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Abstract

FLOPER is the �Fuzzy LOgic Programming Environment for Research� designed in our research
group for assisting the development of real-world applications where fuzzy logic might play an
important role. This is the case of our recently proposed extension for the popular XPath query
language in order to handle �exible queries which provide ranked answers, fuzzy variants of oper-
ators and, or and avg for XPath conditions, as well as two structural constraints, called down and
deep, for which a certain degree of relevance can be associated.
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1 Introduction

The XPath language [7] has been proposed as a standard for XML querying
and it is based on the description of the path in the XML tree to be retrieved.
XPath allows to specify the name of nodes (i.e., tags) and attributes to be
present in the XML tree together with boolean conditions about the content
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of nodes and attributes. XPath querying mechanism is based on a boolean
logic: the nodes retrieved from an XPath expression are those matching the
path of the XML tree. Therefore, the user should know the XML schema
in order to specify queries. However, even when the XML schema exists, it
may not be available for users. Moreover, XML documents with the same
XML schema can be very di�erent in structure. Let us suppose the case of
XML documents containing the curriculum vitae of a certain group of persons.
Although they can share the same schema, each one can decide to include
studies, jobs, training, etc. organized in several ways: by year, by relevance,
and with di�erent nesting degree.

Therefore, in the context of semi-structured databases, the need for �exible
query languages arises, in which the user can formulate queries without taking
into account a rigid schema database. In addition, they should be equipped
with a mechanism for obtaining a certain ranked list of answers. The ranking
of answers can provide satisfaction degree depending on several factors. In a
XPath-based structural query, the main criteria to provide a certain degree of
satisfaction are the hierarchical deepness and document order. Therefore the
query language should provide mechanisms for assigning priority to answers
when they occur in di�erent parts of the document.

In this paper we focus on implementation issues based on fuzzy logic pro-
gramming regarding our extension of the XPath query language initially pre-
sented in [5] for the handling of �exible queries. Our approach proposes two
structural constraints called down and deep for which a certain degree of rel-
evance can be associated. So, whereas down provides a ranked set of answers
depending on the path they are found from �top to down� in the XML docu-
ment, deep provides a ranked set of answers depending on the path they are
found from �left to right� in the XML document. Both structural constraints
can be combined. In addition, we provide fuzzy operators and, or and avg for
XPath conditions. In this way, users can express the priority they give to an-
swers. Such fuzzy operators can be combined to provide ranked answers. Our
approach has been implemented by means of multi-adjoint logic programming
and the FLOPER tool [16,17,18].

The need for providing �exibility to XPath has recently motivated the
investigation of extensions of the XPath language. The most relevant ones
are [8,9] in which authors introduce in XPath �exible matching by means
of fuzzy constraints called close and similar for node content, together with
below and near for path structure. In addition, they have studied deep-similar
notion for tree matching. In order to provide ranked answers they adopt
a Fuzzy set theory-based approach in which each answer has an associated
numeric value (the membership degree). The numeric value represents the
Retrieval Status Value (RSV) of the associated item. In the work of [11], they
propose a satisfaction degree for XPath expressions based on associating a
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degree of importance to XPath nodes, and they study how to compute the
best k answers. In both cases, authors allow the user to specify in the query
the degree to which the answers will be penalized.

Our work is similar to the proposed by [8,9]. The below operator of [8,9]
is equivalent to our proposed down: both extract elements that are direct
descendants of the current node, and the penalization is proportional to the
distance. The near operator of [8,9], which is de�ned as a generalization of
below, ranks answers depending on the distance to the required node, in any
XPath axis. Our proposed deep ranks answers depending of the distance to
the current node, but the considered nodes can be direct and non direct de-
scendants. Therefore our proposed deep combined with down is a particular
case of near. However, in the future we intend to extend the number of con-
straints and fuzzy operators of our approach thanks to the expressivity power
of our framework based on fuzzy logic programming. The so-called multi-
adjoint logic programming approach [15], MALP in brief, is an extension of
logic programming to support fuzzy logic. Such framework provides theoreti-
cal basis for de�ning �exibility to XPath in many directions. In addition, the
framework provides a mechanism for customizing ranked answers by assigning
priorities to solutions independently of their occurrences.

