Fuzzy XPath Queries in XQuery

Jestis M. Almendros-Jiménez!, Alejandro Luna?, and Ginés Moreno?
! Dep. of Informatics, University of Almerfa, Spain
Email: jalmen®@ual.es
2 Dep. of Computing Systems, University of Castilla-La Mancha, Spain
Emails: Gines.Moreno@uclm.es, Alejandro.Luna®alu.uclm.es

Abstract. We have recently designed a fuzzy extension of the XPath language
which provides ranked answers to flexible queries taking profit of fuzzy variants
of and, or and avg operators for XPath conditions, as well as two structural
constraints, called down and deep, for which a certain degree of relevance is
associated. In this work, we describe how to implement the proposed fuzzy
XPath with the XQuery language. Basically, we have defined an XQuery library
able to fuzzily handle XPath expressions in such a way that our proposed fuzzy
XPath can be encoded as XQuery expressions. The advantages of our approach
is that any XQuery processor can handle a fuzzy version of XPath by using the
library we have implemented.

Keywords: Fuzzy XPath; XML; XQuery

1 Introduction

The XPath language [6] has been proposed as standard for XML querying and it is
based on the description of the path in the XML tree to be retrieved. XPath allows
to specify the name of nodes (i.e., tags) and attributes to be present in the XML tree
together with Boolean conditions about the content of nodes and attributes. XPath
querying mechanism is based on a Boolean logic: the nodes retrieved from an XPath
expression are those matching the path of the XML tree, according to Boolean condi-
tions.

Information retrieval requires the design of query languages able to adapt to user’s
preferences and providing ranked sets of answers. The degree of satisfaction of the user
with respect to an answer can be measured in several ways. XPath lacks on mechanisms
for giving priority to queries and ranking answers. In an XPath-based query, the main
criteria to provide a certain degree of satisfaction are the hierarchical deepness and
document order. Moreover, conditions on XPath expressions are usually of varying
importance for a user, that is, the user gives a higher degree of importance to certain
requirements when satisfying his (her) wishes.

With this aim we have recently designed a fuzzy extension of XPath whose main aim
is to provide mechanisms to assign priority to queries and to rank answers. Priorities
are given by using fuzzy extensions of Boolean operators, while rankings are defined
with regard to the location of a tag in the XML tree.

Firstly, we have proposed the incorporation to XPath of two structural constraints
called down and deep for which a certain degree of relevance can be associated. So,
whereas down provides a ranked set of answers depending on the path they are found

from “top to down” in the XML document, deep provides a ranked set of answers
depending on the path they are found from “left to right” in the XML document. Both
structural constraints can be used together, assigning degree of importance with respect
to the distance to the root XML element.

Secondly, we provide fuzzy variants of and and or for XPath conditions. We have
enriched the arsenal of operators of XPath with fuzzy variants of and and or. Partic-
ularly, we have considered three versions of and: and+, and, and- (and the same for
or: or+, or, or-) which make more flexible the composition of fuzzy conditions. Three
versions for each operator which are obtained from our adaptation of the Product,
Lukasiewicz and Gadel logics to the XPath paradigm. We claim that in our work the
fuzzy versions provide a mechanism to force (and debilitate) conditions in the sense
that stronger (and weaker) user preferences can be modeled with the use of stronger
(and weaker) fuzzy conditions. The combination of fuzzy operators in queries permits
to specify a ranked set of fuzzy conditions according to user’s requirements.

Finally, we have equipped XPath with an additional operator that is also traditional
in fuzzy logic: the average operator avg. This operator offers the possibility to explicitly
give weight to fuzzy conditions. Rating conditions by avg, solutions increase their weight
in a proportional way. However, from the point of view of the user’s preferences, it
forces the user to quantify his (her) wishes which, in some occasions, can be difficult
to measure. For this reason, fuzzy versions of and and or are better choices in some
circumstances.

In this work, we describe how to implement our fuzzy variant of the XPath language
within the XQuery language. Basically, we have defined an XQuery library able to
fuzzily handle XPath expressions in such a way that our proposed fuzzy XPath can be
encoded as XQuery expressions.

The implementation of our fuzzy extension of XPath is based on an XQuery library
of functions including deep and down operators, as well as the fuzzy operators and+,
and-, and, or+, or-, or and avg. Using this library the user can replace Boolean oper-
ators by fuzzy versions in XPath expressions, as well as he (she) can call to deep and
down operators, in order to obtain ranked sets of answers. The answers are shown with
a Retrieval State Value (RSV) representing the degree of satisfaction. The answers can
also be ordered with respect to the RSV making use of descending XQuery expression,
as well as filtered with regard to a threshold.

The input documents in our proposal are crisp XML documents, but the answers to
a query offer fuzzy information, that is, a RSV for each answer. Therefore our approach
is focused on the handling of standard XML documents, in which the user can retrieve
information, ranked by a certain degree of satisfaction. We have decided to implement
fuzzy XPath within XQuery by providing an XQuery library of fuzzy operators. It
makes possible that our library can be used from any XQuery processor to query any
XML document with crisp information.

