent nesting degree. In an

XPath-based structural query, the main criteria to provide a certain degree of

satisfaction are the hierarchical deepness and document order. However, user's

preferences play also a key role in determining the best solutions. Conditions

on XPath expressions are usually of varying importance for a user, that is, the

user gives a higher degree of importance to certain requirements when satisfying

his(er) wishes. Therefore, the query language should provide mechanisms for as-

signing priority to answers, when they occur in di�erent parts of the document,

as well as priority to queries, with regard to user's preferences.

In this paper we present a fuzzy variant of the XPath query language

for the �exible information retrieval on XML documents. Our main purpose

is to provide a repertoire of operators that o�er the possibility of managing

satisfaction degrees by adding structural constraints and fuzzy operators inside

conditions (which must be considered from now on as fuzzy conditions instead of

boolean conditions), in order to produce a ranked sorted list of answers according

to user's preferences when composing queries. By using the FLOPER system

designed in our research group, our proposal has been implemented with a fuzzy
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logic language to take pro�t of the clear synergies between both target and source

fuzzy languages.

Our approach �rstly proposes two structural constraints called DOWN

and DEEP for which a certain degree of relevance can be associated. So, whereas

DOWN provides a ranked set of answers depending on the path they are found

from �top to down� in the XML document, DEEP provides a ranked set of

answers depending on the path they are found from �left to right� in the XML

document. Both structural constraints can be used together, assigning degree of

importance with respect to the distance to the root XML element.

Secondly, we provide fuzzy variants of and and or for XPath conditions.

Crisp and and or operators are used in standard XPath over boolean conditions,

and enable to impose boolean requirements of the answers. XPath boolean

conditions can be referred to attribute values and node content, in the form of

equality and range of literal values, among others. Nevertheless, the boolean

and and or operators applied to two sub-conditions would not be precise enough

if both sub-conditions would represent more �exible values than true/false (as

occurs in the fuzzy case). When several conditions are imposed in a query, each

one contributes to satisfy the user's preferences in a di�erent way and perhaps,

the user's satisfaction is distinct for each solution.

We have enriched the arsenal of operators of XPath with fuzzy variants

of and and or. Particularly, we have considered three versions of and: and+,

and, and- (and the same for or : or+, or, or-) which make more �exible the

composition of fuzzy conditions. Three versions for each operator that come for

free from our adaptation of fuzzy logic to the XPath paradigm. One of the most

known elements of fuzzy logic is the introduction of fuzzy versions of classical

boolean operators. Product, �ukasiewicz and Gödel fuzzy logics are considered as

the most prominent logics and give a suitable semantics to fuzzy operators. Our

contribution is now to give sense to fuzzy operators into the XPath paradigm,

and particularly in user's preferences. We claim that in our work the fuzzy

versions provide a mechanism to force (and debilitate) conditions in the sense

that stronger (and weaker) user preferences can be modeled with the use of

stronger (and weaker) fuzzy conditions. The combination of fuzzy operators in

queries permits to specify a ranked set of fuzzy conditions according to user's

requirements.

Furthermore, we have equipped XPath with an additional operator that

is also traditional in fuzzy logic (apart from min, max, etc.): the average oper-
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ator avg. This operator o�ers the possibility to explicitly give weight to fuzzy

conditions. Rating such conditions by avg, solutions increase its weight in a pro-

portional way. However, from the point view of the user's preferences, it forces

the user to quantify his(er) wishes which, in some occasions, can be di�cult to

measure. For this reason, fuzzy versions of and and or are better choices in some

circumstances.

Finally, we have equipped our XPath based query language with a mech-

anism for thresholding user's preferences, in such a way that user can request

that requirements are satis�ed over a certain percentage.

1.1 Related Work
From the early works about the introduction of fuzzy concepts in

databases 15, 52, 53, 16), many works have proposed the handling of imprecise and

vague data. For instance, SQLf 12) extends SQL by introducing fuzzy conditions

evaluated on crisp information. Fuzzy logic plays also a key role in information

retrieval 39, 29, 28, 51, 47, 48, 34), and the need for providing fuzzy/�exible mecha-

nisms to XML querying has recently motivated the investigation of extensions

of the XPath language.

We can distinguish those in which the main goal is the introduction of

fuzzy information in data (similarity, proximity, vagueness, etc) 14, 13, 27, 59, 45, 46)

and the proposals in which the main goal is the handling of crisp information by

fuzzy concepts 17, 19, 22, 21, 36, 20). Our work focuses on the second line of research.

The most relevant works are 17, 19) in which authors introduce in XPath

�exible matching by means of fuzzy constraints called close and similar for node

content, together with below and near for path structure. In addition, they have

studied the deep-similar notion for tree matching, and fuzzy versions for not,

and and or operators. In order to provide ranked answers they adopt a fuzzy

set based approach in which each answer has an associated numeric value (the

membership degree). The numeric value represents the Retrieval Status Value

(RSV) of the associated item.

Our work is similar to the proposed by 17, 19). The below operator of 17, 19)

is equivalent to our proposed DOWN: both extract elements that are direct

descendants of the current node, and the penalization is proportional to the

distance. The near operator of 17, 19), which is de�ned as a generalization of

below, ranks answers depending on the distance to the required node, in any

XPath axis. Our proposed DEEP ranks answers depending of the distance to the
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current node, but the considered nodes can be direct and non direct descendants.

Therefore our proposed DEEP combined with DOWN is a particular case of

near. To have the same expressivity power as near we could incorporate to

our framework a new operator to rank answers from bottom to up. It is not a

serious problem, but makes more di�cult a direct implementation by fuzzy logic

programming. With respect to similar and close operators proposed in 17, 19),

our framework lacks similarity relations and rather focuses on structural (i.e.

path-based) �exibility.

On the other hand, some works have studied the relaxation of XPath

expressions, with the aim to retrieve elements that �almost satis�es� a query.

XPath relaxation 21) permits to answer by relaxing the match of the XPath ex-

pression with the XML tree. Relaxation provides approximate query answering,

in which an score is provided to answers. The score represents the degree in which

the relaxed query coincides with the original one. For instance, in 25) they give a

satisfaction score in [0,1] to similar queries, which measures the number and type

of relaxations applied to the original query. The satisfaction score of the answer

is the highest satisfaction score of queries providing the answer. With this aim,

an extend XPath language is de�ned to weight tags and Boolean conditions with

scores. Relaxed queries replace tags on the original one by applying renaming,

axis relaxation and deletion. In the same line, in 57) they provide vague search

on both content and structure based Boolean conditions with dynamic query

relaxation. Content conditions are similar to XPath Full-Text speci�cation 18).

XPath relaxation is a mixture of content scores and the number of structural

query conditions satis�ed. A thesaurus-based similarity method relaxes tags.

They count the number of navigational query conditions that are satis�ed and

combine with the content conditions matched. They assign a small and tunable

constant c for every navigational condition that is matched. Query relaxation

is also the target of other works 14, 57, 24, 9, 38, 23, 36). Once scored answers are

returned, ranking can be provided, and thus top answers can be considered.

The computation of the best k answers with e�cient algorithms has been also

subject of study. Top-k answering aims to provide as soon as it can, the k top-

ranked result elements according to the score. In 25), they study how to provide

top-k answers for XPath relaxation including negation. The method used in 57)

for top-k similarity queries is based on thresholding. Thresholding and top-k

answering for XPath relaxation have been also studied in 22, 7, 8, 38).

Our fuzzy variant of XPath cannot be properly considered an XPath re-
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laxation technique, although fuzzy conditions relaxes Boolean conditions: fuzzy

and and avg are weaker that Boolean and. Nevertheless, answer ranking can be

provided in our work, and thresholding techniques can be applied to e�ciently

retrieve best solutions. In Section 5 will show the bene�ts of using a fuzzy com-

mand (FILTER) for thresholding, which �lters the set of ranked answers in a

dynamic way, in order to reduce the runtime and complexity of computations

when dealing with large �les. Both thresholding and top-k are pruning algo-

rithms which in the case of fuzzy logic programming prune branches of the search

tree of solutions. FLOPER was already equipped with thresholding and thus fa-

cilitated the implementation of dynamic �ltering. In our case, top-k has not been

still considered because user preferences are usually measured in terms of degree

of satisfaction rather than a number of answers. In any case, we will consider

to extend our work with dynamic top-k �ltering, by using (fuzzy logic program-

ming) top-k answering in the line of 56). Additionally, we have studied in 3) how

to debug XPath, by introducing the command DEBUG to XPath expressions,

and whose result is an XPath expression with annotations (SWAP,DELETE

and JUMP) for node replacing and deletion, and axis relaxation. Answers of

queries annotated with DEBUG are ranked according to degree of similarity of

the original query. The reader can found more details in 3).

