
Dynamic Filtering of Ranked Answers

when Evaluating Fuzzy XPath Queries

Jesús M. Almendros-Jiménez1, Alejandro Luna2, and Ginés Moreno2

1 Dep. of Languages and Computation, University of Almería, Spain
Email: jalmen@ual.es

2 Dep. of Computing Systems, University of Castilla-La Mancha, Spain
Emails: Gines.Moreno@uclm.es, Alejandro.Luna@alu.uclm.es

Abstract. We have recently designed an extension of the XPath lan-
guage which provides ranked answers to �exible queries taking pro�t of
fuzzy variants of and, or and avg operators for XPath conditions, as well
as two structural constraints, called down and deep, for which a certain
degree of relevance is associated. In practice, this degree is very low for
some answers weakly accomplishing with the original query, and hence,
they should not be computed in order to alleviate the computational
complexity of the information retrieval process. In this work we focus
on the scalability of our interpreter for dealing with massive XML �les
by making use of its ability for prematurely disregarding those compu-
tations leading to non signi�cant solutions (i.e., with a poor degree of
relevance according the preferences expressed by users when using the
new command FILTER). Since our proposal has been implemented with
a fuzzy logic language, here we exploit the high expressive resources of
this declarative paradigm for performing �dynamic thresholding� in a
very natural and e�cient way, thus connecting with the so-called top-k
answering problem, which is very well-known in the fuzzy logic and soft
computing arena.

Key words: Information Retrieval Systems; Fuzzy XPath; Information Filtering
Systems; Fuzzy Filtering & Thresholding; Fuzzy Logic Programming

1 Introduction

The XPath language [7] has been proposed as a standard for XML querying and
it is based on the description of the path in the XML tree to be retrieved. XPath
allows to specify the name of nodes (i.e., tags) and attributes to be present in
the XML tree together with boolean conditions about the content of nodes and
attributes. XPath querying mechanism is based on a boolean logic: the nodes
retrieved from an XPath expression are those matching the path of the XML tree.
Therefore, the user should know the XML schema in order to specify queries.
However, even when the XML schema exists, it can not be available for users.
Moreover, XML documents with the same XML schema can be very di�erent in
structure. Let us suppose the case of XML documents containing the curriculum

vitae of a certain group of persons. Although they can share the same schema,
each one can decide to include studies, jobs, training, etc. organized in several
ways: by year, by relevance, and with di�erent nesting degree.

Therefore, in the context of semi-structured databases, �exible query lan-
guages arise for allowing the formulation of queries without taking into account a
rigid database schema, usually including too mechanisms for obtaining a certain
ranked list of answers. The ranking of answers can provide satisfaction degree de-
pending on several factors. In a structural XPath-based query, the main criteria
to provide a certain degree of satisfaction depends on the hierarchical deepness
and document order. Therefore the query language should provide mechanisms
for giving priority to answers when they occur in di�erent parts of the document.
In this sense, the need for providing �exibility to XPath has recently motivated
the investigation of extensions of the XPath language. We can distinguish those
in which the main goal is the introduction of fuzzy information in data (sim-
ilarity, proximity, vagueness, etc) [9, 16, 30, 26] and the proposals in which the
main goal is the handling of crisp information by fuzzy concepts [10, 13, 15, 14,
20]. Our work focuses on the second line of research.

In [10, 13] authors introduce in XPath �exible matching by means of fuzzy
constraints called close and similar for node content, together with below and
near for path structure. In addition, they have studied deep-similar notion for
tree matching. In order to provide ranked answers they adopt a Fuzzy set theory-
based approach in which each answer has an associated numeric value (the mem-
bership degree). The numeric value represents the Retrieval Status Value (RSV)
of the associated item. In the work of [15], they propose a satisfaction degree for
XPath expressions based on associating a degree of importance to XPath nodes,
and they study how to compute the best k answers. In both cases, authors allow
the user to specify in the query the degree in which the answers will be penal-
ized. On the other hand, in [14], they have studied how to relax XPath queries
by means of rewriting in order to improve information retrieval in the presence
of heterogeneous data resources. Our proposal also connects with the recent ap-
proaches of [27, 28] but, as we are going to see, it is important to note that many
of our fuzzy commands are directly inspired by the powerful expressive resources
of the underlying fuzzy logic language used for implementing our tool.