Although the input of a query is a crisp XML document, the library assign internally
and, in a transparent way to the user, a RSV to each of node of interest in the document.
The RSVs assigned to each node of interest are used to compute the RSV of the
answer. It makes the implementation a non-trivial task. Starting from a crisp XML
document as input, our implementation annotates at run-time a RSV to each node of
the query result. It also involves to dynamically annotate RSVs of nodes in subqueries.
Additionally, where and return expressions of XQuery become XQuery functions in
order to handle fuzzy conditions and RSVs, respectively.

Fig. 1. Fuzzy XPath Grammar
xpath := [‘[’deep-down‘]’ |path
path := literal | text() | node | @att | node/path | node//path
node := QName | QName[cond]
cond := xpath op xpath | xpath num-op number
deep := DEEP=number
down := DOWN=number

deep-down := deep | down | deep ‘3’ down
num-op := > | =| < | <>
fuzzy-op := and | and+ | and- | or | or+ | or- |
avg | avg{number,number}
op := num-op | fuzzy-op

Finally, let us remark that we have previously developed in [1-5] an implementation®
of our fuzzy XPath using the FLOPER “Fuzzy LOgic Programming Environment for
Research” tool* which is based on Multi-Adjoint Logic Programming (MALP) [21, 22].
There we made use of the fuzzy logic nature of FLOPER to implement fuzzy XPath
by using fuzzy logic rules. Here the implementation has to adapt a Boolean logic based
language (i.e., XQuery) to obtain the same behavior as in MALP. The implementation
in XQuery can be downloaded from http://dectau.uclm.es/fuzzyXPath/.

The structure of the paper is as follows. Section 2 will describe the fuzzy version of
XPath. Section 3 will show some examples of fuzzy XPath. Section 4 will present the
implementation in XQuery. Section 5 will show the same of examples than Section 3,
written in XQuery. Section 6 will present related work. Finally, Section 7 will conclude
and present future work.

2 A Flexible XPath Language

Our proposal of fuzzy XPath is defined by the grammar of Figure 1. Basically, the
extension of XPath is as follows:

e A given XPath expression can be adorned with «[DEEP = r;; DOWN = ro|»
which means that the deepness of elements is penalized by r; and that the order of
elements is penalized by ro, and such penalization is proportional to the distance
(i.e., the length of the branch and the weight of the tree, respectively). In particular,
«[DEEP = 1; DOWN = r5|» can be used for penalizing only w.r.t. document order.
deep works for //, that is, the deepness in the XML tree is only computed when
descendant nodes are explored, while down works for both / and //. Let us remark
that deep and down can be used anywhere, and many times in an XPath expression.

e We consider three versions for each one of the conjunction and disjunction opera-
tors (also called connectives or aggregators) which are based in the so-called Prod-
uct, Gédel and Lukasiewicz fuzzy logics. The Gédel and Lukasiewicz logic based
fuzzy symbols ° are represented in our application by and+, and-, or- and or+,

3 http://dectau.uclm.es/fuzzyXPath/

4 http://dectau.uclm.es/floper.

5 The fuzzy logic community frequently uses the terms t-norm and t-conorm for expressing
generalized versions of conjunctions and disjunctions.

Fig. 2. Fuzzy Logical Operators

&p(z,y) = *y lp(z,y) =x+y—x*y Product: and/or
&c(z,y) = min(z,y) le(x,y) = max(x,y) Gédel: and+/or-
&i(z,y) =max(z+y—1,0) |u(z,y) =min(z+y,1) Lukasiewicz: and-/or+

in contrast with product logic operators and and or (see Figure 2). Adjectives
like pessimistic, realistic and optimistic are sometimes applied to the Lukasiewicz,
Product and Gddel fuzzy logics since operators satisfy that, for any pair of real
numbers z and y in [0,1]: 0 < &(z,y) < &p(z,y) < &e(z,y) < I and the
contrary for the disjunction operations: 0 < |g(z,y) < |p(z,y) < |u(z,y) < 1.
So, note that it is more difficult to satisfy a condition based on a pessimistic
conjunctor/disjunctor (i.e, and-/or- inspired by the Lukasiewicz and Gddel log-
ics, respectively) than with Product logic based operators (i.e, and/or), while the
optimistic versions of such connectives (i.e., and+/or+) are less restrictive, obtain-
ing a greater set of answers. This is a consequence of the following chain of in-
equalities: 0 < and—(z,y) < and(z,y) < and+(z,y) < or—(z,y) < or(z,y) < or+(z,y) < 1. There-
fore users should refine queries by choosing operators in the previous sequence from
left to right (or from right to left), till finding solutions satisfying in a stronger (or
weaker) way the requirements.

e Finally, the avg operator is defined too in a weighted way. Assuming two given RSV’s
r1 and ro, avg is defined as (r1+72)/2, and avg{a, b} is defined as (axrq+bxry)/a+b.