Finally, during the last decades several fuzzy logic programming systems

have been developed where the classical logic programming inference mechanism

of SLD�resolution has been replaced with a fuzzy variant able to handle par-

tial truth and to reason with uncertainty. Most of these systems implement the

fuzzy resolution principle introduced by Lee in 35), such as languages Prolog-

Elf 30), Fril 10), RFuzzy 44), the QLP schemes of 50, 49), as well as many-valued

logic programming languages 58, 55). Our work focuses on the so-called Multi-

Adjoint Logic Programming (MALP) approach 40, 33), which is an extension of

logic programming whose syntax is close to Prolog but enjoys higher levels of

�exibility. We have developed the FLOPER �Fuzzy LOgic Programming Envi-

ronment for Research� tool ∗1 which manages MALP programs (see 41, 42, 43) for

more details). We have found a great opportunity to transfer our technology to

the XPath setting.

1.2 Contributions of the Approach
The main contribution of our approach is that we have extended the number of

∗1 http://dectau.uclm.es/floper.
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fuzzy operators considered so far thanks to the highly expressive power of our

framework based on fuzzy logic programming. Our current proposal shows that

fuzzy logic programming can be useful in this area. However, the combination of

both paradigms involves to re-interpretate fuzzy logic programming concepts in

terms of XML and XPath. Multi-adjoint logic programming uses as theoretical

basis elements of multi-adjoint lattices as truth values associated to logic compu-

tations. Truth values are computed from a special type of SLD-resolution. Fuzzy

operators are semantically integrated in the framework and serve as underlined

mechanism in resolution. Logic rules are labeled with truth values and use fuzzy

operators in the rule body as well as implication connectives. Traditional logic

programming computations are modi�ed in such a way that resolution steps in-

volve the computation of truth values by the fuzzy operators. The adaptation

of the MALP framework to XML and XPath involves the following elements.

• We have accommodated XML documents to fuzzy logic programming.

Fortunately, we have been previously working with XML taking logic

programming as basis for the XPath implementation 2, 1). We follow in

case of fuzzy logic programming the same kind of encoding of XPath

proposed in 2). There, a predicate called xpath is de�ned by means of

logic rules, which basically traverse the representation of the XML tree

as a Prolog term. Here, we have modi�ed the predicate xpath in order

to include the handling of the new fuzzy operators, and the retrieval of

ranked lists of answers.

• We have adapted fuzzy operators to XML and XPath. The adaptation

can be seen from two points of view: we give denotational semantics to

fuzzy operators in XPath queries, and we give operational semantics to

fuzzy operators w.r.t. fuzzy logic programming.

• We have integrated multi-adjoint fuzzy logic programming with XML and

XPath. Truth values usually associated to logic computations have to be

transformed into RSVs (i.e. Retrieval Status Values) of XML nodes. We

have de�ned a new concept of truth value, in the fuzzy logic terminology,

to be associated to XPath computations which represents a tree of RSVs,

called TV tree. The TV tree describes degrees of satisfaction of each node

of the XML tree with respect to an XPath query. Intuitively, for a given

XML whose skeleton is a tree, we can de�ne a TV tree with exactly the

same topology, such that after �matching� both trees, the content of each

node would be labeled with a real number in the unit interval.
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• We have accommodated multi-adjoint logic programming theory to XML

and XPath. Fuzzy operators and TV trees have been justi�ed in terms of

the multi-adjoint schema. TV trees are elements of a multi-adjoint lattice

and fuzzy operators are well-de�ned for such lattice.

• The fuzzyXPath predicate of the fuzzy logic based implementation of

XPath is de�ned with MALP rules. MALP rules handle TV trees and

computations are mapped to TV trees as truth values in the fuzzy logic

programming terminology.

• We have implemented a prototype of our proposal using the FLOPER

system. The prototype is publicly available from http://dectau.uclm.

es/fuzzyXPath/, and it is equipped with a Web interface in which ex-

amples can be tested.

Finally, let us remark that the current work agglutinates some elements

we have previously studied in 6, 4). In the preliminary work of 6) (extended in
4)) we focused on the introduction of structural constraints in which we im-

posed that DEEP and DOWN operators are just used once in (the root of)

XPath expressions. We also proposed the introduction of classical (i.e. prod-

uct logic) fuzzy logic operators in conditions. Here we will generalize the use

of structural constraints which now might occur in any position of the XPath

expression. Moreover, we will increase the number of fuzzy operators, incorpo-

rating �ukasiewicz and Gödel fuzzy logic operators, and thresholding constraints.

Therefore the current work subsumes but extends our previous work.

1.3 Structure of the Paper
The structure of the paper is as follows. Section 2 will present our proposal of

fuzzy XPath, and will show examples of use; Section 3 will provide MALP based

foundations to our approach; Section 4 will describe the main elements of the

implementation; Section 5 will show the bene�ts of using the �ltering command

to reduce the runtime and complexity of computations when dealing with large

�les; and, �nally, Section 6 will conclude and present future work.

�2 A Flexible XPath Language
Our proposal of �exible XPath is de�ned by the following grammar:
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xpath := [`['deep-down`]' ]path

path := literal | text() | node | @att | node/path | node//path

node := QName | QName[cond]

cond := xpath op xpath | xpath num-op number

deep := DEEP=number

down := DOWN=number

deep-down := deep | down | deep `;' down

num-op := > | = | < | <>

fuzzy-op := and | and+ | and- | or | or+ | or- |

avg | avg{number,number}

op := num-op | fuzzy-op

Basically, our proposal extends XPath as follows:

• A given XPath expression can be adorned with �[DEEP = r1; DOWN

= r2]� which means that the deepness of elements is penalized by r1 and

that the order of elements is penalized by r2, and such penalization is

proportional to the distance (i.e., the length of the branch and the weight

of the tree, respectively). In particular, �[DEEP = 1; DOWN = r2]� can

be used for penalizing only w.r.t. document order. DEEP works for //,

that is, the deepness in the XML tree is only computed when descendant

nodes are explored, while DOWN works for both / and //. Let us remark

that in our preliminary version 6) DEEP and DOWN could only be used

at the beginning of the XPath expression, however, now they can be used

anywhere, many times in an XPath expression.

• We consider three versions for each one of the conjunction and disjunction

operators (also called connectives or aggregators) which are based in the

so-called Product, Gödel and �ukasiewicz fuzzy logics. The Gödel and

�ukasiewicz logic based fuzzy symbols 1 are represented in our application

by and+, and-, or- and or+, in contrast with product logic operators and

and or (see Figure 2). Adjectives like pessimistic, realistic and optimistic

are sometimes applied to the �ukasiewicz, Product and Gödel fuzzy logics

since operators satisfy that, for any pair of real numbers x and y in [0, 1]

(as used in MALP):

0 ≤ &L(x , y) ≤ &P(x , y) ≤ &G(x , y) ≤ 1

1 The fuzzy logic community frequently uses the terms t-norm and t-conorm for expressing
generalized versions of conjunctions and disjunctions.
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&P(x, y) = x ∗ y |P(x, y) = x+ y − x ∗ y Product: and/or

&G(x, y) = min(x, y) |G(x, y) = max(x, y) Gödel: and+/or-

&L(x, y) = max(x+ y − 1, 0) |L(x, y) = min(x+ y, 1) �uka: and-/or+

Fig. 1 Fuzzy Logical Operators

and the contrary for the disjunction operations (as used in MALP):

0 ≤ |G(x , y) ≤ |P(x , y) ≤ |L(x , y) ≤ 1

So, note that it is more di�cult to satisfy a condition based on a pes-

simistic conjuntor/disjunctor (i.e, and-/or- inspired by the �ukasiewicz

and Gödel logics, respectively) than with Product logic based operators

(i.e, and/or), while the optimistic versions of such connectives

(i.e., and+/or+) are less restrictive, obtaining a greater set of answers.

This is a consequence of the following chain of inequalities (as used in

MALP):

0 ≤ &L(x , y) ≤ &P(x , y) ≤ &G(x , y) ≤ |G(x , y) ≤ |P(x , y) ≤ |L(x , y) ≤ 1

or equivalently, by using the notation of our application:

0 ≤ and−(x , y) ≤ and(x , y) ≤ and+(x , y) ≤ or−(x , y) ≤ or(x , y) ≤ or+(x , y) ≤ 1

Therefore users should re�ne queries by choosing operators in the previ-

ous sequence from left to right (or from right to left), till �nding solutions

satisfying in a stronger (or weaker) way the requirements.

