
Annotating “Fuzzy Chance Degrees”
when Debugging XPath Queries

Jesús M. Almendros-Jiménez1?, Alejandro Luna2, and Ginés Moreno2

1 Dep. of Informatics, University of Almería, Spain
Email: jalmen@ual.es

2 Dep. of Computing Systems, University of Castilla-La Mancha, Spain
Emails: Alejandro.Luna@alu.uclm.es, Gines.Moreno@uclm.es

Abstract. In this paper we present a method for debugging XPath
queries which has been implemented with the fuzzy logic language MALP
by using the FLOPER tool developed in our group. We describe how
XPath expressions can be manipulated for obtaining a set of alternative
queries matching a given XML document. For each new proposed query,
we give a “chance degree” that represents an estimation on its devia-
tion w.r.t. the initial expression. Our work is focused on providing to the
programmers a repertoire of paths which can be used to retrieve answers.

Keywords: XPath; Fuzzy (Multi-adjoint) Logic Programming; Debugging

1 Introduction

The eXtensible Markup Language (XML) is widely used in many areas of com-
puter software to represent machine readable data. XML provides a very simple
language to represent the structure of data, using tags to label pieces of textual
content, and a tree structure to describe the hierarchical content. XML emerged
as a solution to data exchange between applications where tags permit to lo-
cate the content. XML documents are mainly used in databases. The XPath
language [1] was designed as a query language for XML in which the path of
the tree is used to describe the query. XPath expressions can be adorned with
boolean conditions on nodes and leaves to restrict the number of answers of the
query. XPath is the basis of a more powerful query language (called XQuery)
designed to join multiple XML documents and to give format to the answer.

In spite of the simplicity of the XPath language, the programmer usually
makes mistakes describing the path in which the data are allocated. Tipically,
the programmer omits some of the tags of the path, adds more than necessary,
and also uses similar but wrong tag names. When the query does not match to
the tree structure of the XML tree, the answer is empty. However, we can also
? The author’s work has been supported by the Spanish Ministry MICINN and In-
genieros Alborada IDI under grant TRA2009-0309, and the Junta de Andalucía
(proyecto de excelencia) under grant TIC-6114.

find the case in which the query matches to the XML tree but the answer does
not satisfy the programmer. Due to the inherent flexibility of XML documents,
the same tag can occurs at several positions, and the programmer could find
answers that do not correspond to her (his) expectations. In other words, (s)he
finds a correct path, but a wrong answer. We can also consider the case in which
a boolean condition is wrong, expressing a wrong range, and several boolean
conditions that do not hold at the same time. When the programmer does not
find the answer is looking for, there is a mechanism that can try to debug the
query. In XPath there exists an operator, denoted by ‘//’, that permits to look
for the tag from that position. However, it is useless when the tag is present
at several positions, since even though the programmer finds answers, does not
know whether they are close to her (his) expectations.

XPath debugging has to take into account the previous considerations. Par-
ticularly, there is an underlying notion of chance degree. When the programmer
makes mistakes, the number of bugs can be higher or lower, and the chance
degree is proportional to them. Moreover, there are several ways on which each
bug can be solved, and therefore the chance degree is also dependent from the
number of solutions for each bug, and the quality of each solution. The quality of
a solution describes the number of changes to be made. Finally, there is a case in
which we have also focused our work. The case in which the mistake comes from
a similar but wrong used tag. Here, the chance degree comes from the semantic
closeness of the used tag.

Our proposed XPath debugging technique is guided by the programmer that
initially establishes a value (i.e., a real value between 0 and 1), used by the
debugger to penalize bugs in a proportional way. Additionally, we assume that
the debugger is equipped with a table of similarities, that is, pairs of similar
words with an assigned value in the range [0..1]. It makes possible that chance
degrees be computed from similarity degrees.