In general, an extended XPath expression defines, w.r.t. an XML document, a sequence
of subtrees of the XML document where each subtree has an associated RSV. XPath
conditions, which are defined as fuzzy operators applied to XPath expressions, compute
a new RSV from the RSVs of the involved XPath expressions, which at the same time,
provides a RSV to the node.

2.1 Examples of Fuzzy XPath

In order to illustrate the language, let us see some examples of flexible queries in
XPath. We will take as input document the one shown in Figure 3. The example shows
a sequence of hotels where each one is described by name and price, proximity to
streets (close_to%) and provided services (pool and metro -together with distance-). In
the example, we assume that document order has the following semantics”. The tag
close__to specifies the proximity to a given street. However, the order of close_to tags
is relevant, and the top streets are closer than the streets at the bottom. In other words,
the case:

hotel_H
close_to street_A
close_to street_B

6 Let us remark that close_to is not a fuzzy relation in our approach. As was commented
before, input XML documents are crisp.

7 The document order semantics can vary from one document to another. This example has
been chosen to show the expressive power of our query language. Another kind of document
can have a different order semantics and therefore the queries should be adapted.

Fig. 3. Input XML document collecting Hotel’s information

<hotels>
<hotel name="Melia">
<close_to>Gran Via
<close_to>Callao</close_to>
<close_to>Plaza de Espana</close_to>
</close_to>
<services>
<pool></pool>
<metro>150</metro>
</services>
<price>100</price>
</hotel>
<hotel name="NH">
<close_to>Sol
<close_to>Gran Via</close_to>
<close_to>Callao</close_to>
</close_to>
<services>
<metro>300</metro>
</services>
<price>150</price>
</hotel>
<hotel name="Hilton">
<close_to>Moncloa
<close_to>Gran Via</close_to>
<close_to>Sol</close_to>
</close_to>
<services>
<metro>150</metro>
</services>
<price>50</price>
</hotel>
<hotel name="Tryp">
<close_to>Cibeles
<close_to>Alcala
<close_to>Gran Via</close_to>
</close_to>
<close_to>Retiro</close_to>
</close_to>
<services>
<pool></pool>
<metro>10</metro>
</services>
<price>575</price>
</hotel>
<hotel name="Sheraton">
<close_to>Recoletos
<close_to>Cibeles</close_to>
<close_to>Gran Via
<close_to>Sol</close_to>
</close_to>
</close_to>
<close_to>Sol</close_to>
<services>
<pool></pool>
<metro>300</metro>
</services>
<price>475</price>
</hotel>
</hotels>

implies that hotel H is near to both streets A and B, but closer to A than to B. The
nesting of close_to has also a relevant meaning. While a given street A can be close
to the hotel H, the streets close to A are not necessarily close to the hotel H. In other
words, in the case:

hotel_H
close_to street_A
close_to street_B

the street B is near to street A, and street A is close to hotel H, which implies that
street B is also close to hotel H, but no so close as street A. For instance, H can be
situated at the end of street A, and B can cross A at the beginning. We can say, in this
case, that B is an adjacent street to H, while A is close to H. This means that when
looking for a hotel close to a given street, the highest priority should be assigned to
streets close to the hotel, while adjacent streets should be relegated to lower priority.

Particularly, when the user tries to find hotels very close to a given street a high down
value and a low deep value should be provided, whereas in the case the user tries to find
hotels in the neighborhood of an street, a high deep and low down should be requested.

In our first example, we focus on the use of down. Let us now suppose that the user
is interested to find a hotel close to Sol street. This might be his (her) first tentative
looking for a hotel. Using crisp XPath he (she) would formulate:

<< /hotels/hotel[close _to/text() = “Sol”]/@Qname >>
However, it gives the user the set of hotels close to Sol without distinguishing the degree
of proximity. The fuzzy version of XPath permits to specify a degradation of answers,
in such a way that the user reformulates the query as:
<< /hotels/hotel [DOWN = 0.9]close _to/text() = “Sol”]/@Qname >>

The query specifies that close_to tag is degraded by 0.9 from top to down. In other
words, when Sol is found close to a hotel, the position in which it occurs gives a different
satisfaction value. In this case, we will obtain:

<result>
<result rsv="1.0">NH</result>
<result rsv="0.9">Sheraton</result>
</result>

Fortunately, we have found a hotel (NH) which is very close to Sol, and one (Sheraton)
which is a little bit farther from Sol. Let us remark the previous example and the other
examples of the Section show the results in order of satisfaction degree.
Let us now suppose that we are looking for a hotel close to Callao. In this case, we

can try to make the same question:

<< /hotels/hotel [DOWN = 0.9]close_to/text() = “Callao”]/Qname >>
However, the result is empty. Therefore we can try to relax the query by changing ‘/’
by °/ /"

<< /hotels/hotel [DOWN = 0.9]//close_to/text() = “Callao”]/Qname >>
Now, we will find answers, however, we will not be able to distinguish the proximity
of the hotels. Our fuzzy version of XPath permits to specify how the solutions are
degraded but not only taking into account the order but also the deepness. In other
words, there would be useful to give different weights to be a close street, and to be an
adjacent street. Therefore we can use the query:

<< /hotels/hotel [DEEP = 0.5; DOWN = 0.9]//close_to/text() = “Callao”]/@Qname >>

obtaining the following results:

<result>
<result rsv="0.5">Melia</result>
<result rsv="0.45">NH</result>
</result>

Thus Melia is near to Callao, and NH is a little bit farther than Melia.

