
A Flexible XPath-based Query Language

Implemented with Fuzzy Logic Programming⋆

Jesús M. Almendros-Jiménez1, Alejandro Luna2, and Ginés Moreno2

1 Dep. of Languages and Computation, University of Almería, Spain
Email: jalmen@ual.es

2 Dep. of Computing Systems, University of Castilla-La Mancha, Spain
Emails: {Gines.Moreno,Alejandro.Luna}@uclm.es

Abstract. In this paper we present an extension of the XPath query
language for the handling of �exible queries. In order to provide ranked
answers, our approach proposes fuzzy variants of and, or and avg oper-
ators for XPath conditions, as well as two structural constraints, called
down and deep, for which a certain degree of relevance is associated. Our
proposal has been implemented with a fuzzy logic language to take pro�t
of the clear sinergies between both target and source fuzzy languages.

1 Introduction

The XPath language [3] has been proposed as a standard for XML querying and
it is based on the description of the path in the XML tree to be retrieved. XPath
allows to specify the name of nodes (i.e., tags) and attributes to be present in
the XML tree together with boolean conditions about the content of nodes and
attributes. XPath querying mechanism is based on a boolean logic: the nodes
retrieved from an XPath expression are those matching the path of the XML tree.
Therefore, the user should know the XML schema in order to specify queries.
However, even when the XML schema exists, it can not be available for users.
Moreover, XML documents with the same XML schema can be very di�erent in
structure. Let us suppose the case of XML documents containing the curriculum
vitae of a certain group of persons. Although they can share the same schema,
each one can decide to include studies, jobs, training, etc. organized in several
ways: by year, by relevance, and with di�erent nesting degree.

Therefore, in the context of semi-structured databases, the need for �exible
query languages arises, in which the user can formulate queries without taking
into account a rigid schema database. In addition, they should be equipped
with a mechanism for obtaining a certain ranked list of answers. The ranking
of answers can provide satisfaction degree depending on several factors. In a
structural XPath-based query, the main criteria to provide a certain degree of

⋆ This work has been partially supported by the EU, under FEDER, and the Spanish
Science and Innovation Ministry (MICINN) under grants TIN 2008-06622-C03-03,
TIN 2007-65749 and TIN2011-25846, as well as by the Castilla-La Mancha Admin-
istration under grant PII1I09-0117-4481.

satisfaction depends on the hierarchical deepness and document order. Therefore
the query language should provide mechanisms for giving priority to answers
when they occur in di�erent parts of the document.

In this paper we present an extension of the XPath query language for the
handling of �exible queries. Our approach proposes two structural constraints
called down and deep for which a certain degree of relevance can be associated.
In such a way that down provides a ranked set of answers depending on the
path is found from �top to down� in the XML document, and deep provides a
set of answers depending on the path is found from �left to right� in the XML
document. Both structural constraints can be combined. In addition, we provide
fuzzy operators and, or and avg for XPath conditions. In this way, users can
express the priority they give to answers. Such fuzzy operators can be combined
to provide ranked answers. Our approach has been implemented by means of
multi-adjoint logic programming and the FLOPER tool.

The need for providing �exibility to XPath has recently motivated the inves-
tigation of extensions of the XPath language. The most relevant ones are [4, 5]
in which authors introduce in XPath �exible matching by means of fuzzy con-
straints called close and similar for node content, together with below and near
for path structure. In addition, they have studied deep-similar notion for tree
matching. In order to provide ranked answers they adopt a Fuzzy set theory-based
approach in which each answer has an associated numeric value (the membership
degree). The numeric value represents the Retrieval Status Value (RSV) of the
associated item. In the work of [7], they propose a satisfaction degree for XPath
expressions based on associating a degree of importance to XPath nodes, and
they study how to compute the best k answers. In both cases, authors allow the
user to specify in the query the degree in which the answers will be penalized.
On the other hand, in [6], they have studied how to relax XPath queries by
means of rewriting in order to improve information retrieval in the presence of
heterogeneous data resources.

Our work is similar to the proposed by [4, 5]. The below operator of [4, 5] is
equivalent to our proposed down: both extract elements that are direct descen-
dants of the current node, and the penalization is proportional to the distance.
The near operator of [4, 5], which is de�ned as a generalization of below, ranks
answers depending of the distance to the required node, in any XPath axis. Our
proposed deep ranks answers depending of the distance to the current node, but
the nodes considered can be direct and non direct descendants. Therefore our
proposed deep combined with down is a particular case of near. However, our
aim is to extend the number of constraints and fuzzy operators of our approach
thanks to the expressivity power of our framework based on fuzzy logic pro-
gramming. The so-called multi-adjoint logic programming approach, MALP in
brief [9], is an extension of logic programming for covering with fuzzy logic. Such
framework provides theoretical basis for de�ning �exibility to XPath in many di-
rections. In addition, the framework provides mechanism for customizing ranked
answers as assigning priority of elements with independence when they occur.