With respect to similar and close operators proposed in [8,9], our frame-
work lacks similarity relations and rather focuses on structural (i.e. path-
based) �exibility. With regard to tree matching, the operator deep-similar
de�ned in [8,9] can be simulated by means of deep and down operators. We
believe that we could also work in the future in adapting our framework for
working with degree of importance to XPath nodes along the lines of [11], and
relaxing XPath expressions by rewriting along the lines of [10]. In both cases,
our framework could provide ranked answers w.r.t. the degree of importance,
and degree of matching. Our proposal makes use of the multi-adjoint logic
programming framework for de�ning new fuzzy operators for XPath: and, or
and avg. Such operators are used in XPath conditions on nodes and attribute
values. They provide fuzzy combinations for ranking answers.

Finally, let us remark that our work is an extension of previous works about
the implementation of XPath by means of logic programming [4], which has
been extended to XQuery in [1]. The proposed extension follows the same
encoding proposed in [1]. There, a predicate called xpath is de�ned by means
of Prolog rules, which basically traverse the Prolog representation of the XML
tree by means of a Prolog list. In order to implement the �exible extension
of XPath, we proceed similarly to the Prolog implementation of XPath, but
proposing a new (fuzzy) predicate called fuzzyXPath implemented in MALP,
using the �Fuzzy LOgic Programming Environment for Research� FLOPER
system [16,17,18]. The new query language returns a set of ranked answers
each one with an associated RSV. Such RSV is computed by easily using
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MALP rules. The notion of RSV is modeled inside a multi-adjoint lattice,
and usual fuzzy connectives of the MALP language act as ideal resources
to represent new �exible XPath operators. The main predicate fuzzyXPath
uses as parameters the user-proposed values for deep and down, whereas new
operators to model �exible XPath conditions admit a natural, elegant and
direct representation via standard fuzzy connectives of MALP.

The structure of the paper is as follows. Whereas in Section 2 we present
our fuzzy extension of XPath, Section 3 is devoted to MALP and the FLOPER
environment, together a description of the integration of fuzzy XPath and
MALP. Next, Section 4 discusses the implementation issues and �nally, Section
5 concludes planning future work.

2 Flexible XPath

Our �exible XPath is de�ned by means of the following rules:

xpath := [deepdown]path

path := literal | text() | node | @att |

node/path | node//path

node := QName | QName[cond]

cond := path op path

deepdown := DEEP=degree,DOWN=degree

op := > | = | < | and | or | avg

Basically, our proposal extends XPath as follows:

• A given XPath expression can be adorned with �[DEEP = r1, DOWN= r2]�
which means that the deepness of elements is penalized by r1 and that the
order of elements is penalized by r2, and such penalization is proportional
to the distance (i.e., the length of the branch and the weight of the tree,
respectively). In particular, �[DEEP = 1, DOWN = r2]� can be used
for penalizing only w.r.t. document order. DEEP works for //, that is,
the deepness in the XML tree is only computed when descendant nodes
are explored, while DOWN works for both / and //. Let us remark that
currently DEEP and DOWN can be only used at the beginning of the XPath
expression but they are computed for each occurrence of / and //.

• Moreover, the classical and and or connectives admit here a fuzzy behavior
based on fuzzy logic, i.e., assuming two given RSV's r1 and r2, operator and
is de�ned as r3 = r1 ∗ r2 and operator or returns r3 = r1 + r2 − (r1 ∗ r2). In
addition, the avg operator is de�ned as r3 = (r1 + r2)/2.