The debugger reports a set of annotated paths by using an extended XPath
syntax incorporating three annotations: JUMP, SWAP and DELETE. JUMP is used to rep-
resent that some tags have been added to the original expression, SWAP is used to
represent that a tag has been changed by another one and, DELETE is used to rep-
resent that a tag has been removed. Moreover, the reported XPath expressions
updates the original XPath expression, that is: case JUMP incorporates ‘//’ at the
position in which the bug is found; case SWAP includes the new tag; and finally
case DELETE removes the wrong tag.

Additionally, our proposal permits the programmer to test the reported
XPath expressions. The annotated XPath expressions can be executed in our tool
(http://dectau.uclm.es/fuzzyXPath/) in order to obtain a ranked set of an-
swers w.r.t. the chance degree. It facilitates the process of debugging because pro-
grammers can visualize answers to each query in a very easy way. Our implemen-
tation has been developed on top of the recently proposed fuzzy XPath extension
[2, 3], which uses fuzzy logic programming to provide a fuzzy taste to XPath ex-
pressions. The implementation has been coded with the fuzzy logic programming

language MALP and developed with the FLOPER tool designed in our research
group and freely accessible from http://dectau.uclm.es/floper/.

Although our approach can be applied to standard (crisp) XPath expressions,
chance degrees in XPath debugging fits well with our proposal. Particularly,
XPath debugging annotations can be seen as annotations of XPath expressions
similary to the proposed DEEP and DOWN of fuzzy XPath [2, 3]. DEEP and DOWN serve
to annotate XPath expressions and to obtain a ranked set of answers depending
on they occur, more deeply and from top to down. Each answer is annotated
with a RSV (Retrieval Status Value) which describes the degree of satisfaction
of the answer. Here JUMP, SWAP and DELETE penalize the answers of annotated XPath
expressions. DEEP and JUMP have, in fact, the same behavior: JUMP proportionally
penalizes answers as deep as they occur. Moreover, in order to cover with SWAP,
we have incorporated to our framework similarity degrees. Finally, let us remark
that the current work is an extension of our previous published work [4].

The structure of the paper is as follows. After summarizing in Section 2 our
fuzzy extension of XPath [2, 3], in Section 3 we describe our debugging technique.
Implementation details are drawn in Section 4.

2 Fuzzy XPath

In this section we summarize the main elements of our proposed fuzzy XPath
language described in [2, 3]. We firstly incorporate two structural constraints
called DOWN and DEEP to which a certain degree of relevance is associated. So,
whereas DOWN provides a ranked set of answers depending on the path they are
found from “top to down” in the XML document, DEEP provides a ranked set of
answers depending on the path they are found from “left to right” in the XML
text. Both structural constraints can be used together, assigning importance’s
degrees with respect to the distance to the root XML element.

Secondly, our fuzzy XPath incorporates fuzzy variants of and and or for
XPath conditions. Crisp and and or operators are used in standard XPath over
boolean conditions, and enable to impose boolean requirements on the answers.
XPath boolean conditions can be referred to attribute values and node content,
in the form of equality and range of literal values, among others. However, the
and and or operators applied to two boolean conditions are not precise enough
when the programmer does not give the same value to both conditions. For in-
stance, some answers can be discarded when they could be of interest by the
programmer, and accepted when they are not of interest. Besides this, program-
mers would need to know in which sense a solution is better than another. When
several boolean conditions are imposed on a query, each one contributes to satisfy
the programmer’s preferences in a different way and perhaps, the programmer’s
satisfaction is distinct for each solution.

We have enriched the arsenal of operators of XPath with fuzzy variants of and
and or. Particularly, we have considered three versions of and: and+, and, and-
(and the same for or : or+, or, or-) which make more flexible the composition of

fuzzy conditions. Three versions for each operator that come for free from our
adaptation of fuzzy logic to the XPath paradigm.