The use of deep combined with down could be considered as the best choice. How-
ever, deep can be used alone when the user only wants to penalize adjacency. Whenever
we like to search hotels near to Gran Via street, degrading adjacent streets with a factor
of 0.5, we can consider the following query (and we obtain the following result):

<< //hotel[[DEEP = 0.5]//close_to/text() = “GranVia”]/Qname >>

<result>
<result rsv="1.0">Melia</result>
<result rsv="0.5">NH</result>
<result rsv="0.5">Hilton</result>
<result rsv="0.5">Sheraton</result>

<result rsv="0.25">Tryp</result>
</result>

We can see that Melia is close to Gran Via, while NH, Hilton and Sheraton are situated
in adjacent streets of Gran Via. Tryp is the farthest hotel.

Let us now suppose that the user is interested in a hotel combining two services like
pool and metro. Instead of using classical and/or connectives for mixing both features,
we can obtain more flexible estimations on RSV values by using the avg operator as
follows:

<< //hotel[services/pool avg services/metro|/Qname >>
thus obtaining the following results:

<result>
<result rsv="1.0">Melia</result>
<result rsv="1.0">Tryp</result>
<result rsv="1.0">Sheraton</result>
<result rsv="0.5">NH</result>
<result rsv="0.5">Hilton</result>
</result>

By using the avg fuzzy operator, the user finds that Melia, Tryp and Sheraton have
pool and metro, while NH and Hilton lack on one of them.
Let us now suppose that the importance of the metro is the double of the importance
of the pool. In this case, the user can formulate the query as follows:
<< //hotel[services /pool avg{1,2} services/metro|/@name >>
obtaining the following results:

<result>
<result rsv="1.0">Melia</result>
<result rsv="1.0">Tryp</result>
<result rsv="1.0">Sheraton</result>
<result rsv="0.666667">NH</result>
<result rsv="0.666667">Hilton</result>
</result>

We can see in the results that NH and Hilton increase the degree of satisfaction w.r.t.
the previous query given that they have metro station.

Let us now suppose the user is looking now for hotels giving more importance to
the fact that the price of the hotel is lower than 150 euros than to the proximity to Sol
street. The user can formulate the query as follows, obtaining the results below:

<< //hotel [DEEP = 0.8]//close_to/text() = “Sol” avg{1,2} //price/text() < 150]/@Qname >>

<result >
<result rsv="0.933333">Hilton</result>
<result rsv="0.666667">Melia</result>
<result rsv="0.333333">NH</result>
<result rsv="0.333333">Sheraton</result>
</result>

In the following queries we express the following requirement: hotels near to Gran
Via, near to a metro station, having pool, with greater preference (3 to 2) to pool than
metro. We will use and+, and and and- which provide different levels of exigency, which
are demonstrated in the results.

<< //hotel[([DEEP = 0.5]//close_to/text() =" GranVia”) and+(//pool avg{3,2} //metro/text() < 200)]/Qname >>

<result>
<result rsv="1.0">Melia</result>
<result rsv="0.5">Sheraton</result>
<result rsv="0.4">Hilton</result>

<result rsv="0.25">Tryp</result>
</result>

<< //hotel[([DEEP = 0.5]//close_to/text() =" GranVia") and(//pool avg{3,2} //metro/text() < 200)]/Qname >>

<result >
<result rsv="1.0">Melia</result>
<result rsv="0.3">Sheraton</result>
<result rsv="0.25">Tryp</result>
<result rsv="0.2">Hilton</result>
</result>

<< //hotel[([DEEP = 0.5]//close_to/text() =" GranVia") and — (//pool avg{3,2} //metro/text() < 200)]/Qname >>

<result>
<result rsv="1.0">Melia</result>
<result rsv="0.25">Tryp</result>
<result rsv="0.1">Sheraton</result>
</result>

So, in the first case (the least demanding and optimistic) we obtain four hotels (Melia,
Sheraton, Hilton and Tryp), as well as in the second case (a little bit more exigent)
while third table (the strongest one) lists three candidates (Melia, Tryp and Sheraton).
Sheraton and Hilton are degraded using and and and-.