In general, an extended XPath expression de�nes, w.r.t. an XML document, a
sequence of subtrees of the XML document where each subtree has an associ-
ated RSV. XPath conditions, which are de�ned as fuzzy operators applied to
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Fig. 1. Input XML document in our examples

<bib>
<book year="2001" price="45.95 ">

<t i t l e>Don Qui jote de l a Mancha</ t i t l e>
<author>Miguel de Cervantes Saavedra</author>
<pub l i c a t i o n s> <book year="1997" price="35.99 ">

<t i t l e>La Galatea</ t i t l e>
<author>Miguel de Cervantes Saavedra</author>
<pub l i c a t i on s>

<book year="1994" price="25.99 ">
<t i t l e>Los t r aba j o s de P e r s i l e s y

Segismunda</ t i t l e>
<author>Miguel de Cervantes Saavedra</

author></book>
</ pub l i c a t i o n s></book>

</ pub l i c a t i on s></book>
<book year="1999" price="25.65 ">

<t i t l e>La Ce l e s t i na</ t i t l e>
<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95 ">
<t i t l e>Hamlet</ t i t l e>
<author>William Shakespeare</author>
<pub l i c a t i o n s>

<book year="2000" price=" 22 .5 ">
<t i t l e>Romeo y Ju l i e t a</ t i t l e>
<author>William Shakespeare</author></book>

</ pub l i c a t i on s></book>
<book year="2007" price="22.95 ">

<t i t l e>Las f e r i a s de Madrid</ t i t l e>
<author>Fe l i x Lope de Vega y Carpio</author>
<pub l i c a t i o n s>

<book year="1996" price=" 27 .5 ">
<t i t l e>El remedio en l a desd icha</ t i t l e>
<author>Fe l i x Lope de Vega y Carpio</author> </book>

<book year="1998" price=" 12 .5 ">
<t i t l e>La Dragontea</ t i t l e>
<author>Fe l i x Lope de Vega y Carpio</author></book>

</ pub l i c a t i on s></book>
</bib>

XPath expressions, compute a new RSV from the RSVs of the involved XPath
expressions, which at the same time, provides a RSV to the node. In order to
illustrate these explanations, let us see some examples of our proposed fuzzy
version of XPath according to the XML document shown of Figure 1, whose
skeleton is depicted in Figure 2.

Example 2.1 Consider the XPath query: � [DEEP=0.9,DOWN=0.8]//title
�, that requests title's penalizing the occurrences from the document root by
a proportion of 0.9 and 0.8 by nesting and ordering, respectively, and for
which we obtain the document listed in Figure 3. In such document we have
included as attribute of each subtree, its corresponding RSV. The highest
RSVs correspond to the main books of the document, and the lowest RSVs
represent the books occurring in nested positions (those annotated as related
publication's).
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Fig. 2. XML skeleton represented as a tree

Fig. 3. Output of a query using DEEP/DOWN

Document RSV computation

<result>
<title rsv="0.81">Don Quijote de la Mancha</title>
<title rsv="0.52488">La Galatea</title>
<title rsv="0.340122">Los trabajos de Persiles y Sigismunda</title>
<title rsv="0.648">La Celestina</title>
<title rsv="0.5184">Hamlet</title>
<title rsv="0.335923">Romeo y Julieta</title>
<title rsv="0.41472">Las ferias de Madrid</title>
<title rsv="0.268739">El remedio en la desdicha</title>
<title rsv="0.214991">La Dragontea</title>

</result>

0.81 = 0.92

0.52488 = 0.94 ∗ 0.8

0.340122 = 0.96 ∗ 0.82

0.648 = 0.92 ∗ 0.8

0.5184 = 0.92 ∗ 0.82

0.335923 = 0.94 ∗ 0.83

0.41472 = 0.92 ∗ 0.83

0.268739 = 0.94 ∗ 0.84

0.214991 = 0.94 ∗ 0.85

Fig. 4. Output of a query using the average operator AV G

Document RSV computation

<result>
<book rsv="0.5" ...> <title>Don Quijote ...</title> ...</book>
<book rsv="1.0"...><title>La Celestina</title> ...</book>
<book rsv="1.0" ...><title>Hamlet</title> ...</book>
<book rsv="0.5" ...><title>Las ferias de Madrid</title> ...</book>

</result>

0.5 = (0 + 1)/2

1 = (1 + 1)/2

1 = (1 + 1)/2

0.5 = (1 + 0)/2
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Fig. 5. Output of a query using all operators