One of the most known elements of fuzzy logic is the introduction of fuzzy
versions of classical boolean operators. Product, Łukasiewicz and Gödel fuzzy
logics are considered as the most prominent logics and give a suitable semantics
to fuzzy operators. Our contribution is now to give sense to fuzzy operators into
the XPath paradigm, and particularly in programmer’s preferences. We claim
that in our work the fuzzy versions provide a mechanism to force (and debilitate)
conditions in the sense that stronger (and weaker) programmer preferences can
be modeled with the use of stronger (and weaker) fuzzy conditions. The com-
bination of fuzzy operators in queries permits to specify a ranked set of fuzzy
conditions according to programmer’s requirements.

Furthermore, we have equipped XPath with an additional operator that is
also traditional in fuzzy logic: the average operator avg. This operator offers the
possibility to explicitly give weight to fuzzy conditions. Rating such conditions
by avg, solutions increase its weight in a proportional way. However, from the
point view of the programmer’s preferences, it forces the programmer to quantify
his(er) wishes which, in some occasions, can be difficult to measure. For this
reason, fuzzy versions of and and or are better choices in some circumstances.

Finally, we have equipped our XPath based query language with a mechanism
for thresholding programmer’s preferences, in such a way that programmer can
request that requirements are satisfied over a certain percentage.
The proposed fuzzy XPath is described by the following syntax:

xpath := [‘[’deep-down‘]’]path
path := literal | text() | node | @att | node/path | node//path
node := QName | QName[cond]
cond := xpath op xpath | xpath num-op num
deep := DEEP=num
down := DOWN=num

deep-down := deep | down | deep ‘;’ down
num-op := > | = | < | <>
fuzzy-op := and | and+ | and- | or | or+ | or- | avg | avg{num,num}

op := num-op | fuzzy-op

Basically, our proposal extends XPath as follows:

– Structural constraints. A given XPath expression can be adorned with
«[DEEP = r1; DOWN = r2]» which means that the deepness of elements is penalized
by r1 and that the order of elements is penalized by r2, and such penalization
is proportional to the distance (i.e., the length of the branch and the weight
of the tree, respectively). In particular, «[DEEP = 1; DOWN = r2]» can be used for
penalizing only w.r.t. document order. DEEP works for //, that is, the deepness
in the XML tree is only computed when descendant nodes are explored, while
DOWN works for both / and //. Let us remark that DEEP and DOWN can be used
several times on the main path expression and/or any other sub-path included
in conditions.

Fig. 1. Fuzzy Logical Operators

&P(x, y) = x ∗ y |P(x, y) = x + y − x ∗ y Product: and/or
&G(x, y) = min(x, y) |G(x, y) = max(x, y) Gödel: and+/or-
&L(x, y) = max(x + y − 1, 0) |L(x, y) = min(x + y, 1) Łuka.: and-/or+

Fig. 2. Input XML document in our examples
<bib>

<name>Classic Literature</name>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<references>

<novel year="1997" price="35.99">
<name>La Galatea</name>
<author>Miguel de Cervantes Saavedra</author>
<references>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Sigismunda</title>
<author>Miguel de Cervantes Saavedra</author>

</book>
</references>

</novel>
</references>

</book>
<novel year="1999" price="25.65">

<title>La Celestina</title>
<author>Fernando de Rojas</author>

</novel>
</bib>

– Flexible operators in conditions. We consider three fuzzy versions for
each one of the classical conjunction and disjunction operators (also called
connectives or aggregators) describing pessimistic, realistic and optimistic
scenarios, see Figure 1. In XPath expressions the fuzzy versions of the con-
nectives make harder to hold boolean conditions, and therefore can be used
to debilitate/force boolean conditions. Furthermore, assuming two given
RSV’s r1 and r2, the avg operator is obviously defined with a fuzzy taste as
(r1 + r2)/2, whereas its priority-based variant, i.e. avg{p1, p2}, is defined as
(p1 ∗ r1 + p2 ∗ r2)/p1 + p2.

