
Fuzzy XPath for the Automatic Search

of Fuzzy Formulae Models⋆

Jesús M. Almendros-Jiménez1, Miquel Bofill2, Alejandro Luna-Tedesqui3,
Ginés Moreno3, Carlos Vázquez3, and Mateu Villaret2

1 Dept. Languages and Computation, U. Almeŕıa (Spain)
2 Dept. Computer Science, Applied Mathematics and Statistics, U. Girona (Spain)

3 Dept. Computing Systems, U. Castilla-La Mancha, Albacete (Spain)
jalmen@ual.es,{Miquel.Bofill,Mateu.Villaret}@udg.edu,
{Alejandro.Luna,Gines.Moreno,Carlos.Vazquez}@uclm.es

Abstract. In this paper we deal with propositional fuzzy formulae con-
taining several propositional symbols linked with connectives defined in
a lattice of truth degrees more complex than Bool. Instead of focusing on
satisfiability (i.e., proving the existence of at least one model) as usually
done in a SAT/SMT setting, our interest moves to the problem of finding
the whole set of models (with a finite domain) for a given fuzzy formula.
We re-use a previous method based on fuzzy logic programming where
the formula is conceived as a goal whose derivation tree, provided by our
FLOPER tool, contains on its leaves all the models of the original for-
mula, together with other interpretations. Next, we use the ability of the
FuzzyXPath tool (developed in our research group with FLOPER) for
exploring these derivation trees once exported in XML format, in order
to discover whether the formula is a tautology, satisfiable, or a contra-
diction, thus reinforcing the bi-lateral synergies between FuzzyXPath

and FLOPER.

Keywords: Fuzzy Logic Programming; Automatic Theorem Proving; Fuzzy XPath

1 Introduction

Research on SAT (Boolean Satisfiability) and SMT (Satisfiability Modulo The-
ories) [9] represents a successful and large tradition in the development of highly
efficient automatic theorem solvers for classic logic. More recently there also ex-
ist attempts for covering fuzzy logics, as occurs with the approaches presented
in [6, 21]. Moreover, if automatic theorem solving supposes too a starting point
for the foundations of logic programming as well as one of its important appli-
cation fields [16, 20, 12, 7], in [11] we showed some preliminary guidelines about

⋆ This work has been partially supported by the EU (FEDER), and the Span-
ish MINECO Ministry (Ministerio de Economı́a y Competitividad) under grants
TIN2013-44742-C4-4-R, TIN2012-33042 and TIN2013-45732-C4-2-P.

how fuzzy logic programming [14, 13, 8, 17, 19] can face the automatic proving of
fuzzy theorems by making use of the FLOPER environment developed in our
research group [18] (visit http://dectau.uclm.es/floper/). The main goal
of the present paper is to reinforce this last method of [11] by means of the
FuzzyXPath tool developed too with FLOPER as described in [2, 5, 4] (the
application is freely available from http://dectau.uclm.es/fuzzyXPath).

Let us start our discussion with an easy motivating example. Assume that we
have a very simple digital chip with just a single input port and just one output
port, such that it reverts on Out the signal received from In. The behaviour of
such chip can be represented by the following propositional formula F : (¬In ∧
Out)∨ (In∧¬Out). Depending on how we interpret each propositional symbol,
we obtain the following final set of interpretations for the whole formula:

I1 : {In = 0, Out = 0} ⇒ F = 0 I2 : {In = 0, Out = 1} ⇒ F = 1
I3 : {In = 1, Out = 0} ⇒ F = 1 I4 : {In = 1, Out = 1} ⇒ F = 0

A SAT solver easily proves that F is satisfiable since, in fact, it has two models
(i.e., interpretations of the propositional variables In and Out that assign 1 to
the whole formula) represented by I2 and I3. An alternative way for explic-
itly obtaining such interpretations consists of using the fuzzy logic environment
FLOPER developed in our research group. As we will explain in the rest of
the paper, when FLOPER executes the following goal representing formula
F “(@not(i(In)) & i(Out)) | (i(In) & @not(i(Out)))” with respect to a
fuzzy logic program composed by just two rules: “i(1) with 1” and “i(0) with

0”, it generates an execution tree where models I2 and I3 appear as leaves (see
[11]). Each branch in the tree starts by interpreting variables In and Out and
continues with the evaluation of operators (connectives) appearing in F .