With respect to similar and close operators proposed in [4, 5], our framework
lacks on similarity relations, rather than it focus on structural (i.e. path-based)
�exibility. With regard to tree matching, the operator deep-similar de�ned in [4,
5] can be simulated by means of deep and down operators. We believe that we
could also work in the future in adapting our framework for working with degree
of importance to XPath nodes in the line of [7], and relaxing XPath expressions
by rewriting in the line [6]. In both cases, our framework could provide ranked
answers w.r.t. the degree of importance, and degree of matching. Our proposal
makes use of the multi-adjoint logic programming framework for de�ning new
fuzzy operators for XPath: and, or and avg. Such operators are used in XPath
conditions on nodes and attribute values. They provide fuzzy combinations for
ranking answers.

Finally, let us remark that our work is an extension of previous works about
the implementation of XPath by means of logic programming [2], which has been
extended to XQuery in [1]. The proposed extension follows the same encoding
proposed in [1] in which a predicate called xpath is de�ned by means of Prolog
rules, which basically traverse the Prolog representation of the XML tree by
means of a Prolog list. In order to implement the �exible extension of XPath by
means of the �Fuzzy LOgic Programming Environment for Research� FLOPER
(which is devoted to the management of MALP programs [10, 11]), we proceed
similarly to the Prolog implementation of XPath, but proposing a new (fuzzy)
predicate called fuzzyXPath implemented in MALP. The new query language
returns a set of ranked answers each one with an associated RSV. Such RSV
is computed by easily using MALP rules (thus exploiting the correspondences
between the languages for-being and to-be implemented), where the notion of
RSV is modeled inside a multi-adjoint lattice, and usual fuzzy connectives of the
MALP language act as ideal resources to represent new �exible XPath operators.

The structure of the paper is as follows. Whereas in Section 2 we present our
fuzzy extension of XPath, Section 3 is devoted to describe the main elements
of the implementation of XPath in MALP and FLOPER. Finally, Section 4
concludes by also planning future work.

2 Flexible XPath

Our �exible XPath is de�ned by means of the following rules:

xpath := [deepdown]path

path := literal | text() | node | @att |

node/path | node//path

node := QName | QName[cond]

cond := path op path

deepdown := DEEP=degree,DOWN=degree

op := > | = | < | and | or | avg

Basically, our proposal extends XPath as follows:

Fig. 1. Input XML document in our examples

<bib>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<publications> <book year="1997" price="35.99">

<title>La Galatea</title>
<author>Miguel de Cervantes Saavedra</author>
<publications>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Segismunda</title>
<author>Miguel de Cervantes Saavedra</author></book>

</publications></book>
</publications></book>

<book year="1999" price="25.65">
<title>La Celestina</title>
<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95">
<title>Hamlet</title>
<author>William Shakespeare</author>
<publications>

<book year="2000" price="22.5">
<title>Romeo y Julieta</title>
<author>William Shakespeare</author></book>

</publications></book>
<book year="2007" price="22.95">

<title>Las ferias de Madrid</title>
<author>Felix Lope de Vega y Carpio</author>
<publications>

<book year="1996" price="27.5">
<title>El remedio en la desdicha</title>
<author>Felix Lope de Vega y Carpio</author> </book>

<book year="1998" price="12.5">
<title>La Dragontea</title>
<author>Felix Lope de Vega y Carpio</author></book>

</publications></book>
</bib>

� A given XPath expression can be adorned with �[DEEP = r1, DOWN = r2]�
which means that the deepness of elements is penalized by r1 and that the
order of elements is penalized by r2, and such penalization is proportional
to the distance. In particular, �[DEEP = 1, DOWN = r2]� can be used for
penalizing only w.r.t. document order. DEEP works for //, and DOWN
works for / and //.

� Moreover, the classical and and or connectives admit here a fuzzy behavior
based on fuzzy logic, i.e., assuming two given RSV's r1 and r2, operator and
is de�ned as r3 = r1 ∗ r2 and operator or returns r3 = r1 + r2 − (r1 ∗ r2). In
addition, the avg operator is de�ned as r3 = (r1 + r2)/2.

In general, an extended XPath expression de�nes, w.r.t. a XML document, a se-
quence of subtrees of the XML document where each subtree has an associated
RSV. XPath conditions, which are de�ned as fuzzy operators applied to XPath
expressions, compute a new RSV from the RSVs of the involved XPath expres-
sions, which at the same time, provides a RSV to the node. In order to illustrate
these explanations, let us see some examples of our proposed fuzzy version of

Fig. 2. XML skeleton represented as a tree

XPath according to the XML document shown in Figure 1, whose skeleton is
depicted in Figure 2.