In general, a fuzzy XPath expression defines, w.r.t. an XML document, a se-
quence of subtrees of the XML document where each subtree has an associated
RSV. XPath conditions, which are defined as fuzzy operators applied to XPath
expressions, compute a new RSV from the RSVs of the involved XPath expres-
sions, which at the same time, provides a RSV to the node. In order to illustrate
these explanations, let us see some examples of our proposed fuzzy version of
XPath according to the XML document shown of Figure 2.

Example 1. Let us consider the fuzzy XPath query of Figure 3 requesting title’s
penalizing the occurrences from the document root by a proportion of 0.8 and
0.9 by nesting and ordering, respectively, and for which we obtain the file listed

Fig. 3. Execution of the query «/bib[DEEP=0.8;DOWN=0.9]//title»
Document RSV computation
<result>

<title rsv="0.8000">Don Quijote de la Mancha</title>
<title rsv="0.7200">La Celestina</title>
<title rsv="0.2949">Los trabajos de Persiles y ...</title>

</result>

0.8000 = 0.8
0.7200 = 0.8 ∗ 0.9
0.2949 = 0.85 ∗ 0.9

Fig. 4. Execution of the query «//book[@year<2000 avg{3,1} @price<50]/title»
Document RSV computation
<result>

<title rsv="1.00">Los trabajos de Persiles y</title>
<title rsv="0.25">Don Quijote de la Mancha</title>

</result>

1.00 = (3 ∗ 1 + 1 ∗ 1)/(3 + 1)
0.25 = (3 ∗ 0 + 1 ∗ 1)/(3 + 1)

Fig. 5. Execution of the query «/bib[DEEP=0.5]//book[@year<2000 avg{3,1}
@price<50]/title»
Document RSV computation
<result>

<title rsv="0.25">Don Quijote de la Mancha</title>
<title rsv="0.0625">Los trabajos de ...</title>

</result>

0.25 = (3 ∗ 0 + 1 ∗ 1)/(3 + 1)
0.0625 = 0.54 ∗ (3 ∗ 1 + 1 ∗ 1)/(3 + 1)

in Figure 3. In such document we have included as attribute of each subtree,
its corresponding RSV. The highest RSVs correspond to the main books of the
document, and the lowest RSVs represent the books occurring in nested positions
(those annotated as related references).

Example 2. Figure 4 shows the answer associated to a search of books, possibly
referenced directly or indirectly from other books, whose publishing year and
price are relevant but the year is three times more important than the price.
Finally, in Figure 5 we combine both kinds of (structural/conditional) operators,
and the ranked list of solutions is reversed, where “Don Quijote” is not penalized
with DEEP.

3 Debugging XPath

In this section we propose a debugging technique for XPath expressions. Our
debugging process accepts as inputs a query Q preceded by the [DEBUG=r] com-
mand, where r is a real number in the unit interval. For instance, «[DEBUG=0.5]
/bib/book/title».

Assuming an input XML document like the one depicted in Figure 2, the
debugging produces a set of alternative queries Q1, ..., Qn packed into an output
XML document with the following structure (see also Figure 6):

<result>
<query cd="r1" attributes1> Q1 </query>
. . .
<query cd="rn" attributesn> Qn </query>
</result>

Fig. 6. Debugging query «[DEBUG=0.5]/bib/book/title»
<result>

<query cd="1.0">/bib/book/title</query>
<query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>
<query cd="0.5" book="//">/bib/[JUMP=0.5]//title</query>
<query cd="0.5" bib="//">/[JUMP=0.5]//book/title</query>
<query cd="0.45" book="" title="name">/bib/[DELETE=0.5][SWAP=0.9]name</query>
<query cd="0.4" bib="//" book="novel">/[JUMP=0.5]//[SWAP=0.8]novel/title</query>
<query cd="0.25" book="" title="//">/bib/[DELETE=0.5][JUMP=0.5]//title</query>
<query cd="0.25" book="//" book="">/bib/[JUMP=0.5]//[DELETE=0.5]title</query>
<query cd="0.25" bib="" book="//">/[DELETE=0.5][JUMP=0.5]//book/title</query>
<query cd="0.25" bib="//" book="//">/[JUMP=0.5]//[JUMP=0.5]//title</query>
<query cd="0.25" bib="//" bib="">/[JUMP=0.5]//[DELETE=0.5]book/title</query>
<query cd="0.225" title="//" title="//" title="name">