Note that whereas formula F describes the behaviour of our chip in an “im-
plicit way”, the whole set of models I2 and I3 “explicitly” describes how the
chip successfully works (any other interpretation not being a model, represents
an abnormal behaviour of the chip), hence the importance of finding the whole
set of models for a given formula.

Assume now that we plan to model an “analogic” version of the chip, where
both the input and output signals might vary in an infinite range of values
between 0 and 1, such that Out will simply represent the “complement” of In.
The new behaviour of the chip can be expressed again by the same previous
formula, but taking into account now that connectives involved in F could be
defined in a fuzzy way as follows (see also Figure 1 afterwards):

¬x = 1− x Product logic’s negation
x ∧ y = min(x, y) Gödel logic’s conjunction
x ∨ y = min(x + y, 1) Lukasiewicz logic’s disjunction

Here we could use an SMT solver to prove that F is satisfiable, as done in [6, 11],
but the goal of this paper is to use techniques based on fuzzy logic programming
for discovering models.

On the other hand, the eXtensible Markup Language (XML) is widely used
in many areas of computer software to represent machine readable data. XML
provides a very simple language to represent the structure of data, using tags to
label pieces of textual content, and a tree structure to describe the hierarchical
content. XML emerged as a solution to data exchange between applications
where tags permit to locate the content. XML documents are mainly used in
databases. The XPath language [10] was designed as a query language for XML
in which the path of the tree is used to describe the query. XPath expressions can
be adorned with boolean conditions on nodes and leaves to restrict the number
of answers of the query. XPath is the basis of a more powerful query language
(called XQuery) designed to join multiple XML documents and to give format
to the answer. In [2, 5, 4] we have presented an XPath interpreter (together
with a debugger, as documented in [1, 3]) extended with fuzzy commands which
somehow rely on the implementation based on fuzzy logic programming by using
FLOPER.

In [5] we illustrated the mutual benefits between the FLOPER program-
ming environment and the FuzzyXPath interpreter. Initially FLOPER was
conceived as a tool for implementing flexible software applications –as it is the
case of FuzzyXPath– coded with the fuzzy logic language MALP and offering
options for compiling fuzzy rules to standard Prolog clauses, running goals and
drawing execution trees. Such trees, once modeled in XML format inside the
proper FLOPER tool, can be then analyzed by the FuzzyXPath interpreter
–by means of simple XPath queries augmented with fuzzy commands– in order
to discover details (such as fuzzy computed answers, possible infinite branches
and so on) of the computational behaviour of MALP programs after being exe-
cuted into FLOPER. The main goal of this paper is to use FuzzyXPath for to
automate the process of directly extracting the set of models contained on the
proof trees associated to fuzzy formulae explained before, once such trees have
been exported by FLOPER in XML format.

2 Fuzzy Logic Programming and FLOPER

In what follows we describe a very simple subset of the Multi-Adjoint Logic
Programming language, MALP in brief, (see [17] for a complete formulation
of this framework), which in essence consists of a first-order language, L, con-
taining variables, constants, function symbols, predicate symbols, and several
(arbitrary) connectives to increase language expressiveness: implication connec-
tives (denoted by ←1,←2, . . .); conjunctive connectives (∧1,∧2, . . .), disjunctive
connectives (∨1,∨2, . . .), and hybrid operators (usually denoted by @1,@2, . . .),
all of them are grouped under the name of “aggregators”. Although these con-
nectives are usually binary operators, our framework also admits aggregators of
any arity denoted as @(x1, . . . , xn). By definition, the truth function for an n-ary
aggregation operator [[@]] : Ln → L is required to be monotonous.

