
Thresholded Debugging of XPath Queries

Jesús M. Almendros-Jiménez
Department of Languages and Computation

University of Almería, Spain
Email: jalmen@ual.es

Alejandro Luna and Ginés Moreno
Department of Computing Systems

University of Castilla-La Mancha, Spain
Email: Alejandro.Luna@alu.uclm.es Gines.Moreno@uclm.es

Abstract—We have recently designed/implemented a method
for debugging XPath queries which produces a set of alternative
XPath expressions with higher chances for retrieving answers
from XML files. In this paper we focus on the scalability of
our debugger for dealing with massive XML documents by
making use of the new command FILTER which is intended
to prematurely disregard those computations leading to non
significant solutions (i.e., with a poor “chance degree” according
to the user’s preferences). The key point is the natural capability
for performing “dynamic thresholding” enjoyed by the fuzzy logic
language used for implementing the tool, which somehow connects
with the so-called «top-k answering problem» very well-known
in the fuzzy logic and soft computing arenas.

Keywords—XPath, Debugging, Thresholding, Fuzzy Logic Pro-
gramming, Software for Soft Computing.

I. INTRODUCTION

The eXtensible Markup Language (XML) was born to
represent machine readable data by means of semantic tags,
which represent an important novelty w.r.t previous markup
languages, and it is widely used in many areas of computer
software (visit http://www.w3.org/XML/). XML provides a very
simple language for representing the structure of data, by
making use of tags for labeling pieces of textual content,
and a tree structure to describe the content in an hierarchical
way. XML emerged as a solution to data exchange between
applications thanks to the use of tags that permit to locate the
content. XML files are largely used in databases, internet, and
so on. Moreover, the XPath language [1] was designed as a
query language for XML documents in which the path of the
tree is used to describe the query. XPath expressions can be
adorned with boolean conditions on nodes and leaves to restrict
the number of answers to a given query. XPath is the basis of
the more powerful query language XQuery designed to join
multiple XML documents and to give format to the answer.

On the other hand, fuzzy logic plays too an important role
in information retrieval [2], [3], [4], [5], [6], and the need
for providing fuzzy/flexible mechanisms to XML querying has
recently motivated the investigation of extensions of the XPath
language. We can distinguish those in which the main goal
is the introduction of fuzzy information in data (similarity,
proximity, vagueness, etc) [7], [8], [9], [10], [11] and the
proposals in which the main goal is the handling of crisp
information by fuzzy concepts [12], [13], [14], [15], [16], [17].
Our work focuses on the second line of research.

In spite of the simplicity of the XPath language, the
programmer usually makes mistakes when (s)he describes the
path in which the data are allocated. Tipically, (s)he omits
some of the tags of the path, s(he) adds more than necessary,

and (s)he also uses similar but wrong tag names. When the
query does not match to the tree structure of the XML tree,
the answer is empty. However, we can also find the case in
which the query matches to the XML tree but the answer does
not satisfy the programmer. Due to the inherent flexibility of
XML documents, the same tag can occurs at several positions,
and the programmer could find answers that do not correspond
to her (his) expectations. In other words, (s)he finds a correct
path, but a wrong answer. We can also consider the case in
which a boolean condition is wrong, expressing a wrong range,
and several conditions that do not hold at the same time. When
the programmer does not find the answer (s)he is looking for,
there is a mechanism that (s)he can try to debug the query.
In XPath there exists an operator, denoted by ‘//’, that permits
to look for the tag from that position. However, it is useless
when the tag is present at several positions, since even though
the programmer finds answers, (s)he does not know whether
they are close to her (his) expectations.

XPath debugging has to take into account the previous
considerations. Particularly, there is an underlying notion of
chance degree. When the programmer makes mistakes, the
number of bugs can be higher or lower, and the chance degree
is proportional to them. Moreover, there are several ways on
which each bug can be solved, and therefore the chance degree
is also dependent from the number of solutions for each bug,
and the quality of each solution. The quality of a solution
describes the number of changes to be made. Finally, there is
a case in which we have also focused our work which occurs
when the mistake comes from a similar but wrong tag. Here,
the chance degree represents the semantic similarity between
the tag expressed in the query and the tag which really appears
in the XML document.

Our proposed XPath debugging technique is guided by
the programmer that initially establishes a value (i.e., a real
value between 0 and 1), used by the debugger to penalize
bugs in a proportional way. Additionally, we assume that the
debugger is equipped with a table of similarities, that is, a
mapping between pairs of similar words with an assigned
value in the range [0, 1]. It makes possible that chance degrees
be computed from similarity degrees. The debugger reports
a set of annotated paths by using an extended XPath syntax
incorporating three annotations: JUMP, SWAP and DELETE. JUMP

is used to represent that some tags have been added to the
original expression, SWAP is used to represent that a tag has
been changed by another (similar) one and DELETE is used to
represent that a tag has been removed. Thus, the reported
XPath expressions can be seen as an updated version of
the original one, such that: case JUMP incorporates ‘//’ at the
position in which the bug is found; case SWAP includes the

Figure 1. Fuzzy Logical Operators

&P(x, y) = x ∗ y |P(x, y) = x+ y − x ∗ y Product: and/or
&G(x, y) = min(x, y) |G(x, y) = max(x, y) Gödel: and+/or-
&L(x, y) = max(x+ y − 1, 0) |L(x, y) = min(x+ y, 1) Łukasiewicz: and-/or+

new tag; and finally case DELETE removes the wrong tag.
Additionally, our proposal permits the programmer to test the
reported XPath expressions. The annotated XPath expressions
can be executed in order to obtain a ranked set of answers
w.r.t. the chance degree. It facilitates the process of debugging
because programmers can visualize answers to each query in
a very easy way. We have somehow based our debugger in
the proposal proposed in [18], [19], where XPath relaxation
is studied by giving some rules for query rewriting (axis
relaxation, step deletion and step cloning, among others), even
when they do not give chance degrees associated to input
XPath expressions.