• Furthermore, the avg operator is de�ned too in a weighted way. Assuming

two given RSV's r1 and r2, avg is de�ned as (r1 + r2)/2, and avg(p1, p2)

is de�ned as (p1 ∗ r1 + p2 ∗ r2)/p1 + p2.

• Finally, we have considered a special case of constraint, a thresholding

constraint of the form xpath op r, where r ∈ [0, 1] and op ∈ {<,>,=}, in
which the user can specify the threshold that the RSV of a given fuzzy

condition has to raise.

In general, an extended XPath expression de�nes, w.r.t. an XML document, a

sequence of subtrees of the XML document where each subtree has an associ-

ated RSV. XPath conditions, which are de�ned as fuzzy operators applied to

XPath expressions, compute a new RSV from the RSVs of the involved XPath

expressions, which at the same time, provides an RSV to the node.

2.1 Examples with DEEP and DOWN
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<hotels>
<hotel name="Melia">

<close_to>Gran Via
<close_to>Callao</close_to>
<close_to>Plaza de Espana</close_to>

</close_to>
<services>

<pool></pool>
<metro>150</metro>

</services>
<price>100</price>

</hotel>
<hotel name="NH">

<close_to>Sol
<close_to>Gran Via</close_to>
<close_to>Callao</close_to>

</close_to>
<services>

<metro>300</metro>
</services>
<price>150</price>

</hotel>
<hotel name="Hilton">

<close_to>Moncloa
<close_to>Gran Via</close_to>
<close_to>Sol</close_to>

</close_to>
<services>

<metro>150</metro>
</services>
<price>50</price>

</hotel>
<hotel name="Tryp">

<close_to>Cibeles
<close_to>Alcala

<close_to>Gran Via</close_to>
</close_to>
<close_to>Retiro</close_to>

</close_to>
<services>

<pool></pool>
<metro>10</metro>

</services>
<price>575</price>

</hotel>
<hotel name="Sheraton">

<close_to>Recoletos
<close_to>Cibeles</close_to>
<close_to>Gran Via

<close_to>Sol</close_to>
</close_to>

</close_to>
<close_to>Sol</close_to>
<services>

<pool></pool>
<metro>300</metro>

</services>
<price>475</price>

</hotel>
</hotels>

Fig. 2 Input XML document collecting Hotel's information
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In order to illustrate the language, let us see some examples of �exible

queries in XPath. We will take as input document the one shown in Figure 2.

The example shows a sequence of hotels where each one is described by name

and price, proximity to streets (close_to) and provided services (pool and metro

-together with distance-). In the example, we assume that document order has

the following semantics. The tag close_to speci�es the proximity to a given

street. However, the order of close_to tags is relevant, and the top streets are

closer than the streets at the bottom. In other words, the case:

hotel_H

close_to street_A

close_to street_B

implies that hotel H is near to both streets A and B, but closer to A than to B.

The nesting of close_to has also a relevant meaning. While a given street A can

be close to the hotel H, the streets close to A are not necessarily close to the

hotel H. In other words, in the case:

hotel_H

close_to street_A

close_to street_B

the street B is near to street A, and street A is close to hotel H, which implies

that street B is also close to hotel H, but no so close as street A. H can be situated

at the end of street A, and B can cross A at the beginning. We can say, in this

case, that B is an adjacent street to H, while A is close to H. This means that

when looking for a hotel close to a given street, the highest priority should be

assigned to streets close to the hotel, while adjacent streets should be relegated

to lower priority. The example has been modeled in order to illustrate the use

of structural constraints and fuzzy operators. Particularly, when the user tries

to �nd hotels very close to a given street it should be provided a high DOWN

value and a low DEEP value, whereas in the case the user tries to �nd hotels in

the neighborhood of an street should provide high DEEP and low DOWN.

Example 2.1

In our �rst example, we focus on the use of DOWN. Let us suppose that the

user is interested to �nd a hotel close to Sol street. This might be his(er) �rst

tentative looking for a hotel. Using crisp XPath (s)he would formulate:

<< /hotels/hotel [close_to/text() = “Sol”]/@name >>
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However, it gives the user the set of hotels close to Sol without distin-

guishing the degree of proximity. The fuzzy version of XPath permits to specify

a value of degradation of answers, in such a way that the user reformulates the

query as:

<< /hotels/hotel [[DOWN = 0 .9 ]close_to/text() = “Sol”]/@name >>

The query speci�es that close_to tag is degraded by 0.9 from top to

down. In other words, when Sol is found close to a hotel, the position in which

it occurs gives a di�erent satisfaction value. In this case, we will obtain:

<result>

<result rsv="1.0">NH</result>

<result rsv="0.9">Sheraton</result>

</result>

Fortunately, we have found a hotel (NH) which is very close to Sol, and

one (Sheraton) which is a little bit farther from Sol.

Let us remark the previous example and the other examples of the Sec-

tion show the results in order of satisfaction degree.

Example 2.2

Let us suppose now that we are looking for a hotel close to Callao. In this case,

we can try to make the same question:

<< /hotels/hotel [[DOWN = 0 .9 ]close_to/text() = “Callao”]/@name >>

However, the result is empty. Therefore we can try to relax the query

by changing `/' by `//':

<< /hotels/hotel [[DOWN = 0 .9 ]//close_to/text() = “Callao”]/@name >>

Now, we will �nd answers, however, we will not be able to distinguish

the proximity of the hotels. Our fuzzy version of XPath permits to specify how

the solutions are degraded but not only taking into account the order but also

the deepness. In other words, there would be useful to give di�erent weights to

be a close street, and to be an adjacent street. Therefore we can use the query:
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<< /hotels/hotel[[DEEP = 0.5;DOWN = 0.9]//

close_to/text() = “Callao”]/@name >>

obtaining the following results:

<result>

<result rsv="0.5">Melia</result>

<result rsv="0.45">NH</result>

</result>

It seems that Melia is near to Callao, and NH is a little bit farther than

Melia.

Example 2.3

The use of DEEP combined with DOWN could be considered as the best choice.

However, DEEP can be used alone when the user only wants to penalize adja-

cency. If we like to search hotels near to Gran Via street, degrading adjacent

streets with a factor of 0.5, we can consider the following query (and we obtain

the following result):

<< //hotel [[DEEP = 0 .5 ]//close_to/text() = “Gran Via”]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.5">NH</result>

<result rsv="0.5">Hilton</result>

<result rsv="0.5">Sheraton</result>

<result rsv="0.25">Tryp</result>

</result>

We can see that Melia is close to Gran Via, while NH, Hilton and Sher-

aton are situated in adjacent streets of Gran Via. Tryp is the farthest hotel.

Example 2.4

The following table summarizes the results by combining DEEP and DOWN in

a single query:

<< //hotel [[DEEP = r1 ;DOWN = r2 ]//close_to/text() = “Gran Via”]/@name >>
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HOTEL (A: r1 = 0.1, r2 = 1) (B: r1 = 0.5, r2 = 0.5) (C: r1 = 1, r2 = 0.1)

Melia

NH

Hilton

Tryp

Sheraton

1

0.1

0.1

0.01

0.1

1

0.5

0.5

0.25

0.25

1

1

1

1

0.1

While case C only penalizes closeness, case A penalizes adjacency. Case

B penalizes both closeness and adjacency.

2.2 AVG Examples

Example 2.5

Let us suppose that the user is interested in a hotel combining two services like

pool and metro. Instead of using classical and/or connectives for mixing both

features, we can obtain more �exible estimations on RSV values by using the

avg operator as follows:

<< //hotel [services/pool avg services/metro]/@name >>

thus obtaining the following results:

<result>

<result rsv="1.0">Melia</result>

<result rsv="1.0">Tryp</result>

<result rsv="1.0">Sheraton</result>

<result rsv="0.5">NH</result>

<result rsv="0.5">Hilton</result>

</result>

By using the avg fuzzy operator, the user �nds that Melia, Tryp and

Sheraton have pool and metro, while NH and Hilton lack on one of them.

Example 2.6

Now, let us suppose that the importance of the metro is the double of the

importance of the pool. In this case, the user can formulate the query as follows:

<< //hotel [services/pool avg{1 , 2} services/metro]/@name >>
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obtaining the following results:

<result>

<result rsv="1.0">Melia</result>

<result rsv="1.0">Tryp</result>

<result rsv="1.0">Sheraton</result>

<result rsv="0.666667">NH</result>

<result rsv="0.666667">Hilton</result>

</result>

We can see in the results that NH and Hilton increase the degree of

satisfaction w.r.t. the previous query given that they have metro station.