Fig. 3. Output of a query using DEEP/DOWN

Document RSV computation

<result>
<title rsv="0.81">Don Quijote de la Mancha</title>
<title rsv="0.6561">La Galatea</title>
<title rsv="0.531441">Los trabajos de Persiles y ...</title>
<title rsv="0.648">La Celestina</title>
<title rsv="0.5184">Hamlet</title>
<title rsv="0.419904">Romeo y Julieta</title>
<title rsv="0.41472">Las ferias de Madrid</title>
<title rsv="0.3359232">El remedio en la desdicha</title>
<title rsv="0.26873856">La Dragontea</title>

</result>

0.81 = 0.92

0.6561 = 0.94

0.531441 = 0.96

0.648 = 0.92 ∗ 0.8
0.5184 = 0.92 ∗ 0.82

0.419904 = 0.94 ∗ 0.82

0.41472 = 0.92 ∗ 0.83

0.3359232 = 0.94 ∗ 0.83

0.26873856 = 0.94 ∗ 0.84

Example 1. Suppose the XPath query: � [DEEP=0.9,DOWN=0.8]//title �, that
requests title's penalizing the occurrences from the document root by a propor-
tion of 0.9 and 0.8 by nesting and ordering, respectively, and for which we obtain
the �le listed in Figure 3. In such document we have included as attribute of
each subtree, its corresponding RSV. The highest RSVs correspond the main

Fig. 4. Output of a query using AVG
Document RSV computation

<result>
<book rsv="0.5" ...> <title>Don Quijote ...</title> ...</book>
<book rsv="1.0"...><title>La Celestina</title> ...</book>
<book rsv="1.0" ...><title>Hamlet</title> ...</book>
<book rsv="0.5" ...><title>Las ferias de Madrid</title> ...</book>

</result>

0.5 = (0 + 1)/2
1 = (1 + 1)/2
1 = (1 + 1)/2
0.5 = (1 + 0)/2

Fig. 5. Output of a query using all operators
Document RSV computation

<result>
<title rsv="0.3645">La Galatea</title>
<title rsv="0.295245">Los trabajos de Persiles y... </title>
<title rsv="0.72">La Celestina</title>
<title rsv="0.288">Hamlet</title>
<title rsv="0.2304">Las ferias de Madrid</title>
<title rsv="0.2985984">El remedio en la desdicha</title>
<title rsv="0.11943936">La Dragontea</title>

</result>

0.3645 = 0.93 ∗ 1/2
0.295245 = 0.95 ∗ 1/2
0.72 = 0.9 ∗ 0.8 ∗ 1
0.288 = 0.9 ∗ 0.82 ∗ 1/2
0.2304 = 0.9 ∗ 0.83 ∗ 1/2
0.2985984 = 0.93 ∗ 0.84 ∗ 1
0.11943936 = 0.93 ∗ 0.85 ∗ 1/2

book's of the document, and the lowest RSVs represent the book's occurring in
nested positions (those annotated as related publication's).

Example 2. Figure 4 shows the answer associated to the XPath expression: �
/bib/book[@price<30 avg @year<2006] �. Here we show that books satisfying
a price under 30 and a year before 2006 have the highest RSV.

Example 3. Finally, combining all operators �[DEEP=0.9,DOWN=0.8]
//book [(@price>25 and @price<30) avg (@year<2000 or @year>2006)]/title�,
the RSV values are more scattered, as shown in Figure 5.

3 Some Implementation Hints using MALP

In this section we assume familiarity with logic programming and its most pop-
ular language Prolog [8], for which MALP [9] (Multi-Adjoint Logic Programming
3) allows a wide repertoire of fuzzy connectives connecting atoms in the bodies
of clauses.

Although the core of our application is written with (fuzzy) MALP rules, our
implementation is based on the following items:

(1) We have reused/adapted several modules of our previous Prolog-based im-
plementation of (crisp) XPath described in [1, 2].

(2) We have used the SWI-Prolog library for loading XML �les, in order to
represent a XML document by means of a Prolog term4.

(3) The parser of XPath has been extended to recognize the new keywords deep,
down, avg, etc... with their proper arguments.

3 See also [10, 11] and visit http://dectau.uclm.es/floper for downloading our pro-
totype system FLOPER.

4 The notion of term (i.e., data structure) is just the same in MALP and Prolog.

Fig. 6. A data-term representing a XML document
[element(bib,[],

[element(book,[year=2001,price=45.95],
[element(title,[],[Don Quijote de la Mancha]),
element(author,[],[Miguel de Cervantes Saavedra]),
element(publications,[],

[element(book,[year=1997,price=35.99],
[element(title,[],[La Galatea]),
element(author,[],[Miguel de Cervantes Saavedra]),

element(publications,[],...])...]),])])

(4) Each tag is represented as a data-term of the form: element(Tag, Attribu-

tes, Subelements), where Tag is the name of the XML tag, Attributes is
a Prolog list containing the attributes, and Subelements is a Prolog list con-
taining the subelements (i.e. subtrees) of the tag. For instance, the document
of Figure 1 is represented in SWI-Prolog like in Figure 6. Loading of docu-
ments is achieved by the predicate load_xml(+File,-Term) and writing by
the predicate write_xml(+File,+Term).