Although our approach can be applied to standard (crisp)
XPath expressions, chance degrees in XPath debugging fits
well with our proposed framework. Particularly, XPath de-
bugging annotations can be seen as annotations of XPath
expressions similary to the proposed DEEP and DOWN of [20],
[21], [22]. DEEP and DOWN serve to annotate XPath expressions
and to obtain a ranked set of answers depending on they occur,
more deeply and from top to down. Each answer is annotated
with a RSV (Retrieval Status Value) which describes the degree
of satisfaction of the answer. Here JUMP, SWAP and DELETE

penalize the answers of annotated XPath expressions. When
annotated XPath expressions are executed, we obtain a ranked
set of answers with respect to the RSV of the programmer. DEEP
and JUMP have, in fact, the same behavior: JUMP proportionally
penalizes answers as deep as they occur. Finally, and in order
to cover with SWAP, we have incorporated to our framework
similarity degrees.

Our proposal has been implemented/tested and per-
mits programmers to execute/debug the reported XPath
expressions by using our tool freely accessible from
http://dectau.uclm.es/fuzzyXPath/. Both the interpreter and the
debugger manage an extension of XPath [20], [21], [22],
[23], [24], which uses fuzzy logic programming to provide a
fuzzy taste to XPath expressions. The implementation has been
coded with the so-called «Multi-Adjoint Logic Programming»
language (MALP in brief) [25] and developed with the «Fuzzy
LOgic Programming Environment for Research» FLOPER
designed in our research group [26], [27], [28], which can be
freely downloaded from http://dectau.uclm.es/floper/.

The main goal of the present paper consists in the in-
troduction of a new fuzzy command inside the Fuzzy-XPath
debugger which comfortably relies on our implementation
based on fuzzy logic programming. So, when «[FILTER=r]»
precedes a fuzzy query1, the debugger lazily explores an
input XML document for dynamically disregarding as soon as
possible those branches of the XML tree leading to irrelevant
solutions (i.e., with a CD degraded below r), thus allowing the
possibility of efficiently managing large files without reducing

1This command was initially implemented inside the Fuzzy-XPath inter-
preter in [29], but it is important to note that in the current paper we focus
on the Fuzzy-XPath debugger.

the set of answers for which users are mainly interested
in. Hence, advice that this dynamic thresholding technique
embedded into the core of the Fuzzy-XPath debugger has two
advantages:

• firstly it permits to concentrate on significant answers
(i.e., alternative queries which do not excessively
deviate from the original one) without disturbing the
attention with useless information, and

• secondly, the computational behavior of the debugging
process is highly improved (both in time and space)
since a great amount of work is avoided when dis-
criminating useless branches of the XML tree.

The structure of the paper is as follows. After summarizing
in Section II our fuzzy extension of XPath [20], [21], [22],
in Section III we describe our debugging technique initially
presented in [23], [24]. Next, some implementation details
are explained in Section IV, paying especial attention to the
use of the FILTER command in the Fuzzy-XPath interpreter
and debugger for performing dynamic thresholding in order to
improve the efficiency of both tools. Finally, we conclude in
Section V by also sketching some lines of further research.

II. FUZZY XPATH

In this section we summarize the main elements of our
proposed fuzzy XPath language described in [20], [21], [22].
We firstly incorporate two structural constraints called DOWN

and DEEP to which a certain degree of relevance is associated.
So, whereas DOWN provides a ranked set of answers depending
on the path they are found from “top to down” in the XML
document, DEEP provides a ranked set of answers depending
on the path they are found from “left to right” in the XML
text. Both structural constraints can be used together, assigning
importance’s degrees with respect to the distance of nodes to
the root XML element.

Secondly, our fuzzy XPath incorporates fuzzy variants of
and and or for XPath conditions. Crisp and and or operators
are used in standard XPath over boolean conditions, and
enable to impose boolean requirements on the answers. XPath
boolean conditions can be referred to attribute values and
node content, in the form of equality and range of literal
values, among others. However, the and and or operators
applied to two boolean conditions are not precise enough
when the programmer does not give the same value to both
conditions. For instance, some answers can be discarded when
they could be of interest by the programmer, and accepted
when they are not relevant. Besides this, programmers would
need to know in which sense a solution is better than another.
When several boolean conditions are imposed on a query, each
one contributes to satisfy the programmer’s preferences in a
different way and perhaps, the level of satisfaction is distinct
for each solution.

We have enriched the arsenal of operators of XPath with
fuzzy variants of and and or. Particularly, we have considered
three versions of and: and+, and, and- (and the same for or
: or+, or, or-) which make more flexible the composition
of fuzzy conditions. Three versions for each operator that
come for free from our adaptation of fuzzy logic to the
XPath paradigm. One of the most known elements of fuzzy
logic is the introduction of fuzzy versions of classical boolean
operators. Product, Łukasiewicz and Gödel fuzzy logics are
considered as the most prominent logics and give a suitable
semantics to fuzzy operators (see Figure 1). Our contribution is
now to give sense to fuzzy operators into the XPath paradigm,
and particularly in programmer’s preferences. We claim that
in our work the fuzzy versions provide a mechanism to force
(and debilitate) conditions in the sense that stronger (and
weaker) programmer preferences can be modeled with the use
of stronger (and weaker) fuzzy conditions. The combination
of fuzzy operators in queries permits to specify a ranked set
of fuzzy conditions according to programmer’s requirements.