As we will resume in Section 2, in [3�6] we have presented both an interpreter
and a debugger coping with an extension of the XPath query language for man-
aging �exible queries in a very natural way (the tool can be tested on-line via
http://dectau.uclm.es/fuzzyXPath/). Our approach proposes two structural
constraints called down and deep for which a certain degree of relevance can be
associated. In such a way that down provides a ranked set of answers depending
on the path is found from �top to down� in the XML document, and deep provides
a set of answers depending on the path is found from �left to right� in the XML
document. Both structural constraints can be combined. In addition, we provide
fuzzy operators and, or and avg for XPath conditions. In this way, users can ex-
press the priority they give to answers. Such fuzzy operators can be combined to
provide ranked answers. Our approach has been implemented with the so-called

�Multi-Adjoint Logic Programming� language (MALP in brief) [22] by using
our �Fuzzy LOgic Programming Environment for Research� FLOPER [23�25],
which can be freely downloaded from http://dectau.uclm.es/floper/.

We wish to remark now that our proposal is an extension of previous works
about the implementation of XPath by means of logic programming [2], which
has been extended to XQuery in [1]. The new extension follows the same en-
coding proposed in [1] in which a predicate called xpath is de�ned by means
of Prolog rules, which basically traverse the Prolog representation of the
XML tree by means of a Prolog list. In order to implement Fuzzy-XPath by
means of FLOPER we proceed similarly to the Prolog implementation of
XPath, but proposing a new (fuzzy) predicate called fuzzyXPath implemented
in MALP. The new query language returns a set of ranked answers each one
with an associated RSV. Such RSV is computed by easily using MALP rules
(thus exploiting the correspondences between the languages for-being and to-be
implemented), where the notion of RSV is modeled inside a multi-adjoint lat-
tice, and usual fuzzy connectives of the MALP language act as ideal resources
to represent new �exible XPath operators.

As we will see in Section 3, the main goal of this paper consists in the intro-
duction of a new fuzzy command inside Fuzzy-XPath which comfortably relies on
our implementation based on fuzzy logic programming. So, when �[FILTER=r]�
precedes a fuzzy query, the interpreter lazily explores an input XML document
for dynamically disregarding as soon as possible those branchs of the XML tree
leading to irrelevant solutions with an RSV degraded below r, thus allowing the
possibility of e�ciently managing large �les without reducing the set of answers
for which users are mainly interested in.

2 A Fuzzy Extension of XPath

Following [3�6], our �exible XPath is de�ned by means of the following rules:

xpath := [deepdown]path

path := literal | text() | node | @att |

node/path | node//path

node := QName | QName[cond]

cond := path op path

deepdown := DEEP=degree, DOWN=degree

op := > | = | < | and | or | avg

Basically, our fuzzy proposal extends XPath as follows:

• A given XPath expression can be adorned with �[DEEP = r1, DOWN = r2]�
which means that the deepness of elements is penalized by r1 and that the
order of elements is penalized by r2, and such penalization is proportional
to the distance. In particular, �[DEEP = 1, DOWN = r2]� can be used for
penalizing only w.r.t. document order. DEEP works for //, and DOWN
works for / and //.

<bib>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<publications> <book year="1997" price="35.99">

<title>La Galatea</title>
<author>Miguel de Cervantes Saavedra</author>
<publications>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Segismunda</title>
<author>Miguel de Cervantes Saavedra</author></book>

</publications></book>
</publications></book>

<book year="1999" price="25.65">
<title>La Celestina</title>
<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95">
<title>Hamlet</title>
<author>William Shakespeare</author>
<publications>

<book year="2000" price="22.5">
<title>Romeo y Julieta</title>
<author>William Shakespeare</author></book>

</publications></book>
<book year="2007" price="22.95">

<title>Las ferias de Madrid</title>
<author>Felix Lope de Vega y Carpio</author>
<publications>

<book year="1996" price="27.5">
<title>El remedio en la desdicha</title>
<author>Felix Lope de Vega y Carpio</author> </book>

<book year="1998" price="12.5">
<title>La Dragontea</title>
<author>Felix Lope de Vega y Carpio</author></book>

</publications></book>
</bib>

Fig. 1. Input XML document in our examples

• Moreover, the classical and and or connectives admit here a fuzzy behavior
based on fuzzy logic, i.e., assuming two given RSV's r1 and r2, operator and
is de�ned as r3 = r1 ∗ r2 and operator or returns r3 = r1 + r2 − (r1 ∗ r2). In
addition, the avg operator is de�ned as r3 = (r1 + r2)/2.