Document RSV computation

<result>
<title rsv="0.3645">La Galatea</title>
<title rsv="0.59049">Los trabajos de Persiles y Sigismunda</title>
<title rsv="0.72">La Celestina</title>
<title rsv="0.288">Hamlet</title>
<title rsv="0.2304">Las ferias de Madrid</title>
<title rsv="0.373248">El remedio en la desdicha</title>
<title rsv="0.149299">La Dragontea</title>

</result>

0.3645 = 0.93 ∗ 1/2

0.59049 = 0.95 ∗ 1

0.72 = 0.9 ∗ 0.8 ∗ 1

0.288 = 0.9 ∗ 0.82 ∗ 1/2

0.2304 = 0.9 ∗ 0.83 ∗ 1/2

0.373248 = 0.93 ∗ 0.83 ∗ 1

0.149299 = 0.93 ∗ 0.84 ∗ 1/2

Example 2.2 Figure 4 shows the answer associated to the XPath expression:
� /bib/book[@price<30 avg @year<2006] �. Here we show that books
satisfying a price under 30 and a year before 2006 have the highest RSV.

Example 2.3 Finally, in Figure 5 we combine all operators (thus obtain-
ing more scattered RSV values) in query: �[DEEP=0.9,DOWN=0.8] //book
[(@price>25 and @price<30) avg (@year<2000 or @year>2006)]/title�.

3 Multi-Adjoint Logic Programming and FLOPER

Logic Programming (LP) [14] has been widely used as a formal method for
problem solving and knowledge representation in the past. Nevertheless, tra-
ditional LP languages do not incorporate techniques or constructs to deal
explicitly with uncertainty and approximated reasoning. To overcome this sit-
uation, during the last decades several fuzzy logic programming systems have
been developed where the classical inference mechanism of SLD�Resolution
has been replaced with a fuzzy variant able to handle partial truth and to rea-
son with uncertainty. Most of these systems implement the fuzzy resolution
principle introduced by Lee in [13], such as languages Prolog-Elf [12], Fril [6],
the QLP scheme of [19], as well as many-valued logic programming languages
[21,20] and MALP [15]. In this paper we are mainly concerned with this last
framework, which uses a syntax close to Prolog but enjoys higher levels of
�exibility and for which we are developing the FLOPER tool (see [16,17,18]
and visit http://dectau.uclm.es/floper). In what follows, we present a
short summary of the main features of MALP (we refer the reader to [15] for
a complete formulation).

We work with a �rst order language, L, containing variables, function
symbols, predicate symbols, constants, quanti�ers (∀ and ∃), and several
arbitrary connectives such as implications (←1,←2, . . . ,←m), conjunctions
(&1,&2, . . . ,&k), disjunctions (∨1,∨2, . . . ,∨l), and general hybrid operators
(�aggregators� @1,@2, . . . ,@n), used for combining/propagating truth values
through the rules, and thus increasing the language expressiveness. Addi-
tionally, our language L contains the values of a multi-adjoint lattice in the
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form ⟨L,≼,←1,&1, . . . ,←n,&n⟩, equipped with a collection of adjoint pairs
⟨←i,&i⟩ where each &i is a conjunctor intended to the evaluation of modus
ponens.

A rule is a formula �A ←i B with α�, where A is an atomic formula (usu-
ally called the head), B (which is called the body) is a formula built from
atomic formulas B1, . . . , Bn (n ≥ 0 ), truth values of L and conjunctions,
disjunctions and general aggregations, and �nally α ∈ L is the �weight� or
truth degree of the rule. The set of truth values L may be the carrier of any
complete bounded lattice, as for instance occurs with the set of real num-
bers in the interval [0, 1] with their corresponding ordering ≤. Consider, for
instance, the following program P composed of three rules with associated
multi-adjoint lattice ⟨[0, 1],≤,←P,&P⟩, where label P mean for Product logic
with the following connective de�nitions (for implication, conjunction and dis-
junction symbols, respectively): �←P (x, y) = min(1, x/y)�, �&P(x, y) = x ∗ y�
and �|P(x, y) = x+ y − x ∗ y�.
R1 : p(X) ←P q(X, Y ) |P r(Y ) with 0.8