Additionally, our language L contains the values of a lattice (L,≤) and a set
of connectives interpreted over such lattice. In general, L may be the carrier of

&P(x, y) , x ∗ y |P(x, y) , x+ y − x ∗ y ←P (x, y) , min(1, x/y)

&G(x, y) , min(x, y) |G(x, y) , max{x, y} ←G (x, y) ,

{

1 if y ≤ x

x otherwise

&L(x, y) , max(0, x+ y − 1) |L(x, y) , min{x+ y, 1} ←L (x, y) , min{x− y + 1, 1}

Fig. 1: Conjunctors, disjunctors and implications from Product, Gödel and
 Lukasiewicz logics.

any complete bounded lattice where a L-expression is a well-formed expression
composed by values of L, as well as variable symbols, connectives and primitive
operators (i.e., arithmetic symbols such as ∗,+,min, etc.). In what follows, we as-
sume that the truth function of any connective @ in L is given by its correspond-
ing connective definition, that is, an equation of the form @(x1, . . . , xn) , E,
where E is a L-expression not containing variable symbols apart from x1, . . . , xn.
For instance, some fuzzy connective definitions in the lattice ([0, 1],≤) are pre-
sented in Figure 1 (from now on, this lattice will be called V along this paper),
where labels L, G and P mean respectively Lukasiewicz logic, Gödel logic and
product logic (with different capabilities for modeling pessimistic, optimistic and
realistic scenarios, respectively).

This subset of MALP is intended to cope with fuzzy propositional formulae
like P ∧Q→ P ∨Q, where propositions P and Q are interpreted as values of the
lattice. To this end, a program is defined as a set of rules (also called “facts”)
of the form “H with v”, where H is an atomic formula or atom (usually called
head), and v is its associated truth degree (i.e., a value of L). More precisely,
in our application, heads have always the form “i(v)” and each program rule
looks like “i(v) with v”. It is noteworthy to point out that even when we use the
same names for constants (building data terms) and truth degrees, the Herbrand
Universe of each program and the carrier set of its associated lattice should never
be confused, since they are in fact disjoint sets.

A goal is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0), truth
values of L, conjunctions, disjunctions and aggregations, submitted as a query to
the system. In this subset of MALP, the atomic formulas of a goal have always
the form “i(P)”, being P a variable symbol. In this way, when running a simple
goal like “i(P)” (as done in Figure 2), we could obtain several answers meaning
something like “when P = v, then the resulting truth degree is v”, representing
all possible interpretations in L for proposition P in the original formula.

The procedural semantics of this subset of the MALP language consists of
an operational phase (based on admissible steps that exploits the atoms in the
goal), followed by an interpretive phase (that performs arithmetic operations to
interpret the resulting formula on the lattice). In the following, C[A] denotes
a formula where A is a sub-expression which occurs in the –possibly empty–
context C[]. Moreover, C[A/A′] means the replacement of A by A′ in context C[].

Definition 1 (Admissible Step). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is a state. Given a program P, an admissible computation is

formalized as a state transition system, whose transition relation →AS is defined
as the least one satisfying 〈Q[A];σ〉 →AS 〈(Q[A/v])θ;σθ〉, where A is the
selected atom in Q, θ = mgu({H = A})4 and “H with v” in P. An admissible
derivation is a sequence 〈Q; id〉→AS · · ·→AS〈Q

′; θ〉.

If we exploit all atoms of a given goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms
(a L-expression) which can be then interpreted w.r.t. lattice L as follows.

Definition 2 (Fuzzy Computed Answer). Let P be a program, Q a goal and
σ a substitution. Assume that [[@]] is the truth function of connective @ in the
lattice (L,≤) associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have
that [[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive com-
putation as a state transition system, whose transition relation→IS is defined as
the least one satisfying: 〈Q[@(r1, . . . , rn)];σ〉 →IS 〈Q[@(r1, . . . , rn)/rn+1];σ〉.
An interpretive derivation is a sequence 〈Q;σ〉→IS · · ·→IS〈Q

′;σ〉. When Q′ =
r ∈ L, the state 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that deriva-
tion.