Furthermore, we have equipped XPath with an additional
operator that is also traditional in fuzzy logic: the average
operator avg. This operator offers the possibility to explicitly
give weight to fuzzy conditions. Rating such conditions by avg,
solutions increase its weight in a proportional way. However,
from the point view of the programmer’s preferences, it forces
the programmer to quantify his(er) wishes which, in some
occasions, can be difficult to measure. For this reason, fuzzy
versions of and and or are better choices in some circum-
stances. Finally, we have equipped our XPath based query
language with a mechanism for thresholding programmer’s
preferences, in such a way that programmer can request
that requirements are satisfied over a certain percentage. The
proposed fuzzy XPath is described by the following syntax:

xpath := [‘[’deep-down‘]’]path
path := literal | text() | node | @att |

node/path | node//path
node := QName | QName[cond]
cond := xpath op xpath | xpath num-op number
deep := DEEP=number

down := DOWN=number
deep-down := deep | down | deep ‘;’ down

num-op := > | = | < | <>
fuzzy-op := and | and+ | and- | or | or+ | or- |

avg | avg{num, num}
op := num-op | fuzzy-op

Basically, our proposal extends XPath as follows:

• Structural constraints. A given XPath expression can
be adorned with «[DEEP = r1; DOWN = r2]» which means that
the deepness of elements is penalized by r1 and that the
order of elements is penalized by r2, and such penalization
is proportional to the distance (i.e., the length of the branch
and the weight of the tree, respectively). In particular, «[DEEP =
1; DOWN = r2]» can be used for penalizing only w.r.t. document
order. DEEP works for //, that is, the deepness in the XML tree
is only computed when descendant nodes are explored, while
DOWN works for both / and //. Let us remark that DEEP and DOWN

can be used several times on the main path expression and/or
any other sub-path included in conditions.

• Flexible operators in conditions. We consider three

fuzzy versions for each one of the classical conjunction and
disjunction operators (also called connectives or aggregators)
describing pessimistic, realistic and optimistic scenarios, see
Figure 1. In XPath expressions the fuzzy versions of the
connectives make harder to hold boolean conditions, and
therefore can be used to debilitate/force boolean conditions.
Furthermore, assuming two given RSV’s r1 and r2, the avg
operator is obviously defined with a fuzzy taste as (r1+r2)/2,
whereas its priority-based variant, i.e. avg{p1, p2}, is defined
as (p1 ∗ r1 + p2 ∗ r2)/p1 + p2.

Consider now the following XML document for our examples:

<bib>
<name>Classic Literature</name>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<references>

<novel year="1997" price="35.99">
<name>La Galatea</name>
<author>Miguel de Cervantes Saavedra</author>
<references>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Sigismunda</title>
<author>Miguel de Cervantes Saavedra</author>

</book>
</references>

</novel>
</references>

</book>
<novel year="1999" price="25.65">

<title>La Celestina</title>
<author>Fernando de Rojas</author>

</novel>
</bib>

In general, a fuzzy XPath expression defines, w.r.t. an XML
document, a sequence of subtrees of the XML document where
each subtree has an associated RSV. XPath conditions, which
are defined as fuzzy operators applied to XPath expressions,
compute a new RSV from the RSVs of the involved XPath
expressions, which at the same time, provides a RSV to the
node.

Let us firstly consider the leftmost query in Figure 2
which requests title’s but penalizing the occurrences from the
document root by a proportion of 0.8 and 0.9 by nesting and
ordering, respectively, and for which we obtain the file listed
in Figure 2. In this document we have included as attribute
of each subtree, its corresponding RSV. The highest RSVs
correspond to the main books of the document, and the lowest
RSVs represent the books occurring in nested positions (those
annotated as related references). On the other hand, in the
right side of Figure 2, it is shown the answer associated to a
search of books, possibly referenced directly or indirectly from
other books, whose publishing year and price are relevant but
the year is three times more important than the price. Finally,
if we combine both kinds of (structural/conditional) operators
in the new query «/bib[DEEP=0.5]//book[@year<2000 avg{3,1}
@price<50]/title», we obtain as output this XML document:

<result>
<title rsv="0.25">Don Quijote de la Mancha</title>
<title rsv="0.0625">Los trabajos de Persiles y Sigismunda</title>

</result>

where it is easy to see that the ranked list of solutions is
reversed and now “Don Quijote” is not penalized with DEEP.

Figure 2. Executing two Fuzzy-XPath queries which make use of different fuzzy commands

QUERY: «/bib[DEEP=0.8;DOWN=0.9]//title» QUERY: «//book[@year<2000 avg{3,1} @price<50]/title>

OUTPUT FILE:

<result>
<title rsv="0.8000">Don Quijote de la Mancha</title>
<title rsv="0.7200">La Celestina</title>
<title rsv="0.2949">Los trabajos de Persiles y Sigismunda</title>

</result>\\

OUTPUT FILE:

<result>
<title rsv="1.00">Los trabajos de Persiles y Sigismunda</title>
<title rsv="0.25">Don Quijote de la Mancha</title>

</result>

III. DEBUGGING XPATH

In this section we recast from [23], [24] our proposed
technique for debugging XPath expressions. The debugger ac-
cepts as inputs a query Q preceded by the [DEBUG=r] command
(for instance, «[DEBUG=0.5]/bib/book/title»), where r is a real
number in the unit interval. Assuming an input XML document
like the one depicted in the previous section, the debugging
produces a set of alternative queries Q1, ..., Qn packed into an
output XML document with the following structure (see also
Figure 3):

<result>
<query cd="r1" attributes1> Q1 </query>
. . .
<query cd="rn" attributesn> Qn </query>
</result>

where the set of alternatives is ordered with respect to the CD
key. This value measures the chance degree of the original
query with respect to the new one, in the sense that as more
changes are performed on Qi and as more traumatic they are
with respect to Q, then the CD value becomes lower.

In the left column of Figure 3, the first alternative, with the
highest CD, is just the original query, thus, the CD is 1, whose
further execution should return «Don Quijote de La Mancha».
From now on, we show that our debugger runs even when the
set of answers is not empty, like in this case. The remaining
options give different CD’s depending on the chance degree,
and provide XPath expressions annotated with JUMP, DELETE and
SWAP commands.