R2 : q(a, Y ) ← with 0.9

R3 : r(b) ← with 0.7

In order to describe the procedural semantics of the multi�adjoint logic
language, in the following we denote by C[A] a formula where A is a sub-
expression (usually an atom) which occurs in the �possibly empty� one hole
context C[] whereas C[A/A′] means the replacement of A by A′ in context
C[], and mgu(E) is the most general uni�er of an equation set E. The pair
⟨Q; σ⟩ composed of a goal and a substitution is called a state. So, given
a program P, an admissible computation is formalized as a state transition

system, whose transition relation
AS
; is the smallest relation satisfying the

following admissible rules:

1) ⟨Q[A];σ⟩ AS
; ⟨(Q[A/v&iB])θ; σθ⟩ if A is the selected atom in goal Q,

⟨A′←iB with v⟩ in P , where B is not empty, and θ = mgu({A′ = A}).
2) ⟨Q[A]; σ⟩ AS

; ⟨(Q[A/v])θ; σθ⟩ if ⟨A′← with v⟩ in P , θ = mgu({A′ = A}).
The following derivation illustrates our de�nition (note that the exact pro-
gram rule used -after being renamed- in the corresponding step is annotated
as a super�index symbol, whereas exploited atoms appear underlined):

⟨p(X); {}⟩ AS
; R1

⟨0.8 &P (q(X1, Y1) |P r(Y1)); {X/X1}⟩
AS
; R2

⟨0.8 &P (0.9 |P r(Y2)); {X/a,X1/a, Y1/Y2}⟩
AS
; R3

⟨0.8 &P (0.9 |P 0.7); {X/a,X1/a, Y1/b, Y2/b}⟩
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Fig. 6. Example of Lattice

member(X):- number(X), 0=<X, X=<1.

bot (0). top(1). leq(X,Y):- X=<Y.

or_prod(X,Y,Z):- pri_prod(X,Y,U1), pri_add(X,Y,U2), pri_sub(U2,U1,Z).

and_prod(X,Y,Z):- pri_prod(X,Y,Z).

pri_prod(X,Y,Z):- Z is X * Y.

pri_add(X,Y,Z):- Z is X+Y.

pri_sub(X,Y,Z):- Z is X-Y.

The �nal formula can be directly interpreted in the lattice L to obtain the
�nal fuzzy computed answer. So, since 0.8 &P (0.9 |P 0.7) = 0.8 ∗ (0.9 + 0.7−
(0.9 ∗ 0.7)) = 0.776, we say that goal p(X) is true at a 77.6 % when X is a.

Now, we would like to summarize the main elements of the FLOPER tool
which manages MALP programs. The parser of our FLOPER tool [16,17,18]
has been implemented by using the classical DCG's (De�nite Clause Gram-
mars) resource of the Prolog language, since it is a convenient notation for
expressing grammar rules. Once the application is loaded inside a Prolog
interpreter, it shows a menu which includes options for loading/compiling,
parsing, listing and saving fuzzy programs, as well as for executing/debugging
fuzzy goals. All these actions are based on the compilation of the fuzzy code
into standard Prolog code. The key point of the compilation is to extend each
atom with an extra argument, called truth variable of the form �_TVi�, which
is intended to contain the truth degree obtained after the subsequent evalu-
ation of the atom. For instance, the �rst clause in our example is translated
into:

p(X,_TV0):-q(X,Y,_TV1),r(Y,_TV2),

or_prod(_TV1 ,_TV2 ,_TV3),and_prod (0.8,_TV3 ,_TV0).

Moreover, the remaining rules in our example, become the pure Prolog facts
�q(a,Y,0.9)� and �r(b,0.7)�, whereas the corresponding lattice is expressed
by the clauses of Figure 6, where the meaning of the mandatory predicates
member, top, bot and leq is obvious.