(5) A predicate called fuzzyXPath where fuzzyXPath(+ListXPath,+Tree,+De-
ep,+Down) receives four arguments: (1) ListXPath is the Prolog represen-
tation of an XPath expression; (2) Tree is the term representing an input
XML document and (3) Deep/Down which have the obvious meaning.

(6) The evaluation of the query generates a truth value which has the form of a
tree, called tv tree. For instance, the query shown in Example 1, generated
the one illustrated in Figure 7. The main power of a fuzzy logic programming
language like MALP w.r.t. Prolog, is that instead of answering questions with
a simple true/false way, solutions are reported in a much more tinged, docu-
mented form. Basically, the fuzzyXPath predicate traverses the Prolog tree
representing a XML document annotating into the tv tree the corresponding
deep/down values according to the movements performed in the horizontal
and vertical axis, respectively. In addition, the tv tree is annotated with the
values of and, or and avg operators in each node.

(7) Finally, the tv tree is used for computing the output of the query, by multi-
plying the recorded values. A predicate called tv_to_elem has been imple-
mented to output the answer in a pretty way.

More details about our implementation of the �exible version of XPath re-
ported in this paper, are available on: http://dectau.uclm.es/fuzzyXPath/

4 Conclusions and Future Work

In this paper we have enriched XPath with new constructs (both structural
-deep and down- and constraints -avg and fuzzy versions of classical or/and
operators-) in order to �exibly query XML documents. This paper represents
the �rst real-world application developed with the fuzzy logic language MALP,
by showing its capabilities for easily modeling scenarios where concepts somehow
based on fuzzy logic play a crucial role. We think that this research line promises

Fig. 7. Example of a MALP output
tv(0.9,[[],

tv(0.9,[element(title,[],[Don Quijote de la Mancha]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[La Galatea]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[Los trabajos de Persiles..]),...]),

tv(0.8,[[],
tv(0.9,[element(title,[],[La Celestina]),[],[]]),...

fruitful developments in the near future by reinforcing the power of fuzzy XPath
commands, extensions to cope with XQuery and the semantic web, etc.

References

1. J. M. Almendros-Jiménez. An Encoding of XQuery in Prolog. In Proceedings

of the Sixth International XML Database Symposium XSym'09, pages 145�155,
Heildelberg,Germany, 2009. Springer, LNCS 5679.

2. J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Querying XML documents in logic programming. TPLP, 8(3):323�361, 2008.

3. A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, and
J. Siméon. XML path language (XPath) 2.0. W3C, 2007.

4. A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, and P. Spoletini. A fuzzy
extension of the XPath query language. Journal of Intelligent Information Systems,
33(3):285�305, 2009.

5. E. Damiani, S. Marrara, and G. Pasi. FuzzyXPath: Using fuzzy logic an IR features
to approximately query XML documents. Foundations of Fuzzy Logic and Soft

Computing, pages 199�208, 2007.
6. B. Fazzinga, S. Flesca, and F. Furfaro. On the expressiveness of generalization

rules for XPath query relaxation. In Proceedings of the Fourteenth International

Database Engineering & Applications Symposium, pages 157�168. ACM, 2010.
7. B. Fazzinga, S. Flesca, and A. Pugliese. Top-k Answers to Fuzzy XPath Queries.

In Database and Expert Systems Applications, pages 822�829. Springer, 2009.
8. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

Second edition.
9. J. Medina, M. Ojeda-Aciego, and P. Vojtá². Similarity-based Uni�cation: a multi-

adjoint approach. Fuzzy Sets and Systems, 146:43�62, 2004.
10. P.J. Morcillo and G. Moreno. Programming with Fuzzy Logic Rules by using the

FLOPER Tool. In Nick Bassiliades et al., editor, Proc of the 2nd. Rule Rep-

resentation, Interchange and Reasoning on the Web, International Symposium,

RuleML'08, pages 119�126. Springer Verlag, LNCS 3521, 2008.
11. P.J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. A Practical Management

of Fuzzy Truth Degrees using FLOPER. In M. Dean et al., editor, Proc. of 4nd
Intl Symposium on Rule Interchange and Applications, RuleML'10, pages 20�34.
Springer Verlag, LNCS 6403, 2010.