In general, an extended XPath expression de�nes, w.r.t. a XML document, a se-
quence of subtrees of the XML document where each subtree has an associated
RSV. XPath conditions, which are de�ned as fuzzy operators applied to XPath
expressions, compute a new RSV from the RSVs of the involved XPath expres-
sions, which at the same time, provides a RSV to the node. In order to illustrate
these explanations, let us see some examples of our proposed fuzzy version of
XPath according to the XML document shown in Figure 1 whose skeleton is
depicted in Figure 2.

Example 1. Suppose the XPath query: � [DEEP=0.9,DOWN=0.8]//title �, that
requests title's penalizing the occurrences from the document root by a propor-
tion of 0.9 and 0.8 by nesting and ordering, respectively, and for which we obtain

Fig. 2. XML skeleton represented as a tree

Document RSV computation

<result>
<title rsv="0.81">Don Quijote de la Mancha</title>
<title rsv="0.6561">La Galatea</title>
<title rsv="0.531441">Los trabajos de Persiles y ...</title>
<title rsv="0.648">La Celestina</title>
<title rsv="0.5184">Hamlet</title>
<title rsv="0.419904">Romeo y Julieta</title>
<title rsv="0.41472">Las ferias de Madrid</title>
<title rsv="0.3359232">El remedio en la desdicha</title>
<title rsv="0.26873856">La Dragontea</title>

</result>

0.81 = 0.92

0.6561 = 0.94

0.531441 = 0.96

0.648 = 0.92 ∗ 0.8
0.5184 = 0.92 ∗ 0.82

0.419904 = 0.94 ∗ 0.82

0.41472 = 0.92 ∗ 0.83

0.3359232 = 0.94 ∗ 0.83

0.26873856 = 0.94 ∗ 0.84

Fig. 3. Output of a query using DEEP/DOWN

Document RSV computation

<result>
<book rsv="0.5" ...> <title>Don Quijote ...</title> ...</book>
<book rsv="1.0"...><title>La Celestina</title> ...</book>
<book rsv="1.0" ...><title>Hamlet</title> ...</book>
<book rsv="0.5" ...><title>Las ferias de Madrid</title> ...</book>

</result>

0.5 = 0 + 1/2
1 = 1 + 1/2
1 = 1 + 1/2
0.5 = 1 + 0/2

Fig. 4. Output of a query using AVG

the �le listed in Figure 3. In such document we have included as attribute of
each subtree, its corresponding RSV. The highest RSVs correspond the main

Document RSV computation

<result>
<title rsv="0.3645">La Galatea</title>
<title rsv="0.295245">Los trabajos de Persiles y... </title>
<title rsv="0.72">La Celestina</title>
<title rsv="0.288">Hamlet</title>
<title rsv="0.2304">Las ferias de Madrid</title>
<title rsv="0.2985984">El remedio en la desdicha</title>
<title rsv="0.11943936">La Dragontea</title>

</result>

0.3645 = 0.93 ∗ 1/2
0.295245 = 0.95 ∗ 1/2
0.72 = 0.9 ∗ 0.8 ∗ 1
0.288 = 0.9 ∗ 0.82 ∗ 1/2
0.2304 = 0.9 ∗ 0.83 ∗ 1/2
0.2985984 = 0.93 ∗ 0.84 ∗ 1
0.11943936 = 0.93 ∗ 0.85 ∗ 1/2