Fig. 2: A work-session with FLOPER solving goal i(P).

The parser of our FLOPER tool [18] has been implemented by using the
Prolog language. Once the application is loaded inside a Prolog interpreter, it

4 Here mgu(E) denotes the most general unifier of an equation set E [15].

shows a menu which includes options for loading/compiling, parsing, listing and
saving MALP programs, as well as for executing/debugging fuzzy goals. More-
over, FLOPER has been recently equipped with new options, called “lat” and
“show”, for allowing the possibility of respectively changing and displaying the
lattice associated to a given program.

A very easy way to model truth-degree lattices for being included into the
FLOPER tool is based on the following guidelines. All relevant components of
each lattice are encapsulated inside a Prolog file which must necessarily contain
the definitions of a minimal set of predicates defining the set of valid elements
(member/1 predicate), the top and bottom elements (top/1 and bot/1 predi-
cates), the full or partial ordering established among them (leq/2 predicate),
as well as the repertoire of fuzzy connectives which can be used for their subse-
quent manipulation. If we have, for instance, some fuzzy connectives of the form
&label1 (conjunction), |label2 (disjunction) or @label3 (aggregation) with arities
n1, n2 and n3 respectively, we must provide clauses defining the connective pred-
icates “and label1/(n1+1)”, “or label2/(n2+1)” and “agr label3/(n3+1)”, where
the extra argument of each predicate is intended to contain the result achieved
after the evaluation of the proper connective. Finally, for the purposes of the cur-
rent work, we also require for each lattice a Prolog fact of the form members(L)

being the L a list containing the set of truth degrees belonging to the modeled
lattice (or at least a representative subset of them when working with infinite
lattices) for being used when interpreting propositional variables of fuzzy formu-
lae. For instance, a lattice defining the simplest notion of binary lattice should
implement predicate member/1 with facts member(0) and member(1) (including
also members([0,1])) and the Boolean conjunction could be defined by the pair
of facts and bool(0, ,0) and and bool(1,X,X).

Consider now the following partially ordered lattice F in the diagram of Fig-
ure 3, which is equipped with conjunction, disjunction and implication connec-
tives based on the Gödel logic described in Figure 1, but with the particularity
that now, in the general case, the Gödel ’s conjunction must be expressed as
&G(x, y) , inf(x, y), where it is important to note that we must replace the use
of “min” by “inf ” in the connective definition (and similarly for the disjunction
connective, where “max” must be substituted by “sup”).

To this end, observe in the Prolog code accompanying the graphic in Figure 3
that we have introduced clauses defining the primitive operators “pri inf/3”
and “pri sup/3” which are intended to return the infimum and supremum of
two elements. Related with this fact, we must point out the following aspects:

– Since truth degrees α and β are incomparable, then any call to goals of the
form “?- leq(alpha,beta).” or “?- leq(beta,alpha).” will always fail.

– The goal “?- pri inf(alpha,beta,X).”, instead of failing, successfully pro-
duces the desired result “X=bottom”.

– Note anyway that the implementation of the “pri inf/3” predicate is manda-
tory for coding the general definition of “and godel/3” (a similar reasoning
follows for “pri sup/3” and “or godel/3”).

⊤

α β

⊥

member(bottom). member(alpha).

member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha).

leq(beta,beta). leq(X,top).

and godel(X,Y,Z) :- pri inf(X,Y,Z).

pri inf(bottom,X,bottom):-!.

pri inf(alpha,X,alpha):-leq(alpha,X),!.

pri inf(beta,X,beta):-leq(beta,X),!.

pri inf(top,X,X):-!.

pri inf(X,Y,bottom).

Fig. 3: Lattice of truth degrees F modeled in Prolog.