In order to explain the way in which our technique gen-
erates the attributes and content of each query tag in the
output XML document, let us consider a generic path Q of
the form: «[DEBUG=r]/tag1/.../tagi/tagi+1/...», where we say
that tagi is at level i in the original query. So, assume that
when exploring the input query Q and the XML document D,
we find that tagi in Q does not occurs at level i in (a branch
of) D. Then, we consider the following three situations:

Swapping case: Instead of tagi, we find tag′i at level i
in the input XML document D, being tagi and tag′i two
similar terms with similarity degree s. Then, we generate
an alternative query by adding the attribute tagi ="tag′i"
and replacing in the original path the occurrence "tagi/"
by "[SWAP=s]tag′i/". The second query proposed in the left
column of Figure 3 illustrates this case, that is: « <query
cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>
». Let us observe that : 1) we have included the attribute
«book="novel"» in order to suggest that instead of looking now
for a book, finding a novel should be also a good alternative,
2) in the path we have replaced the tag book by novel and
we have appropriately annotated the exact place where the
change has been performed with the annotation [SWAP=0.8]

and 3) the CD of the new query has been adjusted with the
similarity degree 0.8 of the exchanged tags. Now, it is possible
to launch with our Fuzzy-XPath interpreter mentioned before,
the execution of the (fuzzy) XPath queries «/bib/novel/title»
and «/bib/[SWAP=0.8]novel/title». In both cases we obtain the
same result, i.e., «La Celestina» but with different RSV (or
Retrieval Status Value [20], [21]) in each case: 1 and 0.8,
respectively.

Jumping case: Even when tagi is not found at level i in the
input XML document D, tagi+1 appears at a deeper level
(i.e., greater than i) in a branch of D. Then, we generate
an alternative query by adding the attribute tagi="//", which
means that tagi has been jumped, and replacing in the path
the occurrence "tag_i/" by "[JUMP=r]//", being r the value
associated to DEBUG. This situation is illustrated by the third and
fourth queries in the left column of Figure 3, where we propose
to jump tags book and bib. The execution of the queries
returns different results, since for «/bib/[JUMP=0.5]//title» and
«/[JUMP=0.5]//book/title» we obtain respectively the following
pair of documents:

<result>
<title rsv="0.5">Don Quijote de la Mancha</title>
<title rsv="0.5">La Celestina</title>
<title rsv="0.03125">Los trabajos de Persiles y Sigismunda</title>

</result>

<result>
<title rsv="0.5">Don Quijote de la Mancha</title>
<title rsv="0.03125">Los trabajos de Persiles y Sigismunda</title>

</result>

where we can see that, as more tags are jumped, their resulting
values become lower and lower.
Deletion case: This scenario emerges when at level i in the
input XML document D, we found tagi+1 instead of tagi.
So, the intuition tell us that tagi should be removed from
the original query Q and hence, we generate an alternative
query by adding the attribute tagi="" and replacing in the
path the occurrence "tag_i/" by "[DELETE=r]", being r the
value associated to DEBUG. This situation is illustrated by
the fifth query in Figure 3, where the deletion of the tag
book is followed by a swapping of similar tags title and
name. The CD 0.45 associated to this query is defined as
the product of the values associated to both DELETE (0.5)
and SWAP (0.9), and hence the chance degree of the original
one is lower than the previous examples. So, the execution
of query «/bib/[DELETE=0.5][SWAP=0.9]name», should produce
the XML-based output: <result> <name rsv="0.45">Classic
Literature</name> </result> . As we have seen in the previ-
ous example, the combined use of one or more debugging
commands (SWAP, JUMP and DELETE) is not only allowed but
also frequent. In other words, it is possible to find several
debugging points. One more example: the execution of query
«/[DELETE=0.5][JUMP=0.5]//[SWAP=0.9]name» produces:

<result>
<name rsv="0.225">Classic Literature</name>
<name rsv="0.028125">La Galatea</name>

</result>

Figure 3. Debugging two Fuzzy-XPath queries with or without repetitions of the DEBUG command

QUERY: «[DEBUG=0.5]/bib/book/title» QUERY: «[DEBUG=0.7]/bib/[DEBUG=0.6]book/[DEBUG=0.5]title»

OUTPUT FILE: OUTPUT FILE:

<result>
<query cd="1.0">/bib/book/title</query>
<query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>
<query cd="0.5" book="//">/bib/[JUMP=0.5]//title</query>
<query cd="0.5" bib="//">/[JUMP=0.5]//book/title</query>
<query cd="0.45" book="" title="name">/bib/[DELETE=0.5][SWAP=0.9]

name</query>
<query cd="0.4" bib="//" book="novel">/[JUMP=0.5]//[SWAP=0.8]novel/

title</query>
<query cd="0.25" book="" title="//">/bib/[DELETE=0.5][JUMP=0.5]//

title</query>
<query cd="0.25" book="//" book="">/bib/[JUMP=0.5]//[DELETE=0.5]title</query>
<query cd="0.25" bib="" book="//">/[DELETE=0.5][JUMP=0.5]//book/title</query>
<query cd="0.25" bib="//" book="//">/[JUMP=0.5]//[JUMP=0.5]//title</query>
<query cd="0.25" bib="//" bib="">/[JUMP=0.5]//[DELETE=0.5]book/title</query>
<query cd="0.225" title="//" title="//" title="name">/bib/book/[JUMP=0.5]//

[JUMP=0.5]//[SWAP=0.9]name</query>
<query cd="0.225" bib="" book="//" title="name">/[DELETE=0.5][JUMP=0.5]//

[SWAP=0.9]name</query>
<query cd="0.225" bib="//" book="" title="name">/[JUMP=0.5]//[DELETE=0.5]

[SWAP=0.9]name</query>
<query cd="0.2" bib="" book="//" book="novel">/[DELETE=0.5][JUMP=0.5]//

[SWAP=0.8]novel/title</query>
.........