Fig. 5. Output of a query using all operators

Records

FILTER

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 1.766 1.696 1.734 0.842 0.469 0.268 0.221 0.087 0.056
2000 6.628 6.432 6.998 3.242 1.439 0.677 0.599 0.168 0.122
3000 14.532 14.023 14.059 6.306 2.831 1.257 1.101 0.253 0.179
4000 25.535 24.684 24.722 10.883 4.827 1.918 1.794 0.345 0.242
5000 41.522 37.782 37.166 16.201 7.242 2.993 2.516 0.427 0.281
6000 58.905 55.354 55.596 24.411 10.993 4.207 3.554 0.554 0.373
7000 85.167 85.652 82.733 37.748 14.436 5.083 4.653 0.649 0.460
8000 137.737 102.816 102.763 69.401 26.680 8.273 5.894 0.690 0.481
9000 175.272 131.828 131.021 56.937 22.601 7.869 7.329 0.824 0.549
10000 195.613 185.201 167.676 95.286 26.649 9.516 9.595 0.973 0.742

Fig. 6. Performance of Fuzzy-XPath by using FILTER on XML �les with growing sizes

book's of the document, and the lowest RSVs represent the book's occurring in
nested positions (those annotated as related publication's).

Example 2. Figure 4 shows the answer associated to the XPath expression: �
/bib/book[@price<30 avg @year<2006] �. Here we show that books satisfying
a price under 30 and a year before 2006 have the highest RSV.

Example 3. Finally, combining all operators �[DEEP=0.9,DOWN=0.8]
//book [(@price>25 and @price<30) avg (@year<2000 or @year>2006)]/title�,
the RSV values are more scattered, as shown in Figure 5.

3 Using Filters for the Dynamic Thresholding of Queries

In [19, 18] we have reported some thresholding techniques specially tailored for
the MALP language, where the main idea consists in to dynamically create
and evaluate �lters for prematurely disregarding those super�uous computations
leading to non-signi�cant solutions. Somehow inspired by the same guidelines,
we have recently equipped our fuzzyXPath interpreter with a new command
with syntax �[FILTER=r]� (being r a real number between 0 and 1) which can
be used just at the beginning of a query for indicating that only those answers
with RSV greater of equal than r must be generated and reported.

0

0,5

1

1,5

2

2,5

3

3,5

4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ti
m

e
in

 se
co

nd

FILTER

Runtime DEEP/FILTER

DEEP 0.1 DEEP 0.2 DEEP 0.3 DEEP 0.4 DEEP 0.5 DEEP 0.6 DEEP 0.7 DEEP 0.8 DEEP 0.9

Fig. 7. Runtime for several Fuzzy-XPath queries varying DEEP and FILTER

So, if we consider a Fuzzy-XPath query with the following form
�[FILTER=0.4]//book[@year<2000 avg @price<50]/title�, we obtain nine an-
swers, but only �ve if we �x �[FILTER=0.8]�. Obviously, we would hope that
the runtime of the second case should be lower than the �rst one since, as our
approach does, there is no need for computing all solutions and then �ltering the
best ones. This desired dynamic behaviour when avoiding useless computations
is re�ected in Figure 6 which considers the e�ort needed for executing (exclud-
ing parsing/compiling time) a query like �[FILTER=r]//book[(@price>25 and
@price<30) avg (@year<2000 or @year>2006)]�where each row represents the
size of several XML �les accomplishing with the same structure of our running
example (but considering di�erent nesting levels of tags book, title, author
and publications), and each column refers to a di�erent degree of the FILTER
command. Here, the runtime is measured in seconds (the benchmarks have been
performed using a computer with processor Intel Core Duo, with 2 GB RAM
and Windows Vista) and each record in the input �le refers to a di�erent book
(that is, the number of records coincides with the number of occurrences of tag
book) which might contain other books inside its publications tag.

Moreover, in Figure 7 we continue with a similar query to the previous one,
but also considering the DEEP command3. Here, for a large XML document
with a �xed size, we express the number of seconds needed for executing such
query when varying FILTER and DEEP, where it is easy to see that the be-
haviour is more and more improved whenever FILTER grows and DEEP de-
creases, as wanted. Note that the previous query makes use of the avg command