/bib/book/[JUMP=0.5]//[JUMP=0.5]//[SWAP=0.9]name</query>
<query cd="0.225" bib="" book="//" title="name">

/[DELETE=0.5][JUMP=0.5]//[SWAP=0.9]name</query>
<query cd="0.225" bib="//" book="" title="name">

/[JUMP=0.5]//[DELETE=0.5][SWAP=0.9]name</query>
<query cd="0.2" bib="" book="//" book="novel">

/[DELETE=0.5][JUMP=0.5]//[SWAP=0.8]novel/title</query>
.........

</result>

where the set of alternative queries is ordered with respect to the CD key. This
value measures the chance degree of the original query with respect to the new
one, in the sense that as much changes are performed on Qi and as more trau-
matic they are with respect to Q, then the CD value becomes lower.
In Figure 6, the first alternative, with the highest CD, is just the original query,
thus, the CD is 1, whose further execution should return «Don Quijote de La
Mancha». Our debugger runs even when the set of answers is not empty, like in
this case. The remaining options give different CD’s depending on the chance
degree, and provide XPath expressions annotated with JUMP, DELETE and SWAP com-
mands.

In order to explain the way in which our technique generates the attributes
and content of each query tag in the output XML debugging document, let us
consider a generic path Q of the form: «[DEBUG=r]/tag1/.../tagi/tagi+1/...», where
we say that tagi is at level i in the original query. So, assume that when exploring
the input query Q and the input XML document D, we find that tagi in Q does
not occurs at level i in (a branch of) D. Then, we consider the following three
situations.

3.1 Swapping Case

Instead of tagi, we find tag′i at level i in the input XML document D, where
tagi and tag′i are two similar terms with similarity degree s. Then, we generate
an alternative query by adding the attribute tagi ="tag′i" and replacing in the
original path the occurrence "tagi/" by "[SWAP= s]tag′i/". The second query pro-
posed in Figure 6 illustrates this case:

« <query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query> »

Let us observe that : 1) we have included the attribute «book="novel"» in
order to suggest that instead of looking now for a book, finding a novel should
be also a good alternative, 2) in the path we have replaced the tag book by novel
and we have appropriately annotated the exact place where the change has been
performed with the annotation [SWAP=0.8] and 3) the CD of the new query has
been adjusted with the similarity degree 0.8 of the exchanged tags.

Now, it is possible to launch with our FuzzyXPath interpreter, the execution
of the (fuzzy) XPath queries «/bib/novel/title» and «/bib/[SWAP=0.8]novel/title».
In both cases we obtain the same result, i.e., «La Celestina» but with different
RSV (or Retrieval Status Value): 1 and 0.8, respectively.

3.2 Jumping Case

Even when tagi is not found at level i in the input XML document D, tagi+1

appears at a deeper level (i.e., greater than i) in a branch of D. Then, we
generate an alternative query by adding the attribute tagi="//", which means
that tagi has been jumped, and replacing in the path the occurrence "tag_i/"
by "[JUMP=r]//", where r is the value associated to DEBUG.