3 XQuery Library for Fuzzy XPath

We can summarize the elements of the implementation as follows:

3.1 Elements of the Library

1. The deep and down operators become XQuery functions that take as arguments a
context node, an XPath expression and the value (a real number in [0,1]) assigned
to deep and down, respectively. For combining deep and down an XQuery function
is defined having as argument two real values in [0,1]:

declare function f:deep($node, $xpath, $deep)
declare function f:down($node, $xpath,$down)
declare function f:deep_down ($node, $xpath, $deep, $down)

2. Fuzzy versions of Boolean operators and, or have been defined as XQuery functions,

each one for each fuzzy logic we have considered (i.e., Product, Lukasiewicz and
Godel):

declare function
declare function
declare function
declare function
declare function
declare function

:andP ($left ,$right)
:orP($left, $right)
:andG($left,$right)
:orG($left, $right)
:andL($left,$right)
:orL($left,$right)

3. Operators avg and avg{a,b} have been defined as XQuery functions:

declare function f:avg($left,$right)
declare function f:avg_ab($left,$right,$a,$b)

4. Fuzzy versions of XQuery expressions where and return have been defined. In order
to make transparent to the user the incorporation of RSVs, we have defined a new
version of the return expression, called returnF, which transparently carries out
the computation of the RSVs of the answers. Similarly, since XQuery works with
a Boolean logic, the introduction of fuzzy versions of the operators, force us to
define a new version of the where expression, called whereF, which transparently
carries out the computation of the RSVs from fuzzy conditions. ReturnF has as
parameters the context node and an XPath expression. WhereF' has as parameters
the context node and a fuzzy condition.

declare function f:whereF($node, $fuzzycond)
declare function f:returnF ($node, $xpath)

5. Fuzzy versions of comparison operators for XPath expressions have been defined as
XQuery functions. Similarly to whereF, comparison operators have been adapted
to handle the RSVs:

declare function f:equalF($left,$right)
declare function f:lessF($left,$right)
declare function f:greaterF($left,$right)

3.2 Implementation of the Library

In order to implement our library in XQuery we have used the XQuery Module available
in the BaseX processor [17]. In particular, we make use of the function eval that makes
possible the manipulation of XPath expressions. This function is also available for Exist
[20] and Sazon [18] processors. For instance, down is defined as follows:

declare function f:down($nodes, $query, $down){

let $docDown := document{f:down_aux($nodes/*,$down, (), ()}
let $docQ := xquery:eval(concat(’$x’,$query), map { ’$x’ :=$docDownl})
let $docL := xquery:eval(concat(’$x’,$query), map { ’$x’ :=$nodesl})

return f:putListRSV($docL,f:getListRSV($docQ))
}s

deep is defined as follows:

declare function f:deep($doc as node()*, $query, $deep as xs:double){

let $docDeep := document{f:deep_aux($doc/*,$deep,1)}
let $docQ := xquery:eval(concat(’$x’,$query), map { ’$x’ :=$docDeepl)
let $docL := xquery:eval(concat(’$x’,$query), map { ’$x’ :=$doc})

return f:putListRSV($docL,f:getListRSV($docQ))
1

and deep down is defined as follows:

declare function f:deep_down($nodes as node () *,$query, $deep as xs:double, $down as
xs:double) {

let $docDown := document{f:down_aux($nodes/*,$down, () ,())}

let $docDeep := document{f:deep_aux($docDown/*,$deep,1)}

let $docQ := xquery:eval(concat(’$x’,$query), map { ’$x’> :=$docDeepl)
let $docL := xquery:eval(concat(’$x’,$query), map { ’8$x’ :=$nodes})
return f:putListRSV($docL,f:getListRSV($docQ))

Each fuzzy operator has been defined as a function, for instance, and (Product
logic), or+ (Gdédel logic), avg, and avg{a,b} are defined as follows:

declare function f:andP($condl,$cond2)

{
let $tvl := f:truthValue($condl)
let $tv2 := f:truthValue($cond2)
return $tvix$tv2
3
declare function f:orG($condl,$cond2)
{
let $tvl := f:truthValue($condl)
let $tv2 := f:truthValue($cond2)
return
if ($tvl > $tv2) then $tvi
else $tv2
18
declare function f:avg($condl,$cond2)
{
let $tvl := f:truthValue($condl)
let $tv2 := f:truthValue($cond2)
return (xs:double($tvl)+xs:double($tv2)) div (2)
18
declare function f:avg_ab($condl, $cond2, $a, $b)
{
let $tvl := f:truthValue($condl)
let $tv2 := f:truthValue($cond2)

return (xs:double($tvi)*$a+xs:double($tv2)*$b) div ($a+$b)
}s

4 Examples of Fuzzy XPath in XQuery

Now, we show how the previous fuzzy XPath queries can be written in XQuery. Let us
now suppose the following fuzzy XPath query:

<< /hotels/hotel [DOW N = 0.9]close_to/text() = “Sol”]/@Qname >>
We can now write the same query in XQuery as follows:

for $x in doc(’hotels.xml’)/hotels/hotel

let $y f:whereF ($x,f:equalF (f:down($x,’/close_to’,0.9),’S0l?))
let $z f:returnF ($y,’/Cname’)

order by $y/@rsv descending

return $z

We can see that fuzzy XPath expressions are written as XQuery expressions. This is
the same kind of transformation from crisp XPath to XQuery. For instance:

<< /hotels/hotel[close _to/text() = “Sol”]/@Qname >>
can be translated into:

for $x in doc("hotels.xml")/hotels/hotel
where $x/close_to/text()="Sol"
return $x/@name

I3

In the fuzzy case, “=” is transformed into equalF, and where as well as return
become XQuery functions, with an extra argument to represent the context node. The
query makes use of the function down of the library to compute the RSVs associated
to close_to. In addition, the attribute rsv, which has been (internally) added to the
output document, can be handled to show the answer in a sorted way, and even to
define a threshold. Let us now consider the following query, that uses deep and down:

<< /hotels/hotel [DEEP = 0.5; DOWN = 0.9]//close_to/text() = “Callao”]/Qname >>
We can now write the same query in XQuery using the function deep down:

for $x in doc(’hotels.xml’)/hotels/hotel
let $y :=
f:whereF ($x, f:equalF(f:deep_down($x,’//close_to’,0.5,0.9),’Callao’))
let $z := f:returnF($y,’/Cname’)
order by $y/@rsv descending
return $z

Let us now suppose the following fuzzy XPath expression that makes use of the avg
operator.
<< //hotel[services/pool avg services/metro|/Qname >>
Here, we use the function avg of the library, having as parameters both sides of the
fuzzy condition:

for $x in doc(’hotels.xml’)//hotel

let $y := f:whereF($x, f:avg($x/services/pool,$x/services/metro))
let $z := f:returnF($y,’/@name’)

order by $y/@rsv descending

return $z

The same can be said for the following query, using avg{a,b} having as parameters a
and b.

<< //hotel[services/pool avg{l,2} services/metro]/@name >>

for $x in doc(’hotels.xml’)//hotel

let $y := f:whereF($x,f:avg_ab($x/services/pool, $x/services/metro,1,2))
let $z := f:returnF($y,’/@name’)

order by $y/0@rsv descending

return $z

Let us now suppose the following queries that combine deep and avg, and deep and
and+, respectively:
<< //hotel [DEEP = 0.8]//close_to/text() = “Sol”avg{1,2} //price/text() < 150]/Qname >>

for $x in doc(’hotels.xml’)//hotel

let $y := f:whereF($x, f:avg_ab(f:equalF (f:deep($x,’//close_to’,0.8),’Sol?),
$x//price/text () <150,1,2))
let $z := f:returnF($y,’/Cname’)

order by $y/@rsv descending
return $z

<< //hotel[([DEEP = 0.5]//close_to/text() =" GranVia”) and+(//pool avg{3,2} //metro/text() < 200)]/Qname >>

for $x in doc(’hotels.xml’)//hotel

let $y := f:whereF($x,f:andG(f:equalF (f:deep($x,’//close_to’,0.5),’GranVia’),
f:avg_ab($x//pool,$x//metro<200,3,2)))
let $z := f:returnF($y,’/Cname’)

order by $y/@rsv descending
return $z

4.1 Benchmarks

Now, we would like to show the benchmarks we have obtained using our library. We have
tested our library using data sets of different sizes. We have used as data sets traces of
execution of MALP programs developed under our FLOPER tool. The FLOPER tool
generates traces in XML format, with a high degree of tag nesting when a recursive
program is executed. These data sets facilitate the testing of our structural based
operators deep and down.

Fig. 4. Benchmarks

Query 16Kb 7T00Kb 4.8Mb 15.4Mb
Ezamined nodes in Q1 28 148 298 448
Ezxamined nodes in Q2 25 145 295 445

Tree Depth 21 101 201 301
Q1 7.09 ms | 25.47 ms | 123.66 ms | 461.6 ms
down in Q1 12.52 ms| 107.1 ms | 481.24 ms | 2853.36 ms
deep in Q1 10.08 ms| 74.17 ms | 510.74 ms | 1953.31 ms
deep and down in Q1 [69.97 ms| 102.0 ms | 685.87 ms | 7315.59 ms
Q2 5.77 ms | 57.96 ms | 172.03 ms | 529.18 ms
avg in Q2 36.59 ms|1266.99 ms|9729.49 ms|60426.28 ms

In Figure 4 we can see the results, where we indicate the number of nodes examined
in each tree, as well as the depth of the tree. We have compared the execution times
for two XPath expressions in crisp and fuzzy versions. The first query is Q1:

<< //node/goal >>
and the second query is Q2:
<< //nodelgoal[contains(text(),” p(”)] and substitution[contains(text(),” g(")]]//goal >>

We have used the BaseX Query processor in a Intel Core 2 Duo 2.66 GHz Mac OS

machine.

5 Related Work

Fuzzy logic plays a key role in information retrieval and the need for providing fuzzy /flex-
ible mechanisms to XML querying has recently motivated the investigation of exten-
sions of the XQuery /XPath language. We can distinguish those in which the main goal
is the introduction of fuzzy information in data (similarity, proximity, vagueness, etc)
[25,26,8,7,15,27,23,24] and the proposals in which the main goal is the handling of
crisp information by fuzzy concepts [16,9,10,13,12,19,11]. Our work focuses on the
second line of research.