3 Looking for Models with FuzzyXPath

The subset of the MALP language detailed in Section 2 suffices for developing
a simple fuzzy theorem prover, where it is important to remark that our tool
can cope with different lattices (not only the real interval [0,1]) containing a
finite number of elements -marked in “members”- maintaining full or partial
ordering among them. Hence, we can use FLOPER for enumerating the whole
set of interpretations and models of fuzzy formulae. To this end, only a concrete
lattice L is required in order to automatically build a program composed by a
set of facts of the form “i(α) with α”, for each α ∈ L. For instance, the MALP

program associated to lattice F in Figure 3 looks like:

i(top) with top.

i(alpha) with alpha.

i(beta) with beta.

i(bottom) with bottom.

Once the lattice and the residual program have been loaded into FLOPER, the
formula to be evaluated is introduced as a goal to the system following some
conventions:

– If P is a propositional variable in the original formula, then it is denoted as
“i(P)” in the goal F .

Fig. 4: A work-session with FLOPER solving formula P ∨Q (16 interpretations,
9 models).

– If & is a conjunction of a certain logic “label” in the original formula, then
it is denoted as “&label” in goal F .

– For disjunctions, negations and implications, use respectively the patterns
“|label”, “@no label” and “@im label” in F .

– For other aggregators use “@label” in F .

In what follows we discuss some examples related with the lattice shown in
Figure 3 and its residual MALP program just seen before. Firstly, if we execute
goal “i(P)” into FLOPER, we obtain the four interpretations for P shown in
Figure 2. On the other hand, consider now the propositional formula P∨Q, which
is translated into the MALP goal “(i(P) | i(Q))” and after being executed
with FLOPER, the tool returns a tree as seen in Figure 4 whose 16 leaves
represent the whole set of interpretations, where 9 of them -inside blue clouds-
are models (see part of the corresponding XML file produced by FLOPER

in Figure 5). Here, each state contains its corresponding goal and substitution
components and they are drawn inside yellow circles. Admissible steps, coloured
in blue, are labelled with the program rule they exploit. Finally, those blue
circles annotated with word “is”, correspond to interpretive steps. Sometimes we
include blue circles labelled with “result” which represents a chained sequence
of interpretive steps.

Let us recall now that XPath was designed as a query language for XML text
in which the path of the underlying tree of any XML document is used to describe
the query (subsequent nodes on XPath expressions are separated by one slash ‘/’

or a double slash ‘//’, being this last case useful for overriding several nodes).
Moreover, XPath expressions can be adorned with Boolean conditions (between
square brackets ‘[]’) on nodes and leaves to restrict the number of answers of
the query. In our fuzzy version of XPath, a FuzzyXPath expression defines,
w.r.t. an XML document, a sequence of subtrees of the XML document where
each subtree has an associated retrieval status value, rsv. XPath conditions,
which are defined as fuzzy operators applied to XPath expressions, compute a
new rsv from the rsv’s of the involved XPath expressions, which at the same time,

<node>

<rule>R0</rule>

<goal>or_godel(i(P),i(Q))</goal>

<substitution>{}</sub>

<children>

<node>

<rule>R1</rule>

<goal>or_godel(bottom,i(Q))</goal>

_{P/bottom}

<children>

<node>

<rule>R1</rule>

<goal>or_godel(bottom,bottom)</goal>

<sub>{Q/bottom,P/bottom}

</sub>

<children>

<node>

<rule>result</rule>

<goal>bottom</goal>

<sub>{Q/bottom,P/bottom}

</sub>

<children>

</children>

</node>

</children>

</node>

...

Fig. 5: Part of the XML file representing the execution tree shown in Figure 4.

provides a rsv to the node. We consider three fuzzy versions for each one of the
classical conjunction and disjunction operators describing pessimistic, realistic
and optimistic scenarios, see Figure 1. In XPath expressions the fuzzy versions
of the connectives make harder to hold conditions, and therefore can be used
to debilitate/force conditions. Furthermore, assuming two given rsv’s r1 and r2,
the avg operator is obviously defined with a fuzzy taste as (r1 + r2)/2, whereas
its priority-based variant, i.e. avg{p1, p2}, is defined as (p1 ∗ r1 + p2 ∗ r2)/p1 + p2.