3 This kind of statistics can be produced on-line for several XML �les and Fuzzy-XPath
queries via the following URL that we have just prepared for the interested reader:
http://dectau.uclm.es/fuzzyXPath/fuzzyXPathEstatistic2.php#testing.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ti
m

e
in

 se
co

nd

FILTER

Runtime DEEP/FILTER

DEEP 0.1 DEEP 0.2 DEEP 0.3 DEEP 0.4 DEEP 0.5 DEEP 0.6 DEEP 0.7 DEEP 0.8 DEEP 0.9

Fig. 8. Varying DEEP and FILTER in a query using avg{30, 1}

and remember that its behaviour is de�ned, for two given RSV's r1 and r2, as
r3 = (r1+r2)/2. We have recently conceived a priorized version of such operator
which let us to give di�erent degrees of importance to its arguments. In general,
avg{p1, p2} is computed by r3 = (r1 ∗ p1 + r2 ∗ p2)/(p1 + p2) and hence, if in
the previous query we use avg{30, 1} instead of standard avg, we indicate that
the �rst sub-condition (i.e., @price>25 and @price<30) is 30 times more impor-
tant than the second one (i.e., @year<2000 or @year>2006), whereas avg{1, 30}
represent the inverse criterium. In Figures 8 and 9 we provide statistics in the
same way than in Figure 7, but using now average with priorities 30-1 and 1-30,
respectively.

Although the core of our application is written with (fuzzy) MALP rules,
our implementation is based on the following items:

(1) We have reused/adapted several modules of our previous Prolog-based
implementation of (crisp) XPath described in [1, 2].

(2) We have used the SWI-Prolog library for loading XML �les, in order to
represent a XML document by means of a Prolog term4.

(3) The parser of XPath has been extended to recognize the new keywords
FILTER, DEEP, DOWN, avg, etc... with their proper arguments.

(4) Each tag is represented as a data-term of the form: element(Tag, Attribu-

tes, Subelements), where Tag is the name of the XML tag, Attributes is
a Prolog list containing the attributes, and Subelements is a Prolog list
containing the sub-elements (i.e. sub-trees) of the tag. For instance, the doc-
ument of Figure 1 is represented in SWI-Prolog like in Figure 10. Loading
of documents is achieved by predicate load_xml(+File,-Term) and writing
by predicate write_xml(+File,+Term).

4 The notion of term (i.e., data structure) is just the same in MALP and Prolog.

0

0,5

1

1,5

2

2,5

3

3,5

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Ti
m

e
in

 se
co

nd

FILTER

Runtime DEEP/FILTER

DEEP 0.1 DEEP 0.2 DEEP 0.3 DEEP 0.4 DEEP 0.5 DEEP 0.6 DEEP 0.7 DEEP 0.8 DEEP 0.9

Fig. 9. Varying DEEP and FILTER in a query using avg{1, 30}

[element(bib,[],
[element(book,[year=2001,price=45.95],

[element(title,[],[Don Quijote de la Mancha]),
element(author,[],[Miguel de Cervantes Saavedra]),
element(publications,[],

[element(book,[year=1997,price=35.99],
[element(title,[],[La Galatea]),
element(author,[],[Miguel de Cervantes Saavedra]),

element(publications,[],...])...]),])])

Fig. 10. A data-term representing a XML document

(5) Predicate fuzzyXPath(+ListXPath,+Tree,+Deep,+Down,+Filter,+Accum)
receives six arguments: (1) ListXPath is the Prolog representation of a
XPath expression; (2) Tree is the term representing an input XML doc-
ument; (3) Deep/Down/Filter have the obvious meaning, and �nally (4)
the last argument Accum (which is appropriately updated -maybe decreased-
when going deeper in the exploration of the �le) accumulates the sequence
of penalties produced till reaching a concrete node, and it is very useful
for deciding when performing a recursive call to the children of such node
whenever the value of Accum is better than the one �xed by Filter.

(6) The evaluation of the query generates a truth value which has the form of
a tree, called tv tree. For instance, the query shown in Example 1, gener-
ates the one illustrated in Figure 11. The main power of a fuzzy logic pro-
gramming language like MALP w.r.t. Prolog, is that instead of answering
questions with a simple true/false value, solutions are reported in a much
more tinged, documented way. Basically, the fuzzyXPath predicate traverses
the Prolog tree representing a XML document annotating into the tv tree
the corresponding deep/down values according to the movements performed

in the horizontal and vertical axis, respectively. In addition, the tv tree is
annotated with the values of and, or and avg operators in each node.