Fuzzy versions of XQuery have been previously studied in some works. The closest to
our approach is [16], in which preferences can be described by queries in order to retrieve
discriminated answers by user’s preferences. FLOWR expressions are extended to cover
with fuzzy values and answers. The main aim of their work is to extend XQuery with
definition of fuzzy terms: good, cheap, high, young, etc., defined as fuzzy predicates that
can be imposed in XPath expressions. They extend XQuery datatypes with zs:truth
and incorporate zml:truth as attribute to represent degree of satisfaction. Nevertheless,
they lack on an implementation, and therefore we cannot compare our proposal with
them, although we believe that a similar technique we have proposed here can be used.
In [25], they also extends the syntax of XQuery, in particular, the expression where
to cover with priority and thresholding. Their approach is focused on querying fuzzy
XML data, and therefore their proposal is different from our. The have developed an
implementation using Java on top of the Exist [20] XQuery processor. A fuzzy query

is transformed into standard XQuery to be executed. Fuzzy data querying is also the
main aim of the work of [26], in which they propose a fuzzy XML Shema and algebraic
operators to handle fuzzy data over an schema. They provide transformations from
the algebraic operators to XQuery (and XPath) expressions. Again, their approach is
different from our, since they work with fuzzy XML data as input.

Fuzzy versions of XPath have been previously studied in some works. The closest
works to our proposal are [9, 10] in which authors introduce in XPath flexible matching
by means of fuzzy constraints called close and similar for node content, together with
below and near for path structure. In addition, they have studied the deep-similar
notion for tree matching, and fuzzy versions for not, and and or operators. In order
to provide ranked answers they assign a RSV to each item. Our work is similar to
the proposed by [9,10]. The below operator of [9,10] is equivalent to our proposed
down: both extract elements that are direct descendants of the current node, and
the penalization is proportional to the distance. The near operator of [9,10], which
is defined as a generalization of below, ranks answers depending on the distance to
the required node, in any XPath axis. Our proposed deep ranks answers depending
of the distance to the current node, but the considered nodes can be direct and non
direct descendants. Therefore our proposed deep combined with down is a particular
case of near. To have the same expressive power as near we could incorporate to our
framework a new operator to rank answers from bottom to up. With respect to similar
and close operators proposed in [9,10], our framework lacks similarity relations and
rather focuses on structural (i.e. path-based) flexibility.

In [13], the authors propose to give a satisfaction degree to XPath expressions
based on associating weights to XPath steps. Relaxing XPath expressions when the
path does not match the XML schema is the main goal of this work. They have studied
how to compute the best k& answers. In this line, in [12, 14] XPath relaxation is studied
given some rules for query rewriting: axis relaxation, step deletion and step cloning,
among others. The proposed deep-similar notion of [9,10] can be also considered a
relaxation technique of XML tree equality. Our work has some similarities with these
proposals: deep and down, and also the use of avg operator, are mechanisms for relaxing
queries and giving priority to paths and answers. We have also studied in [3] how to
introduce axis relaxation, step deletion and step cloning in our approach, but the
proposed implementation does not still include these mechanisms. It is considered as
future work.

6 Conclusions and Future Work

In this paper we have presented an XQuery based implementation of a fuzzy version
of XPath. Fuzzy XPath incorporates mechanisms to rank answers depending on the
location of the item in the XML tree of input, as well as to give priority to queries. The
output of a query contains an RSV in each item according to the user’s preferences.
We have described the elements of the XQuery library that make possible to express
fuzzy queries against crisp XML data. As future work, we plan the following steps.
Firstly, to incorporate new mechanisms of searching and ranking to queries. We have
previously studied [3,4] how to penalize answers when a given XPath expression is
incorrect, and tags have to be jumped, switched and added. We believe that these
mechanisms can be implemented also in XQuery. Secondly, we would like to extend
our work to other fuzzy logic mechanism (vagueness, similarity, etc). Another direction

we can take is to introduce the operators in XQuery and then use a parser to translate
the user expression in standard XQuery language. Finally, we would like to improve
the performance of our implementation, for instance, thanks to the use of thresholding,
following [5]. Up to now, thresholding is achieved on the output of the query, and
dynamic thresholding would improve the performance.

References

10.

11.

12.

13.

14.

Jestis Manuel Almendros-Jiménez, Alejandro Luna, and Ginés Moreno. Fuzzy Logic
Programming for Implementing a Flexible XPath-based Query Language. FElectr. Notes
Theor. Comput. Sci., 282:3-18, 2012.

. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. A Flexible XPath-based Query Lan-

guage Implemented with Fuzzy Logic Programming. In Proc. of 5th International Sym-
posium on Rules: Research Based, Industry Focused, RuleML’11, pages 186—193. Springer
Verlag, LNCS 6826, 2011.

J.M. Almendros-Jiménez, A. Luna, and G. Moreno. A XPath Debugger Based on Fuzzy
Chance Degrees. In P. Herrero et al., editor, On the Move to Meaningful Internet Sys-
tems: Proceedings OTM 2012 Workshops, Rome, Italy, September 10-14, pages 669-672.
Springer Verlag, LNCS 7567, 2012.