With our FuzzyXPath tool we have executed “//node[goal=’top’]/sub”
against the XML file shown in Figure 5, which was generated by FLOPER when
producing the proof tree drawn in Figure 4, thus returning as output the new
XML document listed in Figure 6. As illustrated in Figure 5, note that the XML
files representing proof trees exported by FLOPER, are always rooted with the
node label, whose children are based on four kinds of ‘tags’ (this structure is
nested as much as needed):

– rule, which indicates the program rule exploited to reach the current node
(the virtual rule R0 is pointed out only in the initial node),

<result>

_{Q/top,P/top}

_{Q/alpha,P/top}

_{Q/beta,P/top}

_{Q/bottom,P/top}

_{Q/top,P/alpha}

_{Q/beta,P/alpha}

_{Q/top,P/beta}

_{Q/alpha,P/beta}

_{Q/top,P/bottom}

</result>

Fig. 6: XML file obtained after evaluating an XPath query.

– goal, which contains the MALP expression under evaluation, that is, the for-
mula that the system is trying to prove on its current initial/intermediate/final
step. Note that, when in our example such value is top, then we have found a
model, where the values assigned to the propositional symbols of the formula
are collected in the following tag...

– sub, acronym of “substitution”, which accumulates the variable bindings
performed along a fuzzy logic derivation (i.e., chain of computational steps
along a branch of the execution tree) and whose meaning in our target set-
ting, reveals the way of interpreting the propositions contained on a formula
for obtaining its models. See for instance Figure 6, where the nine solutions
labeled with this tag and reported in the output XML document, indicate
each one the truth values for the propositional variables that satisfy the
formula with the maximum truth degree. And finally,

– children, which contains the set of underlying nodes of the tree in a nested
way.

Consider now the more involved formula P ∧Q→ P ∨Q which becomes into
the MALP goal “(i(P) & i(Q)) @impl (i(P) | i(Q))”. When interpreted
by FLOPER, the system returns a list of answers having all them the maximum
truth degree “top”, which proves that this formula is a tautology, as wanted.
Assume now a more general version with the following shape Fn = P1∧. . .∧Pn →
P1∨. . .∨Pn. With respect to the efficiency of the method presented here, we have
studied the behaviour of formula Fn in the table of Figure 7. In the horizontal
axis we represent the number n of different propositional variables appearing in
the formula, whereas the vertical axis refers to the number of seconds needed
to obtain the whole set of interpretations (all them are models in this case)
for the formula. The benchmarks have been performed using a computer with
processor Intel Core Duo, with 2 GB RAM and Windows Vista. Both the red and
blue lines refers to the method just commented along this paper, but whereas
the red line indicates that the derivation tree has been produced by performing
admissible and interpretive steps according Definitions 1 and 2, respectively, the

blue line refers to the execution of the Prolog code obtained after compiling with
FLOPER the MALP program and goal associated to our intended formula.

Fig. 7: Efficiency of the method.

The results achieved in Figure 7 show that our method has a nice behaviour in
both cases, even for formulae with a big number of propositional variables. Of
course, the method does not try to compete with SAT techniques (which are
always faster and can deal with more complex formulae containing many more
propositional variables), but it is important to remark again that in our case, we
face the problem of finding the whole set of models for a given formula, instead
of only focusing on satisfiability.

We address now formula Fn because it illustrates one key point of this paper.
Note that there are |L|n interpretations for that formula, where |L| is the cardi-
nality of the carrier set of lattice L that models truth degrees. For our example
lattice of Figure 3, with four elements, we have 4n interpretations. Consider, for
example, that we are interested in proving that a certain formula, say F5, is a
tautology. In [11] we would have to search at least one interpretation that is not
model of F5 to prove that it is not a tautology, but since there exist 45 = 1024
interpretations, this task is not suitable to be made by hand. To overcome this
problem we use FuzzyXPath to automatically search in the XML file generated
by FLOPER. The manual task, then, is reduced to designing the FuzzyXPath

query. In this case, since we are interested in proving that F5 is a tautology, our
FuzzyXPath query should be //node[rule=‘result’ & goal<>‘top’]/sub,
that is, the system searches nodes whose rule tag contain the text “result” (i.e.,
we are looking for leaves in the tree) and whose tag goal is not “top” (in order

to exclude models). If the output of this query is an empty list of nodes, as it
actually is, the formula F5 is proven to be a tautology, as desired.