(7) Finally, the tv tree is used for computing the output of the query, by multi-
plying the recorded values. A predicate called tv_to_elem has been imple-
mented to output the answer in a pretty way.

tv(1, [[],
tv(0.9,[[],

tv(0.9,[element(title,[],[Don Quijote de la Mancha]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[La Galatea]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[Los trabajos de Persiles..]),...]),

tv(0.8,[[],
tv(0.9,[element(title,[],[La Celestina]),[],[]]),...

Fig. 11. Example of a MALP output

4 Conclusions and Future Work

In [3�6] we have recently enriched XPath with new constructs (both structural
-deep and down- and constraints -avg and fuzzy versions of classical or/and
operators-) in order to �exibly query XML documents. This paper has high-
lighted the bene�ts of using a new fuzzy command for �ltering the set of ranked
answers in a dynamic way, in order to reduce the runtime and complexity of
computations when dealing with large �les. Our approach represents the �rst
real-world application developed with the fuzzy logic languageMALP, for which
we have recently developed some thresholding tabulation techniques5 [19, 18]. All
these actions will be very useful for addressing in our framework the well-known
�top-k ranking problem� (i.e. determining the top k answers to a query without
computing the -usually wider, possibly in�nite- whole set of solutions, which is
strongly related with the FILTER command reported along this paper) inspired
by [8, 11, 12, 21, 29, 17].

Acknowledgements

We are grateful to anonymous reviewers for providing us valuable suggestions
which have been used for improving the material compiled so far. This work was
supported by the EU (FEDER), and the Spanish MINECO Ministry (Ministerio
de Economía y Competitividad) under grant TIN2013-45732-C4-2-P, as well as
by the Andalusian Regional Government (Spain) under Project P10-TIC-6114.

5 We are now implementing into FLOPER this highly e�cient procedural mechanism.

References

1. J. M. Almendros-Jiménez. An Encoding of XQuery in Prolog. In Proceedings
of the Sixth International XML Database Symposium XSym'09, pages 145�155,
Heildelberg,Germany, 2009. Springer, LNCS 5679.

2. J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Querying XML documents in logic programming. Theory and Practice of Logic
Programming, 8(3):323�361, 2008.

3. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. A Flexible XPath-based Query
Language Implemented with Fuzzy Logic Programming. In Proc. of 5th Interna-
tional Symposium on Rules: Research Based, Industry Focused, RuleML'11, pages
186�193. Springer Verlag, LNCS 6826, 2011.

4. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Fuzzy Logic Programming
for Implementing a Flexible XPath-based Query Language. Electronic Notes on
Theoretical Computer Science, ENTCS, 282:3�18, 2012.

5. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Annotating Fuzzy Chance
Degrees when Debugging Xpath Queries. In Proc. of the 12th International Work-
Conference on Arti�cial Neural Networks, IWANN'13, pages 300�311. Springer
Verlag, LNCS 7903, Part II, 2013.

6. J.M. Almendros-Jiménez, A. Luna, G. Moreno, and C. Vázquez. Analyzing Fuzzy
Logic Computations with Fuzzy XPath. In Proc. of PROLE'13, pages 136�150
(�work in progress� track, extended version submitted to ECEASST). Universidad
Complutense de Madrid (ISBN: 978-84-695-8331-9), 2013.

7. A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, and
J. Siméon. XML path language (XPath) 2.0. W3C, 2007.

8. Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Top-k selection queries over
relational databases: Mapping strategies and performance evaluation. ACM Trans.
Database Syst., 27(2):153�187, 2002.

9. P. Buche, J. Dibie-Barthélemy, O. Haemmerlé, and G. Hignette. Fuzzy semantic
tagging and �exible querying of XML documents extracted from the Web. Journal
of Intelligent Information Systems, 26(1):25�40, 2006.

10. A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, and P. Spoletini. A fuzzy
extension of the XPath query language. Journal of Intelligent Information Systems,
33(3):285�305, 2009.

11. Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: supporting
expensive predicates for top-k queries. In Michael J. Franklin, Bongki Moon, and
Anastassia Ailamaki, editors, SIGMOD Conference, pages 346�357. ACM, 2002.

12. Surajit Chaudhuri, Luis Gravano, and Amélie Marian. Optimizing top-k selection
queries over multimedia repositories. IEEE Trans. Knowl. Data Eng., 16(8):992�
1009, 2004.