J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Annotating Fuzzy Chance Degrees
when Debugging Xpath Queries. In Proc. of the 12th International Work-Conference on
Artificial Neural Networks, IWANN’13, pages 300-311. Springer Verlag, LNCS 7903, Part
11, 2013.

J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Dynamic Filtering of Ranked An-
swers When Evaluating Fuzzy XPath Queries. In Rough Sets and Current Trends in Soft
Computing 2014, pages 319-330. Springer Verlag, LNATI 8536, 2014.

A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, and J. Siméon.
XML path language (XPath) 2.0. W3C, 2007.

P. Buche, J. Dibie-Barthélemy, O. Haemmerlé, and G. Hignette. Fuzzy semantic tagging
and flexible querying of XML documents extracted from the Web. Journal of Intelligent
Information Systems, 26(1):25-40, 2006.

P. Buche, J. Dibie-Barthélemy, and F. Wattez. Approximate querying of XML fuzzy data.
Flexible Query Answering Systems, pages 26-38, 2006.

A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, and P. Spoletini. A fuzzy extension
of the XPath query language. Journal of Intelligent Information Systems, 33(3):285-305,
2009.

E. Damiani, S. Marrara, and G. Pasi. FuzzyXPath: Using fuzzy logic and IR features to
approximately query XML documents. Foundations of Fuzzy Logic and Soft Computing,
pages 199-208, 2007.

E. Damiani, S. Marrara, and G. Pasi. A flexible extension of XPath to improve XML
querying. In Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 849-850. ACM, 2008.

B. Fazzinga, S. Flesca, and F. Furfaro. On the expressiveness of generalization rules
for XPath query relaxation. In Proceedings of the Fourteenth International Database
Engineering & Applications Symposium, pages 157-168. ACM, 2010.

B. Fazzinga, S. Flesca, and A. Pugliese. Top-k Answers to Fuzzy XPath Queries. In
Database and Expert Systems Applications, pages 822—-829. Springer, 2009.

Bettina Fazzinga, Sergio Flesca, and Filippo Furfaro. Xpath query relaxation through
rewriting rules. Knowledge and Data Engineering, IEEE Transactions on, 23(10):1583—
1600, 2011.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. A. Gaurav and R. Alhajj. Incorporating fuzziness in XML and mapping fuzzy relational
data into fuzzy XML. In Proceedings of the 2006 ACM symposium on Applied computing,
pages 456-460. ACM, 2006.

Marlene Goncalves and Leonid Tineo. Fuzzy XQuery. In Soft Computing in XML Data
Management, pages 133—-163. Springer, 2010.

Christian Griin. BaseX. The XML Database, 2014. http://basex.org.

M. Kay and S. Limited. Ten reasons why Saxon XQuery is fast. IEEFE Data Engineering
Bulletin, 1990.

H.G. Li, S.A. Aghili, D. Agrawal, and A. El Abbadi. FLUX: fuzzy content and structure
matching of XML range queries. In Proceedings of the 15th international conference on
World Wide Web, pages 1081-1082. ACM, 2006.

Wolfgang Meier. eXist: An open source native XML database. In Web, Web-Services, and
Database Systems, pages 169-183. Springer, 2003.

P.J. Morcillo and G. Moreno. Programming with Fuzzy Logic Rules by using the FLOPER
Tool. In Nick Bassiliades et al., editor, Proc of the 2nd. Rule Representation, Inter-
change and Reasoning on the Web, International Symposium, RuleML’08, pages 119-126.
Springer Verlag, LNCS 3521, 2008.

P.J. Morcillo, G. Moreno, J. Penabad, and C. Vazquez. A Practical Management of Fuzzy
Truth Degrees using FLOPER. In M. Dean et al., editor, Proc. of 4nd Intl Symposium
on Rule Interchange and Applications, RuleML’10, pages 20-34. Springer Verlag, LNCS
6403, 2010.

B. Oliboni and G. Pozzani. Representing fuzzy information by using XML schema. In
Database and Expert Systems Application, 2008. DEXA’08. 19th International Workshop
on, pages 683-687. IEEE, 2008.

B. Oliboni and G. Pozzani. An XML Schema for Managing Fuzzy Documents. Soft
Computing in XML Data Management, pages 3—-34, 2010.

P Ueng and S Skrbic. Implementing xquery fuzzy extensions using a native xml database.
In Computational Intelligence and Informatics (CINTI), 2012 IEEE 13th International
Symposium on, pages 305-309. IEEE, 2012.

Ekin Ustiinkaya, Adnan Yazici, and Roy George. Fuzzy data representation and querying
in xml database. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 15(supp01):43-57, 2007.

L. Yan, ZM Ma, and J. Liu. Fuzzy data modeling based on XML schema. In Proceedings
of the 2009 ACM symposium on Applied Computing, pages 1563—-1567. ACM, 2009.