Finally, a fuzzy goal like �p(X)�, is translated into the pure Prolog goal:
�p(X, Truth_degree)� (note that the last truth degree variable is not anony-
mous now) for which, after choosing option �run�, the Prolog interpreter
returns the desired fuzzy computed answer [Truth_degree = 0.776, X = a].
Note that all internal computations (including compiling and executing) are
pure Prolog derivations, whereas inputs (fuzzy programs and goals) and out-
puts (fuzzy computed answers) have always a fuzzy taste, thus producing
the illusion on the �nal user of being working with a purely fuzzy logic pro-
gramming tool. By using option �lat� (�show�) of FLOPER, we can associate
(visualize) a new lattice to a given program. As seen before, such lattices must
be expressed by means of a set of Prolog clauses (de�ning predicates member,
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member(tv(N,L)):-number(N) ,0=<N,N=<1,(L=[];L=[_|_]).

bot(tv(0,_)). top(tv(1,_)). leq(tv(X1,_),tv(X2 ,_)):- X1 =< X2.

and_prod(tv(X1 ,X2),tv(Y1,Y2),tv(Z1,Z2)):-

pri_prod(X1,Y1,Z1),pri_app(X2,Y2,Z2).

or_prod(tv(X1 ,X2),tv(Y1,Y2),tv(Z1,Z2)):- pri_prod(X1,Y1 ,U1),

pri_add(X1,Y1,U2),pri_sub(U2 ,U1,Z1),pri_app(X2 ,Y2,Z2)

.

agr_aver(tv(X1 ,X2),tv(Y1,Y2),tv(Z1,Z2)):- pri_add(X1,Y1 ,Aux),

pri_div(Aux ,2,Z1),pri_app(X2 ,Y2,Z2).

pri_add(X,Y,Z) :- Z is X+Y. pri_sub(X,Y,Z) :-Z is X-Y.

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

pri_app ([],X,X). pri_app ([A|B],C,[A|D]):-pri_app(B,C,D).

Fig. 7. Multi-adjoint lattice for �fuzzyXPath� (�le �tv.pl�)

top, bot, leq and the ones associated to fuzzy connectives) in order to be
loaded into FLOPER.

3.1 MALP and XPath

MALP can be used as basis for our proposed �exible extension of XPath as
follows. The idea is to implement XPath by means of MALP rules. With
this aim, �rstly, we have to consider a complete lattice Ltv to be used for
representing RSVs associated to elements of an XML tree. Ltv contains trees,
which we will call tv trees, of the form: �tv(rsv, [root , tvch, tvsib])�, where rsv is
a value taken from [0, 1], root is the root of the tree to which rsv is associated,
and tvch, tvsib are the tv trees of the children and sibling nodes. Such tv
trees are the answers of a goal associated to a XPath expression. In this way,
MALP is able to compute the RSV associated to each node of the input XML
tree. Using such lattice, the MALP rules have the form �A ← B with tvtree�.
In addition, the XPath fuzzy operators and and or and avg can be mapped
to MALP connectives in lattice Ltv. Finally, we have to consider an auxiliary
aggregator in Ltv called @fuse, which builds the tv tree of a certain node
from the tv trees of the sibling and children nodes. In Figure 7 4 , we can see
the lattice de�ned by means of Prolog syntax (to be loaded into FLOPER).
Predicates and_pro, or_prod and agr_aver represent the XPath operators
and, or and avg, respectively. Let us remark that they are de�ned for tv trees
and use in their de�nitions the operators and, or and avg of the lattice [0, 1].

4 Elements of Ltv are equivalence classes with regard to the �rst argument of tv. The
supremum of the lattice is the equivalence class tv(1,_), and the bottom is the equivalence
class tv(0,_).
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Fig. 8. A data-term representing an XML document

[element(bib, [],

[element(book, [year='2001',price='45.95'],

[element(title,[],['Don Quijote de la Mancha']),

element(author, [], ['Miguel de Cervantes Saavedra']),

element(publications, [],

[element(book, [year='1997',price='35.99'],

[element(title, [], ['La Galatea']),

element(author, [], [ 'Miguel de Cervantes Saavedra']),

element(publications, [],

...])