Example 2.7

Let us suppose the user is looking now for hotels giving more importance to the

fact that the price of the hotel is lower than 150 euros than to the proximity to

Sol street. The user can formulate the query as follows, obtaining the results

below:

<< //hotel[[DEEP = 0.8]//close_to/text() = “Sol”

avg{1, 2} //price/text() < 150]/@name >>

<result>

<result rsv="0.933333">Hilton</result>

<result rsv="0.666667">Melia</result>

<result rsv="0.333333">NH</result>

<result rsv="0.333333">Sheraton</result>

</result>

2.3 Thresholding Example
Fuzzy conditions return a satisfaction degree in the in�nite space of

real numbers between 0 and 1. We can take pro�t of this feature by imposing

thresholds to such conditions, thus �ltering the set of solutions according to the

satisfaction degree. The idea is to formulate queries by directly acting on the

satisfaction degrees obtained after evaluating �fuzzy� conditions.

Example 2.8

For instance, let us suppose that in the query of example 2.3, the user looks

for hotels in which the degree of proximity to Gran Via street is greater than

seventy �ve per cent (i.e., value 0.75 measured between 0 and 1) then (s)he can
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formulate the following query, obtaining the following results:

<< //hotel [([DEEP = 0 .5 ]//close_to/text() = “Gran Via”) > 0 .75 ]/@name >>

<result>

<result rsv="1.0">Melia</result>

</result>

2.4 Conjunctive/Disjunctive Connective Examples

Example 2.9

In the following queries we express the following requirement: hotels near to

Gran Via, near to a metro station, having pool, with greater preference (3 to

2) to pool than metro. We will use and+, and and and- which provide distinct

levels of exigency, which are demonstrated in the results.

<< //hotel[([DEEP = 0.5]//close_to/text() = “Gran V ia”) and+

(//pool avg{3, 2} //metro/text() < 200)]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.5">Sheraton</result>

<result rsv="0.4">Hilton</result>

<result rsv="0.25">Tryp</result>

</result>

<< //hotel[([DEEP = 0.5]//close_to/text() = “GranV ia”) and

(//pool avg{3, 2} //metro/text() < 200)]/@name >>

<result>

<result rsv="1.0">Melia</result>

<result rsv="0.3">Sheraton</result>

<result rsv="0.25">Tryp</result>

<result rsv="0.2">Hilton</result>

</result>

<< //hotel[([DEEP = 0.5]//close_to/text() = “GranV ia”) and−

(//pool avg{3, 2} //metro/text() < 200)]/@name >>
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<result>

<result rsv="1.0">Melia</result>

<result rsv="0.25">Tryp</result>

<result rsv="0.1">Sheraton</result>

</result>

So, in the �rst case (the least demanding and optimistic) we obtain four

hotels (Melia, Sheraton, Hilton and Tryp), as well as in the second case (a little

bit more exigent) while third table (the strongest one) lists three candidates

(Melia, Tryp and Sheraton). Sheraton and Hilton are degraded using and and

and-. This e�ect would even be more evident when previous conditions are

compared with a threshold. For instance, to be greater than 0.25. In such a case

and- gives just a single solution: Melia.

�3 Multi-Adjoint Logic Programming and Fuzzy
XPath

In this section, we will introduce the elements of multi-adjoint logic pro-

gramming (MALP). MALP will serve as semantic foundation of our proposal.

Moreover, MALP will be used for the implementation of our language. The sec-

tion will describe the theoretical basis of MALP: multi-adjoint lattices and fuzzy

operators de�ned on them. In addition, it will be described an instance of MALP

which considers a multi-adjoint lattice of trees with truth values, and operators

de�ned for such lattice. Finally, we will describe the rule-based implementation

of our fuzzy XPath by using MALP rules.

3.1 Multi-Adjoint Logic Programming
In multi-adjoint logic programming 40, 33), we work with a �rst order lan-

guage, L, containing variables, function symbols, predicate symbols, constants,

quanti�ers (∀ and ∃), and several arbitrary connectives such as implications

(←1,←2, . . . ,←m), conjunctions (&1,&2, . . . ,&k), disjunctions (∨1,∨2, . . . ,∨l),
and general hybrid operators (�aggregators� @1,@2, . . . ,@n), used for combin-

ing/propagating truth values through the rules, and thus increasing the language

expressiveness. Additionally, our language L contains symbols called truth de-

grees belonging to a multi-adjoint lattice L, whose formal description will be

presented afterward in De�nition 3.4 (see also Figure 3.1).

A rule is a formula �A←i B with α�, where A is an atomic formula (usu-
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ally called the head), B (which is called the body) is a formula built from atomic

formulas B1, . . . , Bn (n ≥ 0 ), truth values of L and conjunctions, disjunctions

and general aggregations, and �nally α ∈ L is the �weight� or truth degree of the

rule. The set of truth values L may be the carrier of any complete lattice, as for

instance occurs with the interval ([0, 1],≤), where ≤ is the usual order. Consider,

for instance, the program P of Figure 3 composed of three rules with associated

multi-adjoint lattice 〈[0, 1],≤,←P,&P〉, where label P stands for Product logic

with the following connective de�nitions (for implication, conjunction and dis-

junction symbols, respectively): �←P (x, y) = min(1, x/y)�, �&P(x, y) = x ∗ y�
and � |P(x, y) = x+ y − x ∗ y�.

R1 : p(X) ←P q(X,Y ) |P r(Y ) with 0.8

R2 : q(a, Y ) ← with 0.9

R3 : r(b) ← with 0.7

Fig. 3 Example of MALP program

In order to describe the procedural semantics of the multi�adjoint logic

language, in the following we denote by C[A] a formula where A is a sub-

expression (usually an atom) which occurs in the �possibly empty� one hole

context C[] whereas C[A/A′] means the replacement of A by A′ in context C[],
and mgu(E) is the most general uni�er of an equation set E. The pair 〈Q;σ〉
composed of a goal and a substitution is called a state. So, given a program

P, an admissible computation is formalized as a state transition system, whose

transition relation
AS
; is the smallest relation satisfying the following admis-

sible rules:

1) 〈Q[A];σ〉 AS
; 〈(Q[A/v&iB])θ;σθ〉 if A is the selected atom in goal Q,

A′←iB with v in P, where B is not empty, and θ = mgu({A′ = A})

2) 〈Q[A];σ〉 AS
; 〈(Q[A/v])θ;σθ〉 if A′← with v in P, θ = mgu({A′ = A})

The following derivation illustrates our de�nition (note that the exact program

rule used -after being renamed, that is, standardized apart- in the corresponding

step is annotated as a super�index symbol, whereas exploited atoms appear un-

derlined):
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&P(x, y) = x ∗ y ←P (x, y) = min(1, x/y) Product

&G(x, y) = min(x, y) ←G (x, y) =

1 if y ≤ x

x otherwise
Gödel

&L(x, y) = max(x+ y − 1, 0) ←L (x, y) = min{x− y + 1, 1} �uka.

Fig. 4 Adjoint Pairs in ([0, 1],≤)

〈p(X); {}〉 AS
; R1

〈0.8 &P (q(X1, Y1) |P r(Y1)); {X/X1}〉
AS
; R2

〈0.8 &P (0.9 |P r(Y2)); {X/a,X1/a, Y1/Y2}〉
AS
; R3

〈0.8 &P (0.9 |P 0.7); {X/a,X1/a, Y1/b, Y2/b}〉

The �nal formula can be directly interpreted in the lattice L to obtain the �nal

fuzzy computed answer. So, since 0.8 &P (0.9 |P 0.7)= 0.8∗(0.9+0.7−(0.9∗0.7)) =
0.776, we say that the truth degree of p(X) is 0.776 when X is a.

3.2 MALP and Fuzzy XPath
MALP can be used as basis of our proposed �exible extension of XPath

as follows. The idea is to consider MALP as semantic background for fuzzy

queries expressed in XPath. With this aim we have to accommodate MALP

truth values and connectives to XML documents, RSVs, fuzzy operators and

structural/thresholding constraints.

Firstly, we have to consider a suitable multi-adjoint lattice. The elements of the

multi-adjoint lattice represent the truth values. In the context of XPath, truth

values are trees of truth values, which we call TV trees. TV trees represent the

RSV associated to each node of the ordered XML tree. From a theoretical point

of view, the evaluation of a given goal w.r.t. a MALP program, will return a

TV tree (i.e, an ordered tree of real numbers in the interval [0, 1]) as the result

of the computation.