This situation is illustrated by the third and fourth queries in Figure 6, where
we propose to jump tags book and bib. The execution of the queries returns
different results, and as more tags are jumped, the resulting CD’s become lower.
Let us see the results of «/bib/[JUMP=0.5]//title» and «/[JUMP=0.5]//book/title»,
respectively:

<result>
<title rsv="0.5">Don Quijote de la Mancha</title>
<title rsv="0.5">La Celestina</title>
<title rsv="0.03125">Los trabajos de Persiles y Sigismunda</title>

</result>

<result>
<title rsv="0.5">Don Quijote de la Mancha</title>
<title rsv="0.03125">Los trabajos de Persiles y Sigismunda</title>

</result>

3.3 Deletion Case

This scenario emerges when at level i in the input XML document D, we found
tagi+1 instead of tagi. So, the intuition tell us that tagi should be removed from
the original query Q and hence, we generate an alternative query by adding
the attribute tagi="" and replacing in the path the occurrence "tag_i/" by
"[DELETE=r]", being r the value associated to DEBUG.

This situation is illustrated by the fifth query in Figure 6, where the dele-
tion of the tag book is followed by a swapping of similar tags title and name.
The CD 0.45 associated to this query is defined as the product of the values

associated to both DELETE (0.5) and SWAP (0.9), and hence the chance degree of
the original one is lower than the previous examples. So, the execution of query
«/bib/[DELETE=0.5][SWAP=0.9]name», should produce the XML-based output:

<result>
<name rsv="0.45">Classic Literature</name>

</result>

As we have seen in the previous example, the combined use of one or more
debugging commands (SWAP, JUMP and DELETE) is not only allowed but also frequent.
In other words, it is possible to find several debugging points.

When executing a query like «/[DELETE=0.5][JUMP=0.5]//[SWAP=0.9]name» , with
several changes on its body (w.r.t. the original goal) and a CD 0.225 quite low,
the RSV of the result is low too, since it has been obtained by multiplying the
three values associated to the deletion of the tag bib (0.5), jumping the tag book
(0.5) and the swapping of title by name (0.9):

<result>
<name rsv="0.225">Classic Literature</name>
<name rsv="0.028125">La Galatea</name>

</result>

It is important to note that the wide range of alternatives proposed by our
technique (Figure 6 is still incomplete), reveals its high level of flexibility: pro-
grammers are free to use the alternative queries to execute them, and to inspect
results up to their intended expectations.

Finally, we would like to remark that even when we have worked with a very
simple query with three tags in our examples, our technique works with more
complex queries with large paths and connectives in boolean conditions, as well
as DEBUG used in several places on the query. For instance, in Figure 7, we show
the result of debugging the following query: «[DEBUG=0.7]/bib/[DEBUG=0.6]book/
[DEBUG=0.5]title».

4 Some Implementation Hints with MALP and FLOPER

In this section we assume familiarity with logic programming and its most pop-
ular language Prolog [5], for which MALP [6] (Multi-Adjoint Logic Programming
3) allows a wide repertoire of fuzzy connectives connecting atoms in the bodies
of clauses. Although the core of our application is written with (fuzzy) MALP
rules, our implementation is based on the following items:

1. We have reused/adapted several modules of our previous Prolog-based im-
plementation of (crisp) XPath described in [9, 10].

2. We have used the SWI-Prolog library for loading and writing XML files, in
order to represent a XML document with Prolog term4.

3 See also [7, 8] and visit http://dectau.uclm.es/floper for downloading our
FLOPER system.

4 The notion of term (i.e., data structure) is just the same in MALP as in Prolog.

Fig. 7. Debugging of the query «[DEBUG=0.7]/bib/[DEBUG=0.6]book/[DEBUG=0.5]title»
<result>

<query cd="1.0">/bib/book/title</query>
<query cd="0.8" book="novel">/bib/[SWAP=0.8]novel/title</query>
<query cd="0.7" bib="//">/[JUMP=0.7]//book/title</query>
<query cd="0.6" book="//">/bib/[JUMP=0.6]//title</query>
<query cd="0.56" bib="//" book="novel">/[JUMP=0.7]//[SWAP=0.8]novel/title</query>
<query cd="0.54" book="" title="name">/bib/[DELETE=0.6][SWAP=0.9]name</query>
<query cd="0.42" bib="" book="//">/[DELETE=0.7][JUMP=0.6]//book/title</query>
<query cd="0.42" bib="//" book="//">/[JUMP=0.7]//[JUMP=0.6]//title</query>
<query cd="0.378" bib="" book="//" title="name">