</result>

<result>
<query cd="1.0">/bib/book/title</query>
<query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>
<query cd="0.7" bib="//">/[JUMP=0.7]//book/title</query>
<query cd="0.6" book="//">/bib/[JUMP=0.6]//title</query>
<query cd="0.56" bib="//" book="novel">/[JUMP=0.7]//[SWAP=0.8]novel/title

</query>
<query cd="0.54" book="" title="name">/bib/[DELETE=0.6][SWAP=0.9]name

</query>
<query cd="0.42" bib="" book="//">/[DELETE=0.7][JUMP=0.6]//book/title

</query>
<query cd="0.42" bib="//" book="//">/[JUMP=0.7]//[JUMP=0.6]//title</query>
<query cd="0.378" bib="" book="//" title="name">

/[DELETE=0.7][JUMP=0.6]//[SWAP=0.9]name</query>
<query cd="0.378" bib="//" book="" title="name">

/[JUMP=0.7]//[DELETE=0.6][SWAP=0.9]name</query>
<query cd="0.336" bib="" book="//" book="novel">

/[DELETE=0.7][JUMP=0.6]//[SWAP=0.8]novel/title</query>
<query cd="0.3" book="" title="//">/bib/[DELETE=0.6][JUMP=0.5]//title</query>
<query cd="0.2646" bib="//" bib="" book="" title="name">

/[JUMP=0.7]//[DELETE=0.7][DELETE=0.6][SWAP=0.9]name
</query>

.........
</result>

This query, which was listed in Figure 3 as <query
cd="0.225" bib="" book="//" title="name">/[DELETE=0.5]
[JUMP=0.5] [SWAP=0.9] name</query>, contains several changes
on its body (w.r.t. the original goal), and hence its final CD
0.225 is quite low since it has been obtained by multiplying
the three values associated to the deletion of the tag bib (0.5),
jumping the tag book (0.5) and the swapping of title by name
(0.9).

We would like to remark that even when we have worked
with a very simple query with three tags in our exam-
ples, our technique works with more complex queries with
large paths and connectives in conditions, as well as DEBUG

used in several places on the query. For instance, in the
right column of Figure 3 (compare it with the left col-
umn) we show the result of debugging the following query:
«[DEBUG=0.7]/bib/[DEBUG=0.6]book/[DEBUG=0.5]title».

Finally, it is important to note that the wide range of
alternatives proposed by our technique (Figure 3 is still incom-
plete), reveals its high level of flexibility: programmers are free
to use the alternative queries to execute them, and to inspect
results up to their intended expectations. However, since many
of the alternatives have a very low CD, their meanings and
shapes have been deviated far away from the original query
and they seem to be useless for the user. This fact justifies the
technique we propose in the next section in order to avoid the
waste of computational resources for generating them.

IV. DYNAMIC FILTERS FOR THE THRESHOLDED
DEBUGGING OF QUERIES

In [30], [31] we have reported some thresholding tech-
niques specially tailored for the MALP language, where the
main idea consists in to dynamically create and evaluate filters
for prematurely disregarding those superfluous computations
leading to non-significant solutions. Somehow inspired by
the same guidelines, in [29] we have recently equipped our

Fuzzy-XPath interpreter with a new command with syntax
«[FILTER=r]» (being r a real number between 0 and 1) which
can be used just at the beginning of a query for indicating
that only those answers with RSV greater of equal than r
must be generated and reported. In the present work, we show
the benefits of using the same command that we have just
implemented into the Fuzzy-XPath debugger too (now, only
alternative queries to a given one whose CDs are greater of
equal than r must be generated during the debugging process).

So, if we execute a Fuzzy-XPath query with the following
form «[FILTER=0.4]//book[@year<2000 avg @price<50]/title»,
we obtain nine answers, but only five if we fix «[FILTER=0.8]».
Obviously, we would hope that the runtime of the second case
should be lower than the first one since, as our approach does,
there is no need for computing all solutions and then filtering
the best ones. This desired dynamic behaviour when avoiding
useless computations is reflected in Figure 4 which considers
the effort needed for executing (up) and debugging2 (down) a
query like «[FILTER=r]//book[(@price>25 and @price<30) avg
(@year<2000 or @year>2006)]» where each row represents
the size of several XML files accomplishing with the same
structure of our running example (but considering different
nesting levels of tags book, title, author and references),
and each column refers to a different degree of the FILTER

command. Here, the runtime is measured in seconds excluding
the extra parsing/compiling time (the benchmarks have been
performed using a computer with processor Intel Core Duo,
with 2 GB RAM and Windows Vista) and each record in the
input file refers to a different book (that is, the number of
records coincides with the number of occurrences of tag book)
which might contain other books inside its references tag. The
size of the files in the figure moves from 323Kb (1000 records)
till 3223 Kb (10000 records), but our application works fine
even when files of 33Mb (100000 records), which reveals the
interest of our results.

2In this last case we have used «[DEBUG=0.9]» just after «FILTER».

Figure 4. Performance of the Fuzzy-XPath interpreter (up) and debugger (down) by using FILTER on XML files with growing sizes

Records
FILTER (Fuzzy-XPath interpreter)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000 1.766 1.696 1.734 0.842 0.469 0.268 0.221 0.087 0.056
2000 6.628 6.432 6.998 3.242 1.439 0.677 0.599 0.168 0.122
3000 14.532 14.023 14.059 6.306 2.831 1.257 1.101 0.253 0.179
4000 25.535 24.684 24.722 10.883 4.827 1.918 1.794 0.345 0.242
5000 41.522 37.782 37.166 16.201 7.242 2.993 2.516 0.427 0.281
6000 58.905 55.354 55.596 24.411 10.993 4.207 3.554 0.554 0.373
7000 85.167 85.652 82.733 37.748 14.436 5.083 4.653 0.649 0.460
8000 137.737 102.816 102.763 69.401 26.680 8.273 5.894 0.690 0.481
9000 175.272 131.828 131.021 56.937 22.601 7.869 7.329 0.824 0.549