FuzzyXPath can also be used for determining the satisfiability of a formula.
Consider again formula P ∨Q whose set of interpretations are shown in Figure
4. The query //node[rule=‘result’ & goal<>‘top’]/sub seen above, shows
that this formula is not a tautology, since its further evaluation returns the
non-empty set:

<result>

_{Q/alpha,P/alpha}

_{Q/bottom,P/alpha}

_{Q/beta,P/beta}

_{Q/bottom,P/beta}

_{Q/alpha,P/bottom}

_{Q/beta,P/bottom}

_{Q/bottom,P/bottom}

</result>

Consider now the new query (which is almost antagonist to the previous one)
//node[rule=‘result’ & goal=‘top’]/sub. In this case, if the output is the
empty set, the tested formula is a contradiction (i.e., there is no interpretation
satisfying it). Otherwise, it is satisfiable. Furthermore, with FuzzyXPath we
can come back to the main purpose of [11], that is listing the set of models of a
formula instead of just deciding whether it is satisfiable or not. In particular, the
query to list the set of models is the one presented for deciding the satisfiability
of the formula at the beginning of this paragraph. Observe in Figure 6 the output
of this query w.r.t. formula P ∨Q.

Until now we have made use of FuzzyXPath to decide immediately the
satisfiability or not of a certain formula. With respect to the queries we have
presented, we were interested only in whether their answer set were empty or
not. Now we present a query which, by making use of the fuzzy capabilities of
FuzzyXPath, returns the list of interpretations together with extra information
(into the rsv attribute) about the extent in which they satisfy the formula or
not. Consider again formula P ∨Q, part of whose derivation tree is represented
in the form of the XML file provided by FLOPER in Figure 5. This formula is
satisfiable but not a tautology, that is, some of its interpretations satisfy it but
other ones do not.

Let us focus now on query //node[rule=‘result’&(goal=‘top’ avg{3,1},
goal<>‘top’)]/sub for such formula. Here, we ask for those states which are
leaves of the tree (condition rule=‘result’) and which are either models (con-
dition goal=‘top’) or not (condition goal<>‘top’), with the particularity that
if the leaf is a model, it fulfils the query at a 75% and, if it is not, with a 25%.
The result is the set of interpretations with a rsv value (the degree in which they
fulfil the query) between 0.75 and 0.25, as shown in the following table:

<result>

_{Q/top,P/top}

_{Q/alpha,P/top}

_{Q/beta,P/top}

_{Q/bottom,P/top}

_{Q/top,P/alpha}

_{Q/beta,P/alpha}

_{Q/top,P/beta}

_{Q/alpha,P/beta}

_{Q/top,P/bottom}

_{Q/alpha,P/alpha}

_{Q/bottom,P/alpha}

_{Q/beta,P/beta}

_{Q/bottom,P/beta}

_{Q/alpha,P/bottom}

_{Q/beta,P/bottom}

_{Q/bottom,P/bottom}

</result>

This set of answers briefly show the set of interpretations of the formula. For
formulas like F5, whose XML file of 5.5 MB would be impossible to check by
hand, this method offers a quick look of the answers, even when they are very
numerous.

4 Conclusions and Future Work

In this paper we have recasted from our previous works [11] and [5], two ap-
plications developed with our fuzzy logic programming environment FLOPER

in order to feedback and reinforce themselves. In the first paper we proposed a
technique for evaluating propositional fuzzy formulae in an alternative way than
fuzzy SAT/SMT methods, while in the second work we used the FuzzyXPath

interpreter for analyzing derivation trees exported by FLOPER in XML format
in order to help the analysis of fuzzy logic computations. In the current paper we
have applied this last capability of FuzzyXPath focusing exclusively on deriva-
tion trees associated to fuzzy formulae developed according the methodology
proposed in [11]. As a result, we have presented an automatic technique useful
for determining important features of such formulae (tautology, contradiction,
etc...) by making use of XPath queries with a fuzzy taste. As future work, we
are nowadays introducing fuzzy thresholding techniques in our application for
improving the efficiency of the tool.