/[DELETE=0.7][JUMP=0.6]//[SWAP=0.9]name</query>
<query cd="0.378" bib="//" book="" title="name">

/[JUMP=0.7]//[DELETE=0.6][SWAP=0.9]name</query>
<query cd="0.336" bib="" book="//" book="novel">

/[DELETE=0.7][JUMP=0.6]//[SWAP=0.8]novel/title</query>
<query cd="0.3" book="" title="//">/bib/[DELETE=0.6][JUMP=0.5]//title</query>
<query cd="0.2646" bib="//" bib="" book="" title="name">

/[JUMP=0.7]//[DELETE=0.7][DELETE=0.6][SWAP=0.9]name</query>
.........

</result>

Fig. 8. A Prolog term representing a XML document
[element(bib,[],

[element(book,[year=2001,price=45.95],
[element(title,[],[Don Quijote de la Mancha]),
element(author,[],[Miguel de Cervantes Saavedra]),
element(publications,[],

[element(book,[year=1997,price=35.99],
[element(title,[],[La Galatea]),
element(author,[],[Miguel de Cervantes Saavedra]),

element(publications,[],...])...]),])])

3. The parser of XPath has been extended to recognize new keywords such as
DEBUG and others like DEEP, DOWN, avg, etc. with their proper arguments.

4. Each tag is represented as a data-term of the form: element(Tag, Attri-
butes, Subelements), where Tag is the name of the XML tag, Attributes
is a Prolog list containing the attributes, and Subelements is a Prolog list
containing the sub-elements (i.e. subtrees) of the tag. For instance, the doc-
ument of Figure 2 is represented in SWI-Prolog like in Figure 8.

5. A predicate called fuzzyXPath where fuzzyXPath(+ListXPath,+Tree,+De-
ep,+Down) receives four arguments: (1) ListXPath is the Prolog represen-
tation of an XPath expression; (2) Tree is the term representing an input
XML document and (3) DEEP/DOWN.

6. The evaluation of the query generates a truth value which has the form of a
tree, called tv tree. Basically, the fuzzyXPath predicate traverses the Prolog
tree representing a XML document annotating into the tv tree the corre-
sponding DEEP/DOWN values. These actions directly revert on the new predicate
debugQuery implementing the ideas described in this work.

7. Finally, the tv tree is used for computing the output of the query, by multi-
plying the recorded values. A predicate called tv_to_elem has been imple-
mented to output the answer in a pretty way.

Fig. 9. Example of a XML output in MALP
tv(0.9,[[],

tv(0.9,[element(title,[],[Don Quijote de la Mancha]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[La Galatea]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[Los trabajos de Persiles..]),...]),

tv(0.8,[[],
tv(0.9,[element(title,[],[La Celestina]),[],[]]),...

More details about our implementation of the flexible version of the XPath in-
terpreter and debugger reported in this paper are available on: http://dectau.
uclm.es/fuzzyXPath/ (please, try with the on-line tools).

5 Conclusions and Future Work

In this paper we have presented an approach for XPath debugging. The result
of the debugging process of a XPath expression is a set of alternative queries,
each one associated to a chance degree. We have proposed JUMP, DELETE and SWAP

operators that cover the main cases of programming errors when describing a
path about a XML document. Our implemented and tested approach has a fuzzy
taste in the sense that XPath expressions are debugged by relaxing the shape of
path queries with chance degrees.