13. E. Damiani, S. Marrara, and G. Pasi. FuzzyXPath: Using fuzzy logic and IR
features to approximately query XML documents. Foundations of Fuzzy Logic and
Soft Computing, pages 199�208, 2007.

14. B. Fazzinga, S. Flesca, and F. Furfaro. On the expressiveness of generalization
rules for XPath query relaxation. In Proceedings of the Fourteenth International
Database Engineering & Applications Symposium, pages 157�168. ACM, 2010.

15. B. Fazzinga, S. Flesca, and A. Pugliese. Top-k Answers to Fuzzy XPath Queries.
In Database and Expert Systems Applications, pages 822�829. Springer, 2009.

16. A. Gaurav and R. Alhajj. Incorporating fuzziness in XML and mapping fuzzy
relational data into fuzzy XML. In Proceedings of the 2006 ACM symposium on
Applied computing, pages 456�460. ACM, 2006.

17. Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput. Surv., 40(4),
2008.

18. P. Julián, J. Medina, P.J. Morcillo, G. Moreno, and M. Ojeda-Aciego. An unfolding-
based preprocess for reinforcing thresholds in fuzzy tabulation. In Proc. of the 12th
International Work-Conference on Arti�cial Neural Networks, IWANN'13, pages
647�655. Springer Verlag, LNCS 7902, Part I, 2013.

19. P. Julián, J. Medina, G. Moreno, and M. Ojeda. E�cient thresholded tabulation
for fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundations
of Reasoning under Uncertainty), 249:125�141, 2010.

20. H.G. Li, S.A. Aghili, D. Agrawal, and A. El Abbadi. FLUX: fuzzy content and
structure matching of XML range queries. In Proceedings of the 15th international
conference on World Wide Web, pages 1081�1082. ACM, 2006.

21. Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-k queries over
web-accessible databases. ACM Trans. Database Syst., 29(2):319�362, 2004.

22. J. Medina, M. Ojeda-Aciego, and P. Vojtá². Similarity-based Uni�cation: a multi-
adjoint approach. Fuzzy Sets and Systems, 146:43�62, 2004.

23. P.J. Morcillo and G. Moreno. Programming with Fuzzy Logic Rules by using the
FLOPER Tool. In Nick Bassiliades et al., editor, Proc of the 2nd. Rule Rep-
resentation, Interchange and Reasoning on the Web, International Symposium,
RuleML'08, pages 119�126. Springer Verlag, LNCS 3521, 2008.

24. P.J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. A Practical Management
of Fuzzy Truth Degrees using FLOPER. In M. Dean et al., editor, Proc. of 4nd
Intl Symposium on Rule Interchange and Applications, RuleML'10, pages 20�34.
Springer Verlag, LNCS 6403, 2010.

25. G. Moreno and C. Vázquez. Fuzzy logic programming in action with �oper. Journal
of Software Engineering and Applications, 7:237�298, 2014.

26. B. Oliboni and G. Pozzani. An XML Schema for Managing Fuzzy Documents.
Soft Computing in XML Data Management, pages 3�34, 2010.

27. Emanuele Panzeri and Gabriella Pasi. An approach to de�ne �exible structural
constraints in xquery. In Proc. of 8th International Conference on Active Media
Technology, AMT'12, pages 307�317. Springer Verlag, LNCS 7669, 2013.

28. Emanuele Panzeri and Gabriella Pasi. Flex-basex: an xml engine with a �exi-
ble extension of xquery full-text. In Proc. of the 36th International ACM SI-
GIR conference on research and development in Information Retrieval, SIGIR'13,
(http://doi.acm.org/10.1145/2484028.248421), pages 1038�1084. ACM, 2013.

29. Christopher Re, Nilesh N. Dalvi, and Dan Suciu. E�cient top-k query evaluation
on probabilistic data. In Rada Chirkova, Asuman Dogac, M. Tamer Özsu, and
Timos K. Sellis, editors, ICDE, pages 886�895. IEEE, 2007.

30. L. Yan, ZM Ma, and J. Liu. Fuzzy data modeling based on XML schema. In
Proceedings of the 2009 ACM symposium on Applied Computing, pages 1563�1567.
ACM, 2009.