De�nition 3.1

(TV trees) Formally, a TV tree is an empty tree or a pair (r, un) where r ∈ [0, 1]

and un is a sequence of n TV trees. In a TV tree t we denote by root(t) to

r and by ch(t) to un. Let T be the set of TV trees, and ≤ the usual order

of real numbers; we can de�ne the following order between TV trees; t �T s

i� root(t) ≤ root(s) and ch(t) �T ch(s) whenever t is not empty; and t �T s
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!!!"#$!

!!!"#%! !!!"#$! !!!"#&!

!!!"#'! !!!"#(! !!!"#)!

!!!"#%!

!!!"#%! !!!"#*!

!!!"#(!

Fig. 5 TV trees partial order

whenever s is empty.

Abusing from the notation, in the previous �T is used for sequences

of TV trees, whose de�nition is as follows. Given two sequences of TV trees

un = (u1, . . . , un) and v
m = (v1, . . . , vm) then un �T vm whenever there exists

a subsequence sm of un such that si �T vi for all 1 ≤ i ≤ m.

Intuitively, TV trees are ordered in decreasing order w.r.t. size, and

increasing w.r.t. the relation on real numbers, and therefore the biggest element

is the empty tree. We can see in Figure 5 an example of trees ordered by the

�T relation, where the sequence of children is ((0.7, (0.5)), (0.6, (0.4, 0.8))); an

alternative sequence is (0.3, (0.6, (0.4, 0.8))).

We denote by first(un, k) (resp. last(un, k)) the �rst n − k (resp. last

k) elements of the sequence un. When k > n then first(un, k) is completed

with k-n empty trees at the right hand side and last(un, k) is completed with

k-n empty trees at the left hand side.

Proposition 3.1

�T is a partial order (re�exive, antisymmetric and transitive).

Proof Re�exivity and transitivity can be easily proved. The relation is

antisymmetric reasoning by induction as follows. Let us suppose t �T s and

s �T t then, when t and s are empty then trivially s = t; otherwise root(t) ≤
root(s) and root(s) ≤ root(t) therefore root(t) = root(s); in addition (a) there

exists a subsequence sm of un such that sj �T wi, 1 ≤ i ≤ m, where ch(t) = un

and ch(s) = wm; analogously, (b) there exists a subsequence l
n
of wm of such

that lk �T uk, 1 ≤ k ≤ n. We can reason now that n = m: from (a) we have

that n ≥ m, and from (b) we have that m ≥ n. Now, from (a) un �T wn and

from (b) wn �T un, thus by hypothesis un = wn, and therefore s = t.
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Fig. 6 Conjunction on TV trees (according Product logic)

Now, we can de�ne the following operations in the set T .

De�nition 3.2

(Conjunction on TV trees) The operation &TO(t, s), O ∈ {P, G, L} is de�ned as

the tree whose root is &O(root(t), root(s)), and children ch(t)+ ch(s); whenever

t (resp. s) is not empty, and otherwise the result is s (resp. t), where &O is the

corresponding operator over [0, 1] and + is the concatenation of sequences.

Basically, the conjunction is de�ned as the application of the correspond-

ing conjunction operator to the roots of the trees, and the concatenation of the

children. We can see in Figure 6 an example of conjunction between TV trees.

De�nition 3.3

(Implication Operator on TV trees) The operation ←TO (t, s), O ∈ {P, G, L} is
de�ned in the case of non-empty trees t and s as the tree whose root is ←O

(root(t), root(s)), and the children are first(un, n − m) + t if n > m and t

otherwise, where t = last(un,m)\wm where ch(t) = un and ch(s) = wm. In the

case t is empty is de�ned as the empty tree and in the case s is empty as t.

In the previous de�nition, we use the di�erence of two sequences of

TV trees: vn\wn de�ned as the sequence un in which un is empty whenever

wi �T vi for all 1 ≤ i ≤ n; and un = vn, otherwise. Basically, the implication
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Fig. 7 Implication on TV trees (according Product logic)

operator ←TO (t, s) computes the corresponding adjoint operator to the roots of

the trees, and the children of t are replaced by empty TV trees (from right to

left) whenever they are greater or equal than the corresponding element of s. We

can see in Figure 7 an example of use of the implication, in the case of product

logic, between TV trees.

Our goal now is to prove that TV trees conform a multi-adjoint lattice

de�ned as follows.

De�nition 3.4

Let (L,�) be a lattice. A multi-adjoint lattice is a tuple:

〈L,�,←1 ,&1 , . . . ,←n ,&n〉

such that:

1. (L,�) is complete, namely, ∀S ⊂ L non empty ∃inf(S), sup(S). Then,
it is a bounded lattice, i.e. it has bottom and top elements, denoted by

> and ⊥, respectively.
2. (&i,←i) is an adjoint pair in (L,�), i.e.:

a. &i is non decreasing in both arguments, for all i, i = 1, . . . , n.

b. ←i is non decreasing in the �rst argument and non increasing in the

second, for all i.

c. x � (y←iz) if and only if (x&iz) � y, for any x, y, z ∈ L (adjoint
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property).

3. >&iv = v&i> = v for all v ∈ L, i = 1, . . . , n, where > = sup(L).

TV trees are a multi-adjoint lattice based on truth values over [0, 1]. In

order to prove this property, we need the following auxiliary proposition.

Proposition 3.2

〈[0, 1],≤,←P,&P,←G,&G,←L,&L〉 is a multi-adjoint lattice.

Note that even when the previous claim holds too for many other arbitrary multi-

adjoint lattices (L,�), we prefer to accommodate it to the [0, 1] case because our

notion of TV trees simply relies on this concrete kind of basic truth degrees (i.e.,

real numbers in the unit interval). Now, we are ready to establish the following

theorem proving our intended result.

Theorem 3.1

〈T ,�T ,←TP ,&TP ,←TG ,&TG ,←TL ,&TL 〉 is a multi-adjoint lattice.

Proof

1. Let be a non empty S ⊂ T , then inf(S) is de�ned as the empty TV

tree whenever all the elements of S are empty, otherwise as the TV

tree whose root is the in�mum of the roots of the non-empty elements

of S, and the children are the sequence un where ui = inf({wi|wn ∈
perm(s)n, s ∈ S}), where n = maxChildren(S) represents the max-

imum number of children of the elements of S, and perm(s)n is the

set of all sequences of length n including ch(s) as subsequence and

empty trees in the other positions. Now, inf(S) �T s, for all s ∈
S by construction: when s ∈ S then root(inf(S)) ≤ root(s) and

inf({wi|perm(s)n = wn, s ∈ S}) �T ch(s) given that ch(s) is a sub-

sequence of a sequence of perm(s). Now, inf(S) is the greatest lower

bound: let us suppose t �T s for all s ∈ S; now, root(t) ≤ root(s) for all
s ∈ S; thus root(inf(S)) ≤ root(t); in addition ch(t) �T ch(s) for all

s ∈ S, and thus, for all p ∈ perm(t)n and q ∈ perm(s)n we have that

p �T q; and then inf({wi|wn ∈ perm(s)n, s ∈ S}) �T p �T ch(t),

concluding that inf(S) �T t. Analogously, sup(S) is de�ned as the

empty TV tree whenever all the elements of S are empty, otherwise

as the TV tree whose root is the supremum of the roots of the non-

empty elements of S, and the children are the sequence un where
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ui = sup({wi|wn ∈ perm(s)n, s ∈ S}), where n = maxChildren(S). >
of T is the empty tree and ⊥ is the (in�nite) tree with 0 in all nodes.

2. a. &TO, O ∈ {P, G, L} is non decreasing: by Proposition 3.2 whenever

v �T s, v′ �T s′ then root(v)&Oroot(v
′) ≤ root(s)&Oroot(s

′); in

addition, ci �T bi, c′k �T b′k, for subsequences cn of ap and c′
m
of a′

q
,

where ch(v) = ap, ch(s) = b
n
, ch(v′) = a′

q
and ch(s′) = b′

m
. Now,

the children of &TO(v, v
′) is ap + a′

q
, and the children of &TO(s, s

′) is

b
n
+b′

m
, thus &TO(v, v

′) �T &TO(s, s
′) taking the subsequence cn+c′

m

of ap + a′
q
.

b. ←TO, O ∈ {P, G, L} is non decreasing in the �rst argument and non

increasing in the second.