Although XML files are extensively used in many applications, the debugging
of XPath queries has not been studied enough in the literature. Some authors
have explored this topic [11], where the functional logic language TOY has been
used for debugging XPath expressions. There the debugger is able to assist the
programmer when a tag is wrong, providing alternative tags, and to trace exe-
cutions. The current work can be considered as an extension of the quoted work.
Here, our debugging technique gives to programmers a chance degree for each
proposed alternative by annotating wrong-points on XPath expressions. We have
based our approach in the works [12, 13], where XPath relaxation is studied by
giving some rules for query rewriting: axis relaxation, step deletion and step
cloning, among others. However, they do not give chance degrees associated to
wrong XPath expressions.

We are nowadays introducing thresholding techniques on our fuzzy XPath in
order to increase its performance when dealing with massive XML files. Our idea
is to create filters for prematurely disregarding those superfluous computations
dealing with non-significant solutions. In [14] we have reported some successful
thresholding-based techniques specially tailored for MALP.

References

1. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., Siméon,
J.: XML path language (XPath) 2.0. W3C (2007)

2. Almendros-Jiménez, J., Luna, A., Moreno, G.: A Flexible XPath-based Query
Language Implemented with Fuzzy Logic Programming. In: Proc. of 5th Int.
Symp. on Rules, RuleML’11, Springer Verlag, LNCS 6826 (2011) 186–193

3. Almendros-Jiménez, J., Luna, A., Moreno, G.: Fuzzy logic programming for im-
plementing a flexible xpath-based query language. Electronic Notes in Theoretical
Computer Science, Elsevier Science 282 (2012) 3–18

4. Almendros-Jiménez, J., Luna, A., Moreno, G.: A XPath Debugger based on Fuzzy
Chance Degrees. In et al., P.H., ed.: Proc. of OTM’12 Workshops, Springer Verlag,
LNCS 7567 (2012) 669–672

5. Lloyd, J.: Foundations of Logic Programming. Springer-Verlag, Berlin (1987)
6. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-

adjoint approach. Fuzzy Sets and Systems 146 (2004) 43–62
7. Morcillo, P., Moreno, G.: Programming with Fuzzy Logic Rules by using the

FLOPER Tool. In et al., N.B., ed.: Proc. of 2nd. Int. Symp. on Rules, RuleML
2008, Springer Verlag, LNCS 3521 (2008) 119–126

8. Morcillo, P., Moreno, G., Penabad, J., Vázquez, C.: Fuzzy Computed Answers
Collecting Proof Information. In et al., J.C., ed.: Advances in Computational
Intelligence - Proc. of IWANN 2011, Springer Verlag, LNCS 6692 (2011) 445–452

9. Almendros-Jiménez, J.: An Encoding of XQuery in Prolog. In: Proc. of 6th Int.
XML Database Symp. XSym’09, Springer, LNCS 5679 (2009) 145–155

10. Almendros-Jiménez, J., Becerra-Terón, A., Enciso-Baños, F.J.: Querying XML
documents in logic programming. TPLP 8(3) (2008) 323–361

11. Almendros-Jiménez, J., Caballero, R., GarcíA-Ruiz, Y., SáEnz-PéRez, F.: Xpath
query processing in a functional-logic language. Electron. Notes Theor. Comput.
Sci. 282 (May 2012) 19–34

12. Fazzinga, B., Flesca, S., Furfaro, F.: On the expressiveness of generalization
rules for XPath query relaxation. In: Proceedings of the Fourteenth International
Database Engineering & Applications Symposium, ACM (2010) 157–168

13. Fazzinga, B., Flesca, S., Furfaro, F.: Xpath query relaxation through rewriting
rules. IEEE transactions on knowledge and data engineering 23(10) (2011) 1583–
1600

14. Julián, P., Medina, J., Morcillo, P., Moreno, G., Ojeda-Aciego, M.: A static pre-
process for improving fuzzy thresholded tabulation. In et al., J.C., ed.: Advances
in Computational Intelligence. Proc. of IWANN’11, Springer Verlag, LNCS 6692
(2011) 429–436