...]),

])])

4 Implementation

Although the core of our implementation is written with (fuzzy) MALP rules,
we have reused/adapted several modules of our previous Prolog-based im-
plementation of (crisp) XPath described in [1,2,3,4], which make use of the
SWI-Prolog library for loading XML �les in order to store each XML docu-
ment by means of a Prolog term 5 representing a tree. The clever idea is that
each tag is represented as a data-term of the form:

element(Tag, Attributes, Subelements)

where Tag is the name of the XML tag, Attributes is a list containing the at-
tributes, and Subelements is a list containing the subelements (i.e. subtrees)
of the tag. For instance, let us consider the XML document of Figure 1, repre-
sented in SWI-Prolog like in Figure 8. Moreover, for loading XML documents
in our implementation we can use the predicate load_xml(+File,-Term).
Similarly, we have a predicate write_xml(+File,+Term) for writing a data-
term representing an XML document into a �le. And, of course, the parser of
our application has been extended to recognize the new keywords deep, down,
avg, etc... with their proper arguments.

Now, we would like to show how the new �fuzzyXPath� predicate ad-
mits an elegant de�nition by means of fuzzy MALP rules which, after being
compiled into clauses using FLOPER, can be safely executed in any standard
Prolog platform. Each rule de�ning predicate:

fuzzyXPath(ListXPath, Tree, Deep, Down)

receives four arguments: (1) ListXPath is the Prolog representation of an
XPath expression, (2) Tree is the term representing an input XML document
and (3) Deep/Down which have the obvious meaning -their default values are

5 The notion of term (i.e., data structure) is just the same in MALP and Prolog.
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Fig. 9. Example of a tv structure

tv(1.0,[[],

tv(0.9,[[],

tv(0.9,[element(title, [], [Don Quijote de la Mancha]), [],

tv(0.8,[[],

tv(0.9,[[],

tv(0.9,[element(title, [], [La Galatea]), [],

tv(0.8,[[],

tv(0.9,[[],

tv(0.9,[element(title, [], [Los trabajos de Persiles y Sigismunda]),

[], []]),

[]]),

[]])]),

[]]),

[]])]),

tv(0.8,[[],

tv(0.9,[element(title, [], [La Celestina]), [], []]),

tv(0.8,[[],

tv(0.9,[element(title, [], [Hamlet]), [],

tv(0.8,[[],

tv(0.9,[[],

tv(0.9,[element(title, [], [Romeo y Julieta]), [], []]),

[]]),

[]])]),

tv(0.8,[[],

tv(0.9,[element(title, [], [Las ferias de Madrid]), [],

tv(0.8,[[],

tv(0.9,[[],

tv(0.9,[element(title, [], [El remedio en la desdicha]), [], []]),

tv(0.8,[[],

tv(0.9,[element(title, [], [La Dragontea]), [], []]),

[]])]),

[]])]),

[]])])])]),

[]])

tv(1,[])- 6 . A call to this predicate returns after being executed a truth-value
(i.e., a tv tree) like the one depicted in Figure 9.

For instance, the query �[DEEP=0.9,DOWN=0.8]/Path � on a given XML
term, would generate a call of the form

fuzzyXPath(Path,XML, tv(0.9, []), tv(0.8, []))

whose further execution will return the resulting tv tree.

Basically, the fuzzyXPath predicate traverses the Prolog tree representing
an XML document and extracts in the returned tv tree the subtrees occurring
in the given path, also annotating into the nested tv trees the corresponding

6 These parameters could be avoided if we declare deep and down as constants in the lattice
(in a similar way as done, for instance, with bot and top in Figure 7) but in that case we
would need to rede�ne them at the beginning of each query evaluation. So, we prefer our
present option which is easy to understand and safe, in the sense that in the Prolog code
generated by FLOPER when compiling MALP programs, the notions of truth-degree and
fuzzy connectives are assimilated to data-terms and predicates, respectively.
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Fig. 10. MALP rule for traversing element structures representing XML documents

fuzzyXPath([Label|LabelRest], [element(Label,_,Children)|Siblings],Deep, Down) <prod

@fuse(

tv(1,[element(Label, Attr, Children), [], []]),

&prod(Deep, fuzzyXPath(LabelRest, Children, Deep, Down))

&prod(Down, fuzzyXPath([Label|LabelRest], Siblings, Deep, Down))

) with tv(1,[])

Fig. 11. Prolog clause obtained by FLOPER after compiling a MALP rule

fuzzyXPath([Label|LabelRest], [element(Label,_,Children)|Siblings],Deep, Down, TV_Iam):-

fuzzyXPath(LabelRest, Children, Deep, Down, TV_Son),

and_prod(Deep, TV_Son, TV_Son0),

fuzzyXPath([Label|LabelRest], Siblings, Deep, Down, TV_Bro),

and_prod(Down, TV_Bro, TV_Bro0),

agr_fuse(tv(1,[element(Label, Attr, Children), [], []]), TV_Son0, TV_Bro0, TV_body),

and_prod(tv(1,[]), TV_body, TV_Iam).