Let us see the �rst case: non decreasing w.r.t. the �rst argument;

let v �T s be non empty trees; then by Proposition 3.2: root(v) ≤
root(s) and therefore ←O (root(s), root(t)) ≤←O (root(v), root(t));

in addition, there exists a subsequence a′
m

of an such that a′i �T
bi, 1 ≤ i ≤ m, where ch(v) = an and ch(s) = b

m
. Now, let us

suppose ch(t) = ck, and cj 6�T bj of last(b
m
, k). cj 6�T a′j is satis�ed

from a′j �T bj , otherwise by transitivity we have a contradiction.

Therefore ←TO(v, t) contains as children a′j , and this happens for

each element bj of last(b
m
, k). Therefore, we can prove ←TO(v, t) �T

←TO(s, t) taking the subsequence a′
m
. Similarly the case k ≥ m

taking a′
m
since empty trees are added to the left hand side. When

either v or s are empty then the property holds trivially.

Let us see the second case: non decreasing in the second argument;

let s �T v be then root(v) ≤ root(s) and therefore by Proposition

3.2 ←O(root(t), root(s)) ≤ ←O(root(t), root(v)); in addition, there

exists a subsequence a′
m
of an such that a′i �T bi, 1 ≤ i ≤ m, where

ch(v) = an and ch(s) = b
m
. Now, let us suppose ch(t) = ck, and

a′j 6�T cj , cj of last(ck, n). Thus, bj 6�T cj is satis�ed from a′j �T bj ,
otherwise by transitivity we have a contradiction. Therefore←TO(t, s)
contains as children cj , when ←TO(t, v) does. Thus, ←TO(t, s) �T
←TO(t, v) taking the subsequence ck. Similarly the case n ≥ k taking

ck since empty trees are added to the left hand side. When either s

or v are empty the property holds trivially.

c. x �T (y←TOz) if and only if (x&TOz) �T y:
(⇒):
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By Proposition 3.2 we have that if root(x) ≤ ←O(root(y), root(z))

then (root(x) &Oroot(z)) ≤ root(y); in addition, there exists a sub-

sequence a′
m

of an such that a′i �T bi 1 ≤ i ≤ m where ch(x) = an

and ch(y←TOz) = b
m
. Now, let ch(y) = ck and ch(z) = d

p
be, by

hypothesis we have that there exists a′′
k−p

subsequence of a′
m
such

that a′′j �T cj , for each cj ∈ first(ck, k − p), 1 ≤ j ≤ k − p. In ad-

dition, when c′j ∈ last(ck, p), 1 ≤ j ≤ p then either last(ck, p)\dp =

last(ck, p) and there exists a′′′
p
subsequence of a′

m
such that either

a′′′j �T c′j for all 1 ≤ j ≤ p or last(ck, p)\dp is empty and dj �T c′j

for all 1 ≤ j ≤ p. Now, we can prove (x&TOz) �T y by taking the

subsequence a′′
k−p

+ a′′′
p
in the �rst case, and a′′

k−p
+ d

p
in the

second one. Similarly the case p ≥ k taking a′′′
p
and d

p
in each one

of the cases. When either x or y are empty the result is trivial.

(⇐):

By Proposition 3.2 we have that if (root(x)&Oroot(z))≤ root(y) then
root(x) ≤ ←O(root(y), root(z)); in addition, there exists a subse-

quence a′
m
of an such that a′i �T bi 1 ≤ i ≤ m where ch(x&Oz) = an

and ch(y) = b
m
. Now, we have two cases: either last(b

m
, k)\ck

is empty where ch(z) = ck and therefore for all b′j ∈ last(b
m
, k)

cj �T b′j , 1 ≤ j ≤ k or last(b
m
, k)\ck = last(b

m
, k) and there-

fore there exists a subsequence a′′
k
of a′

m
such that a′′j �T b′j ,

1 ≤ j ≤ k. Now, we can prove that x �T (y←Oz) taking the subse-

quence first(a′
m
,m−k) in the �rst case, and first(a′

m
,m−k)+a′′k

in the second case. Similarly the case k ≥ m taking the empty set

in the �rst case, and a′′
k
in the second one. since empty trees are

added to the left hand side.

3. >&TOv = v&TO> = v given that > is the empty tree.

Fuzzy XPath will be grounded in multi-adjoint logic programming with

TV trees as truth values, Product, �ukasiewicz and Gödel operators, and two

extra monotonic hybrid operators, particularly, @avg and @fuse.

Now, we would like to show how TV trees are used for representing computations

of results in our fuzzy variant of XPath, and how MALP rules are used for
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[element(hotels, [],
[element(hotel, [name='Melia'],

[element(close_to, [],
[

'Gran Via',
element(close_to,[],['Callao']),
element(close_to,[],['Plaza de Espana'])
],

element(services,[],
[

element(pool,[],[]),
element(metro,[],[150])
],

element(price,[],[100])
]

element(hotel,[name="NH"],
....
]

Fig. 8 Example of XML data represented in MALP

computing results from XPath expressions.

1. XML documents are represented with MALP terms, which are identical

to Prolog terms. MALP represents XML trees with a term of the form:

element(tag, attributes, children)

where tag is the root of the tree, attributes is a list of attribute/value

pairs, and children is a list of children. For instance, the example of

Figure 2 is represented with the MALP term of Figure 8.

2. XPath expressions are also represented as MALP terms, particularly,

with a MALP list. For example, /hotel/services/pool is represented by

[hotel,services,pool], where some elements of the list can be also

either a list (for nested XPath expressions), an attribute name (like

attr(name)), a label relativePath for representing // or a fuzzy condition

(represented by a MALP term of the form tree(op,xpath,xpath)).

3. TV trees are represented as MALP terms of the form:

tv(truthvalue, [nodecontent, siblingtv, childrentv])

where truthvalue is the truth value of the current node, nodecontent is

the content of the node when it is included in the answer of the query,

siblingtv is the TV tree of the �rst sibling node, and childrentv is the TV

tree of the �rst children. We have to remark the following consideration:

TV trees are trees of truth values, according to the de�nition of previous

section, however TV trees in MALP include the content of the selected
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nodes in order to make easier the implementation. Moreover, TV trees

in MALP are represented as binary trees.

Figure 9 shows an example of TV tree computed by the fuzzyXPath

predicate for the query:

<< [DEEP = 0.5;DOWN = 0.9]//hotel[//

close_to/text() = “Gran V ia”]/@name >>

tv(1.0, [[],
tv(0.5, [[tv(1.0,[]),['Melia']], [],
tv(0.9, [[tv(1.0,[]),['NH']], [],
tv(0.9, [[tv(1.0,[]),['Hilton']], [],
tv(0.9, [[tv(1.0,[]),['Tryp']], [],
tv(0.9, [[tv(1.0,[]),['Sheraton']],[],[]]) ]) ]) ])]), []])

Fig. 9 Example of a TV structure in MALP

4. Now, a MALP predicate called fuzzyXPath that takes as input (a) an

XPath expression represented by a list, (b) an XML tree represented

by a MALP term, and (c) DEEP and DOWN values as TV trees (by

default they are tv(1,[]). It returns the TV tree associated to the query.

For instance, a call to fuzzyXPath for solving the previous query and

thus returning the TV tree of Figure 9, could have the following shape

(where �XMLdata� refers to the MALP term of Figure 8 representing

the XML document in Figure 2):

fuzzyXPath([relativePath, hotel,

tree(op(=, [relativePath, close_to, text], “Gran Via”), nil, nil),

attr(name)], << XMLdata >>, tv(0.5, []), tv(0.9, []))

5. The de�nition of the fuzzyXPath predicate distinguishes cases with re-

gard to the XPath expression to be evaluated. Such MALP predicate

basically traverses the XML tree represented by the MALP term, and

recursively computes for each node the associated RSV.