10000 195.613 185.201 167.676 95.286 26.649 9.516 9.595 0.973 0.742

Records
FILTER (Fuzzy-XPath debugger)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1000 2.857 0.443 0.341 0.381 0.340 0.386 0.349 0.394 0.295
2000 5.833 0.951 0.777 0.794 0.707 0.827 0.716 0.803 0.596
3000 9.422 1.411 1.059 1.243 1.053 1.251 1.100 1.233 0.881
4000 11.742 1.800 1.405 1.597 1.422 1.592 1.463 1.595 1.202
5000 15.646 2.466 1.735 1.786 1.931 1.758 2.143 1.771 1.500
6000 19.315 2.723 2.115 2.522 2.111 2.540 2.112 2.500 1.802
7000 22.599 3.397 2.505 3.025 2.475 2.468 2.783 2.442 2.561
8000 24.234 3.595 2.852 3.115 2.836 3.173 2.857 3.219 2.374
9000 30.305 3.137 4.212 3.184 5.072 3.169 3.174 3.811 2.675

10000 33.329 4.942 3.543 3.573 3.878 3.559 4.211 3.518 2.962

Moreover, in Figure 5 we continue with a similar query to
the previous one, but also considering the DEEP command3.
Here, for a large XML document with a fixed size, we
express the number of seconds needed for executing such query
when varying FILTER and DEEP, where it is easy to see that
the behaviour of the interpreter is more and more improved
whenever FILTER grows and DEEP decreases, as wanted. On the
other hand, Figure 6 reflects similar effects that occur in our
debugger, where the contrast now is established between the
FILTER and DEBUG commands.

Although the core of our application is written with (fuzzy)
MALP rules, our implementation is based on the following
items:

(1) We have reused/adapted several modules of our previ-
ous PROLOG-based implementation of (crisp) XPath
described in [32], [33].

(2) We have used the SWI-PROLOG library for loading
XML files, in order to represent a XML document by
means of a PROLOG term (the notion of term, i.e. data
structure, is just the same in MALP and PROLOG).

(3) The parser of XPath has been extended to recognize
the new keywords FILTER, DEBUG, DEEP, DOWN, JUMP, avg,
etc... with their proper arguments.

(4) Each tag is represented as a data-term of the form:
element(Tag,Attributes,Subelements), where Tag is
the name of the XML tag, Attributes is a PROLOG
list containing the attributes, and Subelements is a

3This kind of statistics can be produced on-line for several
XML files and Fuzzy-XPath queries via the following couple
of URLs that we have just prepared for the interested reader:
http://dectau.uclm.es/fuzzyXPath/?q=FuzzyXPathStatistics and
http://dectau.uclm.es/fuzzyXPath/?q=DebugStatistics (regarding
the interpreter and the debugger, respectively).

PROLOG list containing the sub-elements (i.e. sub-
trees) of the tag. For instance, the XML document
used in our examples is represented in SWI-PROLOG
like:

[element(bib,[],
[element(name,[],[’Classic Literature’]),

element(book,[year=’2001’,price=’45.95’],
[element(title,[],[’Don Quijote de la Mancha’]),

element(author,[],[’Miguel de Cervantes Saavedra’]),
element(references,[],

[element(novel,[year=’1997’,price=’35.99’],
[element(name,[],[’La Galatea’]),

element(author,[],[’Miguel de Cervantes Saavedra’]),
element(references,[],

[element(book,[year = ’1994’, price = ’25.99’],
[element(title,[],[’Los trabajos de Persiles y

Sigismunda’]),
element(author,[],[’Miguel de Cervantes

Saavedra’])
])

])
])

])
]),

element(novel, [year=’1999’,price=’25.65’],
[element(title,[],[’La Celestina’]),

element(author,[],[’Fernando de Rojas’])
])

])
]

Loading of documents is achieved by predicate
load_xml(+File,-Term) and writing by predicate
write_xml(+File,+Term).

(5) Predicate fuzzyXPath(+ListXPath,+Tree,+Deep,
+Down,+Filter,+Accum) receives six arguments: (1)
ListXPath is the PROLOG representation of a XPath
expression; (2) Tree is the term representing an input
XML document; (3) Deep/Down/Filter have the
obvious meaning, and finally (4) the last argument
Accum (which is appropriately updated -maybe
decreased- when going deeper in the exploration of the

Figure 5. Runtime for the execution of several Fuzzy-XPath queries varying DEEP and FILTER

0

0,5

1

1,5

2

2,5

3

3,5

4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ti
m

e
in

 se
co

nd

FILTER

Runtime DEEP/FILTER

DEEP 0.1 DEEP 0.2 DEEP 0.3 DEEP 0.4 DEEP 0.5 DEEP 0.6 DEEP 0.7 DEEP 0.8 DEEP 0.9

file) accumulates the sequence of penalties produced
till reaching a concrete node, and it is very useful
for deciding when performing a recursive call to the
children of such node whenever the value of Accum
is better than the one fixed by Filter. These actions
also directly revert on the new predicate debugQuery
(+ListXPath,+Tree,+Debug,+Filter,+Accum), which
implements the ideas described in this work and
where once again the appropriate management
of the two last arguments becomes the keypoint
of our dynamic thresholding technique. Both the
interpreter and the debugger can be tested on-line via
http://dectau.uclm.es/fuzzyXPath/?q=FuzzyXPathTest

and http://dectau.uclm.es/fuzzyXPath/?q=Debugger

XPathTest, respectively (see Figure 7).

(6) The evaluation of the query generates a truth
value which has the form of a tree, called tv tree.
The main power of a fuzzy logic programming
language like MALP w.r.t. PROLOG, is that instead
of answering questions with a simple true/false
value, solutions are reported in a much more
tinged, documented way. Basically, the fuzzyXPath
predicate traverses the PROLOG tree representing
a XML document annotating into the tv tree the
corresponding DEEP/DOWN values according to the
movements performed in the horizontal and vertical
axis, respectively. In addition, the tv tree is annotated
with the values of and, or and avg operators in
each node. For instance, the evaluation of the
query «/bib[DEEP=0.8]//book[@year<2000 avg{3,1}
@price<50]/title» generates the following tv:

tv(1.0,[[],
tv(1.0,[[tv(0.25, [])],

tv(1.0,[element(title, [], [Don Quijote de la Mancha]), [], []]),
tv(1.0,[[],

tv(0.8,[[],
tv(0.8,[[],

tv(0.8,[[],
tv(0.8,[[tv(1.0, [])],

tv(1.0,[element(title, [], [Los trabajos de ...
....