Fig. 12. Schema of MALP rules for evaluating conditions (with avg)

fuzzyXPath([Label,tree(A,B,C)],[element(Label,Attr,Children)|Siblings], Deep, Down) <prod

@fuse(

execute_fcond(Label, tree(A,B,C), element(Label,Attr,Children)),

&prod(Down, fuzzyXPath([Label, tree(A,B,C)], Siblings, Deep, Down))

) with tv(1,[])

execute_fcond(Label, tree(avg, T1, T2), element(Label,Attr,Children)) <prod

@avg(

execute_fcond(Label, T1, element(Label,Attr,Children)),

execute_fcond(Label, T2, element(Label,Attr,Children)),

) with tv(1,[])

deep/down values according to the movements performed (in the horizontal
and vertical axis, respectively) when navigating on the XML tree.

The de�nition of such predicate includes several rules for distinguishing
cases in the form of the input document and the XPath expression. As an
example, we can see the rule of Figure 10, whose translation to Prolog is shown
in Figure 11.

Let us now explain in detail the fuzzy code of Figure 10. After performing
a recursive call to compute the solutions associated to the children of a given
node (i.e., fuzzyXPath(LabelRest, Children, Deep,Down)), we use con-
nective &prod to mu�e the resulting tv tree according to Deep, which is repre-
sented by &prod(Deep,fuzzyXPath(LabelRest,Children,Deep,Down)). A
similar operation is next performed on the siblings of the node, whose result is
penalized now according to Down, that is, &prod(Down, fuzzyXPath([Label|

LabelRest], Siblings, Deep, Down)). Finally, both tv trees are combined
(fused) with the content of the current node.
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On the other hand, when considering queries with conditions, the
fuzzyXPath predicate calls to execute_fcond predicate, as shown in the
MALP rule listed in Figure 12. Here it is remarkable the direct use of connec-
tive avg when de�ning the recursive execute_fcond predicate.

Finally, we have de�ned a predicate tv_to_elem to show the result in a
pretty way (see Figures 3 and 4), which transforms the returned tv tree to an
XML tree.

5 Conclusions and Future Work

In this paper we have described the implementation of a fuzzy extension of
XPath. We have recently proposed such XPath extension [5]. Here we have fo-
cused on the implementation of the proposal, by using the FLOPER tool and
MALP rules. As a result of the implementation, a prototype is publicly avail-
able from http://dectau.uclm.es/fuzzyXPath/. The material presented
here represents the �rst real-world application developed with the fuzzy logic
language MALP (using too our FLOPER tool), by showing its capabilities
for easily modeling scenarios where concepts somehow based on fuzzy logic
play a crucial role. In particular, we have shown the ability of the MALP lan-
guage for easily coding the new constructs (both structural -deep and down-
and constraints -avg and fuzzy versions of classical or/and operators-) of the
enriched dialect of XPath, in order to �exibly query XML documents.

We are currently working on some extensions suggested by the power of
MALP regarding two main implementation lines: a) de�ning commands for
�reverse axes� such as up, i.e. the counterpart of down (sometimes the more
nested information is the more basic and should receive a better relevance),
thus connecting with the classical near operator and b) using a whole fam-
ily of fuzzy connectives (belonging, for instance, to the well known Gödel
and �ukasiewicz fuzzy logics for describing scenarios with a somehow opti-
mistic/pesimistic taste) in order to express more �exible conditions on fuzzyX-
Path queries. We think that this research line promises fruitful developments
in the near future by reinforcing the power of fuzzy XPath commands, exten-
sions to cope with XQuery and the semantic web, etc.
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