For instance, Figure 10 shows the case in which the current root matches

with the current path. We can see that &TP is used as fuzzy operator, to

compute DEEP and DOWN values for each recursive call. In addition,
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←TP is used as implication connective, and @fuse is used for re-building

the answer. The weight of the MALP rules is always tv(1,[]).

fuzzyXPath([Label|LabelRest],[element(Label,_,Children)|Siblings],Deep,Down)

←T
P

@fuse (
tv(1,[element(Label,Attr,Children), [], []]),

&T
P (Deep,fuzzyXPath(LabelRest,Children,Deep,Down)),

&T
P (Down,fuzzyXPath([Label|LabelRest],Siblings,Deep,Down))

) with tv(1,[])

Fig. 10 Example of MALP rule

6. Figure 11 shows the case of MALP rules called from fuzzyXPath for

evaluating avg, where fuzzy conditions are handled by a predicate called

execute_fcond.

fuzzyXPath([Label,tree(A,B,C)],[element(Label,Attr,Children)|Siblings],Deep,Down)

←T
P

@fuse(
execute_fcond(Label,tree(A,B,C),element(Label,Attr,Children)),

&T
P (Down,fuzzyXPath([Label,tree(A,B,C)],Siblings,Deep,Down))

) with tv(1,[])

execute_fcond(Label,tree(avg,T1,T2),element(Label,Attr,Children)) ←T
P

@avg(
execute_fcond(Label,T1,element(Label,Attr,Children)),
execute_fcond(Label,T2,element(Label,Attr,Children))
) with tv(1,[])

Fig. 11 Examples of MALP rules for evaluating conditions

For instance, given the query:

<< //hotel[services/pool avg services/metro]/@name >>

the corresponding call to the fuzzyXPath predicate would be:

fuzzyXPath([relativePath, hotel, tree(avg,

tree(exist([services, pool]), nil, nil),
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tree(exist([services, metro]), nil, nil)),

attr(name)], << XMLdata >>, tv(1.0, []), tv(1.0, []))

which eventually will invoke predicate execute_fcond (for evaluating

the fuzzy condition containing the avg operator) as follows:

execute_fcond(hotel, tree(avg,

tree(exist([services, pool]), nil, nil),

tree(exist([services, metro]), nil, nil)),

<< XMLdata >>, TV_Cond)

Figure 12 shows the resulting TV tree, which clearly resembles the

XML �le previously reported in Example 2.5.

tv(1.0,[[],
tv(1.0,[[tv(1.0, []), [Melia]], [],
tv(1.0,[[tv(1.0, []), [Tryp]], [],
tv(1.0,[[tv(1.0, []), [Sheraton]], [],
tv(1.0,[[tv(0.5, []), [NH]], [],
tv(1.0,[[tv(0.5, []), [Hilton]], [], []])])])])]), []])

Fig. 12 Example of a TV obtained after evaluating a fuzzy condition

�4 Implementation
We have developed a prototype of our fuzzy XPath which is publicly

available from http://dectau.uclm.es/fuzzyXPath/, equipped with a Web

interface from which XPath queries can be tested. The implementation has been

developed with our FLOPER tool. In what follows, we will give some details

about FLOPER and the implementation of the fuzzy XPath in FLOPER.

Firstly, we would like to summarize the main elements of the FLOPER

tool 41, 42, 43) which manages MALP programs. The parser of our FLOPER tool

has been implemented by using the classical DCG's (De�nite Clause Grammars)

resource of the Prolog language, since it is a convenient notation for expressing

grammar rules. Once the application is loaded inside a Prolog interpreter, it

shows a menu which includes options for loading/compiling, parsing, listing and

saving fuzzy programs, as well as for executing/debugging fuzzy goals. All these

actions are based on the compilation of the fuzzy code into standard Prolog code.
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member(X):- number(X),0=<X,X=<1.
bot(0). top(1). leq(X,Y):- X=<Y.
or_prod(X,Y,Z):- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).
and_prod(X,Y,Z):- pri_prod(X,Y,Z).
pri_prod(X,Y,Z):- Z is X * Y.
pri_add(X,Y,Z):- Z is X+Y.
pri_sub(X,Y,Z):- Z is X-Y.

Fig. 13 Example of multi-adjoint lattice

The key point of the compilation is to extend each atom with an extra
argument, called truth variable of the form �_TVi �, which is intended to contain

the truth degree obtained after the subsequent evaluation of the atom. For
instance, the �rst clause of Figure 3 is translated into:

p(X,_TV0):-q(X,Y,_TV1),r(Y,_TV2),or_prod(_TV1,_TV2,_TV3),and_prod(0.8,_TV3,_TV0).

Moreover, the remaining rules, become the pure Prolog facts �q(a, Y,

0.9)� and �r(b,0.7)�, whereas the corresponding lattice is expressed by the clauses

of Figure 13, where the meaning of the mandatory predicates member, top, bot

and leq is obvious.

Finally, a fuzzy goal like �p(X)�, is translated into the pure Prolog goal:

p(X,Truth_degree)

(note that the last truth degree variable is not anonymous now) for which, after

choosing option �run�, the Prolog interpreter returns the desired fuzzy computed

answer:

[Truth_degree = 0.776, X = a]

Note that all internal computations (including compiling and executing) are

pure Prolog derivations, whereas inputs (fuzzy programs and goals) and outputs

(fuzzy computed answers) have always a fuzzy taste, thus producing the illusion

on the �nal user of being working with a purely fuzzy logic programming tool.

By using option � lat� (�show�) of FLOPER, we can associate (and visualize) a

new lattice to a given program. As seen before, such lattices must be expressed

by means of a set of Prolog clauses (de�ning predicates member, top, bot, leq and

the ones associated to fuzzy connectives) in order to be loaded into FLOPER.

Although the core of our implementation is written with (fuzzy) MALP

rules, we have reused/adapted several modules of our previous Prolog-based

implementation of (crisp) XPath described in 2, 1), which make use of the SWI-
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and_prod(tv(X1,X2),tv(Y1,Y2),tv(Z1,Z2)):-
pri_prod(X1,Y1,Z1),pri_app(X2,Y2,Z2).

and_luka(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):-
pri_add(X,Y,U1), pri_sub(U1,1,U2),
pri_max(U2,0.0,Z), pri_app(Elem1, Elem2, Elem0).

and_godel(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):-
pri_min(X,Y,Z), pri_app(Elem1,Elem2,Elem0).

or_prod(tv(X1,X2),tv(Y1,Y2),tv(Z1,Z2)):- pri_prod(X1,Y1,U1),
pri_add(X1,Y1,U2),pri_sub(U2,U1,Z1),
pri_app(X2,Y2,Z2).

or_luka(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):-
pri_add(X,Y,U1), pri_min(U1,1,Z),
pri_app(Elem1,Elem2,Elem0).

or_godel(tv(X,Elem1),tv(Y,Elem2),tv(Z,Elem0)):-
pri_max(X,Y,Z), pri_app(Elem1,Elem2,Elem0).

agr_aver(tv(X1,X2),tv(Y1,Y2),tv(Z1,Z2)):- pri_add(X1,Y1,Aux),
pri_div(Aux,2,Z1),pri_app(X2,Y2,Z2).

agr_avg(tv(V1,E1),tv(V2,E2),tv(T1,F1),tv(T2,F2),tv(V3,G)):-
V3 is (V1*T1 + V2*T2)/(T1+T2),pri_app(E1,E2,A1),
pri_app(F1,F2,A2),pri_app(A1,A2,G).

pri_add(X,Y,Z) :- Z is X+Y. pri_sub(X,Y,Z) :-Z is X-Y.

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

pri_app([],[],[]):-!.

pri_app([],A,A):-!.

pri_app(A,[],A):-!.

pri_app([Element,TV_Son,[]],TV_SibA,[Element,TV_Son,TV_SibA]):-!.

pri_app([Element,TV_Son,TV_sib],TV_SibA,[Element,TV_Son,TV_SibR]):-
pri_app(TV_sib,TV_SibA,[Element,TV_Son,TV_SibR]),!.

Fig. 14 Multi-adjoint lattice for FuzzyXPath (�le �tv.pl�)

fuzzyXPath([Label|LabelRest],[element(Label,_,Children)|Siblings],Deep,Down,TV_Iam):-
fuzzyXPath(LabelRest,Children,Deep,Down,TV_Son),
and_prod(Deep,TV_Son,TV_Son0),
fuzzyXPath([Label|LabelRest],Siblings,Deep,Down,TV_Bro),
and_prod(Down,TV_Bro,TV_Bro0),
agr_fuse(tv(1,[element(Label,Attr,Children),[],[]]),TV_Son0,TV_Bro0,TV_body),
and_prod(tv(1,[]),TV_body,TV_Iam).

Fig. 15 Prolog clause obtained by FLOPER after compiling a MALP rule

Prolog library for loading XML �les in order to store each XML document by

means of a Prolog term. For loading XML documents in our implementation

we use the predicate load_xml(+File,-Term), and similarly, we have a pred-

icate write_xml(+File,+Term) for writing a data-term representing an XML
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document into a �le. And, of course, the parser of our application has been

extended to recognize the new keywords DEEP, DOWN, avg, etc... with the

proper arguments.

Furthermore, we have incorporated a lattice de�nition according to the

de�nitions of Section 3.2, which is shown in Figure 14, where and, or and avg

operators are de�ned by Prolog rules. Figure 15 shows the Prolog compilation

from FLOPER of the rule of Figure 10. Finally, we have de�ned a predicate

tv_to_elem to show the result in a pretty way which transforms the returned

TV tree to an XML tree.