For the case of the debugQuery predicate, it explores
the XML tree in a very similar way than the
interpreter, but now the annotations performed on
the resulting tv tree refer to the corresponding JUMP,
DELETE and SWAP values. For instance, the tv tree
associated to query «[DEBUG=0.5]//book/title» starts as:

tv(1.0,[[//, []],
tv(0.0,[[tag(noExist), []], [],
tv(0.5,[[[DELETE=0.5], [book=]],

tv(0.0,[[tag(noExist), []], [],
tv(0.0,[[tag(noExist), []], [],
tv(0.0,[[tag(noExist), []], [],
tv(0.5,[[[JUMP=0.5]//, [title= //]],

tv(0.9,[[tag(name), [title=name]], [],
tv(0.0,[[tag(noExist), []], [],
tv(0.0,[[tag(noExist), []], [], ...

....

(7) Finally, the tv tree is used for computing the output
of the query, by multiplying the recorded values. A
predicate called tv_to_elem has been implemented to
output the answers in a sorted, pretty way.

V. CONCLUSIONS AND FUTURE WORK

While in [20], [21], [22], [34] we have enriched XPath
with new constructs (both structural -DEEP and DOWN- and
constraints -avg and alternative fuzzy versions of classical
or/and operators-) in order to flexibly query XML documents,

Figure 6. Runtime for the debugging of several Fuzzy-XPath queries varying DEBUG and FILTER

0

1

2

3

4

5

6

7

8

9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ti
m

e
in

 se
co

nd
s

FILTER

Runtime DEBUG/FILTER

DEBUG 0,1 DEBUG 0,2 DEBUG 0,3 DEBUG 0,4 DEBUG 0,5 DEBUG 0,6 DEBUG 0,7 DEBUG 0,8 DEBUG 0,9

Figure 7. An on-line session with the Fuzzy-XPath debugger

in [23], [24] we have recently presented a flexible approach
for XPath debugging. The result of the debugging process of
a XPath expression is a set of alternative queries, each one
associated to a chance degree. We have proposed JUMP, DELETE
and SWAP operators that cover the main cases of programming
errors when describing a path about an XML document. Both
techniques have been implemented (and can be tested on-line)
by enjoying the benefits of using a new fuzzy command for
filtering the set of ranked answers in a dynamic way, as we
initially conceived for the Fuzzy-XPath interpreter in [29].

In this work we have coped with a pending task drawn
in [24], [29] devoted to introduce thresholding techniques on

our XPath debugger in order to increase its performance when
dealing with massive XML files. The keypoint idea consists
in to create filters for prematurely disregarding those super-
fluous computations dealing to non-significant solutions. Our
approach represents the first real-world application developed
with the fuzzy logic language MALP, for which we have
recently developed some thresholding tabulation techniques
[30], [31] (we are now implementing them into the FLOPER
system). For the near future, we think that all these actions will
be very useful for addressing in our framework the well-known
“top-k ranking problem” (i.e. determining the top k answers
to a query without computing the -usually wider, possibly

infinite- whole set of solutions, which is strongly related with
the FILTER command reported along this paper) [14], [35].

ACKNOWLEDGEMENTS

This work was supported by the EU (FEDER), and
the Spanish MINECO Ministry (Ministerio de Economía
y Competitividad) under grants TIN2013-45732-C4-2-P and
TIN2013-44742-C4-4-R, as well as by the Andalusian Re-
gional Government (Spain) under Project P10-TIC-6114.

REFERENCES

[1] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie,
and J. Siméon, “XML path language (XPath) 2.0,” W3C, 2007.

[2] E. Herrera-Viedma and G. Pasi, “Fuzzy approaches to access informa-
tion on the Web: recent developments and research trends,” in Proc.
International Conference on Fuzzy Logic and Technology (EUSFLAT
2003), 2003, pp. 25–31.

[3] S. Schockaert, N. Makarytska, and M. De Cock, “Fuzzy methods on the
web: a critical discussion,” 35 Years of Fuzzy Set Theory, pp. 237–266,
2011.

[4] G. Pasi, “Flexible information retrieval: some research trends,” Math-
ware & soft computing, vol. 9, no. 1, pp. 107–121, 2008.

[5] ——, “Fuzzy sets in information retrieval: state of the art and research
trends,” Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models, pp. 517–535, 2008.

[6] D. Kraft, G. Pasi, and G. Bordogna, “Vagueness and uncertainty in
information retrieval: how can fuzzy sets help?” in Proceedings of the
2006 international workshop on Research issues in digital libraries.
ACM, 2006, p. 3.

[7] P. Buche, J. Dibie-Barthélemy, O. Haemmerlé, and G. Hignette, “Fuzzy
semantic tagging and flexible querying of XML documents extracted
from the Web,” Journal of Intelligent Information Systems, vol. 26,
no. 1, pp. 25–40, 2006.

[8] A. Gaurav and R. Alhajj, “Incorporating fuzziness in XML and mapping
fuzzy relational data into fuzzy XML,” in Proceedings of the 2006 ACM
symposium on Applied computing. ACM, 2006, pp. 456–460.

[9] L. Yan, Z. Ma, and J. Liu, “Fuzzy data modeling based on XML
schema,” in Proceedings of the 2009 ACM symposium on Applied
Computing. ACM, 2009, pp. 1563–1567.

[10] B. Oliboni and G. Pozzani, “Representing fuzzy information by using
XML schema,” in Database and Expert Systems Application, 2008.
DEXA’08. 19th International Workshop on. IEEE, 2008, pp. 683–687.

[11] ——, “An XML Schema for Managing Fuzzy Documents,” Soft Com-
puting in XML Data Management, pp. 3–34, 2010.

[12] A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, and P. Spoletini,
“A fuzzy extension of the XPath query language,” Journal of Intelligent
Information Systems, vol. 33, no. 3, pp. 285–305, 2009.