References

1. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. A XPath Debugger based on
Fuzzy Chance Degrees. In P. Herrero, editor, Proc. of OTM’12 Workshops, pages
669–672. Springer Verlag, Lectures Notes in Computer Science 7567, 2012.

2. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Fuzzy logic programming for
implementing a flexible xpath-based query language. Electronic Notes in Theoret-

ical Computer Science, 282:3–18, 2012.

3. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Annotating Fuzzy Chance
Degrees when Debugging Xpath Queries. In Proc. of the 12th International Work-

Conference on Artificial Neural Networks, IWANN 2013, pages 300–311. Springer
Verlag, LNCS 7903, Part II, 2013.

4. J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Fuzzy xpath through fuzzy
logic programming. New Generation Computing, 33(2):173–209, 2015.

5. J.M. Almendros-Jiménez, A. Luna, G. Moreno, and C. Vázquez. Analyzing Fuzzy
Logic Computations with Fuzzy XPath. In Proc. of XIII Spanish Conference on

Programming and Languages, PROLE’2013, pages 136–150 (extended version to
appear in ECEASST). U. Complutense of Madrid, 2013.

6. Carlos Ansótegui, Miquel Bofill, Felip Manyà, and Mateu Villaret. Building auto-
mated theorem provers for infinitely-valued logics with satisfiability modulo theory
solvers. In Proceedings of the 42nd IEEE International Symposium on Multiple-

Valued Logic, ISMVL 2012, pages 25–30, 2012.
7. K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B: Formal Models and Semantics,
pages 493–574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.

8. F. Arcelli and F. Formato. A similarity-based resolution rule. International Journal
of Intelligent Systems, 17(9):853–872, 2002.

9. Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfi-
ability Modulo Theories. In Handbook of Satisfiability, volume 185 of Frontiers in

Artificial Intelligence and Applications, pages 825–885. IOS Press, 2009.
10. A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, and

J. Siméon. XML path language (XPath) 2.0. W3C, 2007.
11. M. Bofill, G. Moreno, C. Vázquez, and M. Villaret. Automatic proving of fuzzy

formulae with fuzzy logic programming and SMT. In Proc. of XIII Spanish Con-

ference on Programming and Languages, PROLE’2013, pages 151–165 (extended
version to appear in ECEASST). U. Complutense of Madrid, 2013.

12. Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison Wesley,
September 2000.

13. G. Gerla. Fuzzy control as a fuzzy deduction system. Fuzzy Sets and Systems,
121(3):409–425, 2001.

14. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12:335–367, 1992.

15. J. L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
625. Morgan Kaufmann, Los Altos, 1988.

16. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
17. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based Unification: a multi-

adjoint approach. Fuzzy Sets and Systems, Elsevier, 146:43–62, 2004.
18. G. Moreno and C. Vázquez. Fuzzy logic programming in action with FLOPER.

Journal of Software Engineering and Applications, 7:273–298, 2014.
19. S. Muñoz-Hernández, V. Pablos-Ceruelo, and H. Strass. Rfuzzy: Syntax, seman-

tics and implementation details of a simple and expressive fuzzy tool over prolog.
Information Sciences, 181(10):1951 – 1970, 2011.

20. Mark E Stickel. A prolog technology theorem prover: Implementation by an ex-
tended prolog compiler. Journal of Automated reasoning, 4(4):353–380, 1988.

21. Amanda Vidal, Félix Bou, and Lluis Godo. An smt-based solver for continuous
t-norm based logics. In Proceedings of the 6th International Conference on Scal-

able Uncertainty Management, volume 7520 of Lecture Notes in Computer Science,
pages 633–640, 2012.