�5 Dynamic Filtering for Improving E�ciency
In 32, 31) we have reported some thresholding techniques specially tailored

for the MALP language, where the main idea consists in to dynamically create

and evaluate �lters for prematurely disregarding those super�uous computations

leading to non-signi�cant solutions. Somehow inspired by the same guidelines,

we have recently equipped our fuzzyXPath interpreter with a command with

syntax �[FILTER=r]� (being r a real number between 0 and 1) which can be

used just at the beginning of a query for indicating that only those answers

with RSV greater of equal than r must be generated and reported. As we have

described in 5), when �[FILTER=r]� precedes a fuzzy query, the interpreter

lazily explores an input XML document for dynamically disregarding as soon as

possible those branches of the XML tree leading to irrelevant solutions with an

RSV degraded below r, thus allowing the possibility of e�ciently managing large

�les without reducing the set of answers for which users are mainly interested

in.

In order to explain the bene�ts of using the FILTER command, let us

consider in this section the XML document shown in Figure 16, for which the

execution of query �[//book[@year<2000 avg @price<50]/title� produces the

following set of solutions:

<result>

<title rsv="1.0">La Galatea</title>

<title rsv="1.0">Los trabajos de Persiles y Sigismunda</title>

<title rsv="1.0">La Celestina</title>

<title rsv="1.0">El remedio en la desdicha</title>

<title rsv="1.0">La Dragontea</title>

<title rsv="0.5">Don Quijote de la Mancha</title>

<title rsv="0.5">Hamlet</title>

<title rsv="0.5">Romeo y Julieta</title>
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<bib>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<publications> <book year="1997" price="35.99">

<title>La Galatea</title>
<author>Miguel de Cervantes Saavedra</author>
<publications>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Segismunda</title>
<author>Miguel de Cervantes Saavedra</author></book>

</publications></book>
</publications></book>

<book year="1999" price="25.65">
<title>La Celestina</title>
<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95">
<title>Hamlet</title>
<author>William Shakespeare</author>
<publications>

<book year="2000" price="22.5">
<title>Romeo y Julieta</title>
<author>William Shakespeare</author></book>

</publications></book>
<book year="2007" price="22.95">

<title>Las ferias de Madrid</title>
<author>Felix Lope de Vega y Carpio</author>
<publications>

<book year="1996" price="27.5">
<title>El remedio en la desdicha</title>
<author>Felix Lope de Vega y Carpio</author> </book>

<book year="1998" price="12.5">
<title>La Dragontea</title>
<author>Felix Lope de Vega y Carpio</author></book>

</publications></book>
</bib>

Fig. 16 Input XML document collecting books

<title rsv="0.5">Las ferias de Madrid</title>

</result>

If we consider now the new, quite similar query �[FILTER=0.4]//book[@year

<2000 avg @price<50]/title�, we clearly obtain again nine answers, but only �ve

if we �x �[FILTER=0.8]�. Obviously, we would hope that the runtime of the

second case should be lower than the �rst one since, as our approach does, there

is no need for computing all solutions and then �ltering the best ones. This

desired dynamic behaviour when avoiding useless computations is re�ected in

Figure 17 which considers the e�ort needed for executing (excluding parsing/-

compiling time) a query like �[FILTER=r]//book[(@price>25 and @price<30)

avg (@year<2000 or @year>2006)]�where each row represents the size of several

XML �les accomplishing with the same structure of our running example (but

considering di�erent nesting levels of tags book, title, author and publications),
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Records
FILTER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000 1.766 1.696 1.734 0.842 0.469 0.268 0.221 0.087 0.056
2000 6.628 6.432 6.998 3.242 1.439 0.677 0.599 0.168 0.122
3000 14.532 14.023 14.059 6.306 2.831 1.257 1.101 0.253 0.179
4000 25.535 24.684 24.722 10.883 4.827 1.918 1.794 0.345 0.242
5000 41.522 37.782 37.166 16.201 7.242 2.993 2.516 0.427 0.281
6000 58.905 55.354 55.596 24.411 10.993 4.207 3.554 0.554 0.373
7000 85.167 85.652 82.733 37.748 14.436 5.083 4.653 0.649 0.460
8000 137.737 102.816 102.763 69.401 26.680 8.273 5.894 0.690 0.481
9000 175.272 131.828 131.021 56.937 22.601 7.869 7.329 0.824 0.549
10000 195.613 185.201 167.676 95.286 26.649 9.516 9.595 0.973 0.742

Fig. 17 Performance of fuzzy XPath by using FILTER on XML �les with growing sizes
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Fig. 18 Runtime for several fuzzy XPath queries varying DEEP and FILTER

and each column refers to a di�erent degree of the FILTER command. Here, the

runtime is measured in seconds (the benchmarks have been performed using a

computer with processor Intel Core Duo, with 2 GB RAM and Windows Vista)

and each record in the input �le refers to a di�erent book (that is, the number

of records coincides with the number of occurrences of tag book) which might

contain other books inside its publications tag.

Moreover, in Figure 18 we continue with a similar query to the previous

one, but also considering the DEEP command2. Here, for a large XML docu-

ment with a �xed size, we express the number of seconds needed for executing

such query when varying FILTER and DEEP, where it is easy to see that the

2 This kind of statistics can be produced on-line for several XML �les and fuzzy XPath
queries via the following URL that we have just prepared for the interested reader: http:
//dectau.uclm.es/fuzzyXPath/fuzzyXPathEstatistic2.php\#testing.
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Fig. 19 Varying DEEP and FILTER in a query using avg{30, 1}

behaviour is more and more improved whenever FILTER grows and DEEP de-

creases, as wanted. In contrast with the previous query which is based on the

avg command, we can now use the priorized version of such operator which let us

to give di�erent degrees of importance to its arguments (remember that, for two

given RSV's r1 and r2, avg{p1, p2} is computed by r3 = (r1∗p1+r2∗p2)/(p1+p2))
and hence, if in the previous query we use avg{30, 1} instead of standard avg,

we indicate that the �rst sub-condition (i.e., @price>25 and @price<30) is 30

times more important than the second one (i.e., @year<2000 or @year>2006),

whereas avg{1, 30} represent the inverse criterion. In Figures 19 and 20 we pro-

vide statistics in the same way than in Figure 18, but using now average with

priorities 30-1 and 1-30, respectively.

In order to implement the FILTER command in our interpreter, the

key point consists in introducing two extra parameters on the main predicate

of our application, which now looks like: fuzzyXPath(+ListXPath,+Tree,+De-

ep,+Down,+Filter,+Accum). So, whereas ListXPath is the Prolog representa-

tion of an XPath expression and Tree is the term representing an input XML

document, the values for DEEP/DOWN/FILTER have the obvious meaning,

and the last argument Accum (which is appropriately updated -maybe decreased-

when going deeper in the exploration of the �le) accumulates the sequence of

penalties produced till reaching a concrete node, and it is very useful for decid-

ing when performing a recursive call to the children of such node whenever the

value of Accum is better than the one �xed by FILTER.
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Fig. 20 Varying DEEP and FILTER in a query using avg{1, 30}

�6 Conclusions and Future Work
In this paper we have described the foundations and implementation

of a �exible extension based on fuzzy logic programming of the well-known

XPath language. The new fuzzy XPath dialect takes pro�t of the underlying

source MALP language for easily modeling a wide range of �exible operators

representing di�erent versions of conjunctions, disjunctions and other highly

expressive hybrid operators for retrieving data from XML documents, as well

as for constraining queries with structural and thresholding conditions. Fuzzy

XPath has been integrated in the MALP framework, by providing semantics to

fuzzy logic programs that work with trees with truth values. We have described

the implementation which is publicly available from http://dectau.uclm.es/

fuzzyXPath/ and has been coded as a set of MALP (Multi-Adjoint Logic Pro-

gramming) rules developed under the FLOPER (Fuzzy LOgic Programming En-

vironment for Research) system built in our research group. Additionally, we

have shown benchmarks of performance of our system, improved by dynamic

�ltering. In http://dectau.uclm.es/fuzzyXPath/ there are examples of use

of our language which can be executed online.

As future work we plan the following research lines. Firstly, we are in-

terested to extend our dialect of XPath with the handling of text content in the

same line as Full-text XPath 18). Including content analysis, our fuzzy XPath

will gain on expressivity and �exibility. Secondly, we are interested in top-k an-

swering. Top-k answering has been already studied for fuzzy logic programming
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56), and can be adapted to FLOPER. Thirdly, we �nd that MALP and FLOPER

can be used in ontologies and the Semantic Web, following 54, 37, 26).
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