[13] E. Damiani, S. Marrara, and G. Pasi, “FuzzyXPath: Using fuzzy logic
and IR features to approximately query XML documents,” Foundations
of Fuzzy Logic and Soft Computing, pp. 199–208, 2007.

[14] B. Fazzinga, S. Flesca, and A. Pugliese, “Top-k Answers to Fuzzy
XPath Queries,” in Database and Expert Systems Applications.
Springer, 2009, pp. 822–829.

[15] B. Fazzinga, S. Flesca, and F. Furfaro, “On the expressiveness of
generalization rules for XPath query relaxation,” in Proceedings of
the Fourteenth International Database Engineering & Applications
Symposium. ACM, 2010, pp. 157–168.

[16] H. Li, S. Aghili, D. Agrawal, and A. El Abbadi, “FLUX: fuzzy content
and structure matching of XML range queries,” in Proceedings of the
15th international conference on World Wide Web. ACM, 2006, pp.
1081–1082.

[17] E. Damiani, S. Marrara, and G. Pasi, “A flexible extension of XPath
to improve XML querying,” in Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval. ACM, 2008, pp. 849–850.

[18] B. Fazzinga, S. Flesca, and F. Furfaro, “On the expressiveness of
generalization rules for XPath query relaxation,” in Proceedings of
the Fourteenth International Database Engineering & Applications
Symposium. ACM, 2010, pp. 157–168.

[19] ——, “Xpath query relaxation through rewriting rules,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 23, no. 10, pp. 1583–
1600, 2011.

[20] J. Almendros-Jiménez, A. Luna, and G. Moreno, “A Flexible XPath-
based Query Language Implemented with Fuzzy Logic Programming,”
in Proc. of 5th International Symposium on Rules: Research Based,
Industry Focused, RuleML’11. Springer Verlag, LNCS 6826, 2011,
pp. 186–193.

[21] ——, “Fuzzy Logic Programming for Implementing a Flexible XPath-
based Query Language,” Electronic Notes on Theoretical Computer
Science, ENTCS, vol. 282, pp. 3–18, 2012.

[22] J. M. Almendros-Jiménez, A. Luna-Tedesqui, and G. Moreno,
“Fuzzy xpath through fuzzy logic programming,” New Generation
Computing, vol. 33, no. 2, pp. 173–209, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s00354-015-0201-y

[23] J. Almendros-Jiménez, A. Luna, and G. Moreno, “A xpath debugger
based on fuzzy chance degrees,” in On the Move to Meaningful Internet
Systems: Proceedings OTM 2012 Workshops, Rome, Italy, September
10-14, P. H. et al., Ed. Springer Verlag, LNCS 7567, 2012, pp. 669–
672.

[24] J. Almendros-Jiménez, A. Luna, and G. Moreno, “Annotating Fuzzy
Chance Degrees when Debugging Xpath Queries,” in Proc. of the
12th International Work-Conference on Artificial Neural Networks,
IWANN’13. Springer Verlag, LNCS 7903, Part II, 2013, pp. 300–311.

[25] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “Similarity-based Unifica-
tion: a multi-adjoint approach,” Fuzzy Sets and Systems, vol. 146, pp.
43–62, 2004.

[26] P. Morcillo and G. Moreno, “Programming with Fuzzy Logic Rules by
using the FLOPER Tool,” in Proc of the 2nd. Rule Representation,
Interchange and Reasoning on the Web, International Symposium,
RuleML’08, N. B. et al., Ed. Springer Verlag, LNCS 3521, 2008,
pp. 119–126.

[27] G. Moreno and C. Vázquez, “Fuzzy logic programming in action with
floper,” Journal of Software Engineering and Applications, vol. 7, pp.
237–298, 2014.

[28] J. Almendros-Jiménez, A. Luna, G. Moreno, and C. Vázquez, “An-
alyzing Fuzzy Logic Computations with Fuzzy XPath,” in Proc. of
PROLE’13. Universidad Complutense de Madrid, 2013, pp. 136–150.

[29] J. Almendros-Jiménez, A. Luna, and G. Moreno, “Dynamic filtering
of ranked answers when evaluating fuzzy xpath queries,” in Rough
Sets and Current Trends in Computing - 9th International Conference,
RSCTC 2014, Granada and Madrid, Spain, July 9-13. Springer Verlag,
LNCS 8536, 2014, pp. 319–330.

[30] P. Julián, J. Medina, G. Moreno, and M. Ojeda, “Efficient thresholded
tabulation for fuzzy query answering,” Studies in Fuzziness and Soft
Computing (Foundations of Reasoning under Uncertainty), vol. 249,
pp. 125–141, 2010.

[31] P. Julián, J. Medina, P. Morcillo, G. Moreno, and M. Ojeda-Aciego,
“An unfolding-based preprocess for reinforcing thresholds in fuzzy
tabulation,” in Proc. of the 12th International Work-Conference on
Artificial Neural Networks, IWANN’13. Springer Verlag, LNCS 7902,
Part I, 2013, pp. 647–655.

[32] J. M. Almendros-Jiménez, “An Encoding of XQuery in Prolog,” in
Proc. of the Sixth International XML Database Symposium XSym’09.
Heildelberg,Germany: Springer, LNCS 5679, 2009, pp. 145–155.

[33] J. M. Almendros-Jiménez, A. Becerra-Terón, and F. J. Enciso-Baños,
“Querying XML documents in logic programming,” Theory and Prac-
tice of Logic Programming, vol. 8, no. 3, pp. 323–361, 2008.

[34] J. Almendros-Jiménez, A. Luna, and G. Moreno, “Fuzzy xpath queries
in xquery,” in On the Move to Meaningful Internet Systems: OTM 2014
Conferences - Confederated International Conferences: CoopIS, and
ODBASE 2014, Amantea, Italy, October 27-31. Springer Verlag, LNCS
8841, 2014, pp. 457–472.

[35] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Comput.
Surv., vol. 40, no. 4, 2008.

