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Resumen

FLOPER is a �Fuzzy LOgic Programming
Environment for Research� developed in our
research group which currently o�ers run-
ning/debugging/tracing capabilities for man-
aging programs belonging to the so-called
multi-adjoint logic approach. In this recent and
�exible framework, typical Prolog clauses have
been extended with fuzzy features, including
a wide repertoire of connectives for manipu-
lating truth degrees beyond the simple case
of {true, false}. Multi-adjoint lattices capture
the mathematical foundations of this enrich-
ment. In this paper, we report our last de-
velopments performed into the FLOPER tool,
which are devoted to put in practice the man-
agement of such structures in an easy, quite
comprehensible way.

1. Introduction

Research in the �elds of Declarative Pro-
gramming and Fuzzy Logic have traditional-
ly provided programming languages and tech-
niques with important applications in the
�elds of AI, soft-computing, and so on [3, 17].
In particular, Logic Programming [16] has been
widely used for problem solving and knowl-
edge representation in the past. Nevertheless,
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novation Ministry (MICIN) under grant TIN 2007-
65749 and by the Castilla-La Mancha Administration
under grant PII1I09-0117-4481.

traditional logic languages do not incorporate
techniques or constructs to explicitly deal with
uncertainty and approximate reasoning in a
natural way. To ful�ll this gap, Fuzzy Log-
ic Programming has emerged as an interest-
ing and still growing research area trying to
agglutinate the e�orts for introducing fuzzy
logic into logic programming. During the last
decades, several fuzzy logic programming sys-
tems have been developed [2, 4, 6, 15, 13, 25],
where the classical inference mechanism of
SLD�Resolution is replaced with a fuzzy vari-
ant which is able to handle partial truth and
to reason with uncertainty.

This is the case of multi-adjoint logic pro-
gramming [20, 18, 19], one of the most pow-
erful and promising approaches in the area.
In this framework, a program can be seen
as a set of rules each one annotated by a
truth degree and a goal is a query to the
system plus a substitution (initially the emp-
ty substitution, denoted by id). Admissible
steps (a generalization of the classical modus
ponens inference rule) are systematically ap-
plied on goals in a similar way to classical
resolution steps in pure logic programming,
thus returning a state composed by a com-
puted substitution together with an expression
where all atoms have been exploited. Next,
during the so called interpretive phase (see
[10, 24]), this expression is interpreted un-
der a given lattice, hence returning a pair
⟨truth degree; substitution⟩ which is the fuzzy
counterpart of the classical notion of comput-
ed answer used in pure logic programming.



The main goal of the present paper is to
present our last developments performed on
the FLOPER system (see [1, 23, 22] and vis-
it http://www.dsi.uclm.es/investigacion/

dect/FLOPERpage.htm ) which enables the in-
troduction of di�erent notions of multi-adjoint
lattices for managing truth degrees even in a
single work-session without changing a given
multi-adjoint logic program and goal. Nowa-
days, the tool provides facilities for execut-
ing and debugging (by generating declarative
traces) such kind of fuzzy programs, by means
of two main representation (high/low-level,
Prolog-based) ways which are somehow an-
tagonistics regarding simplicity/precision fea-
tures.

The structure of the paper is as follows. In
Section 2, we summarizes the main features
of multi-adjoint logic programming, both lan-
guage syntax and procedural semantics). Sec-
tion 3 presents a discussion on multi-adjoint
lattices and their nice representation by using
standard Prolog code, in order to facilitate its
further assimilation inside the FLOPER tool,
as described in Section 4. Finally, in Section
5 we give our conclusions and some lines of
future work.

2. Multi-Adjoint Logic Program-

ming

This section summarizes the main features
of multi-adjoint logic programming (see [20,
18, 19] for a complete formulation of this
framework). In what follows, we will use the
abbreviation MALP for referencing programs
belonging to this setting.

2.1. MALP Syntax

We work with a �rst order language, ℒ, con-
taining variables, constants, function symbols,
predicate symbols, and several (arbitrary) con-
nectives to increase language expressiveness:
implication connectives (←1,←2, . . .); con-
junctive operators (denoted by &1,&2, . . .),
disjunctive operators (∨1,∨2, . . .), and hybrid
operators (usually denoted by @1,@2, . . .), all

of them are grouped under the name of �ag-
gregators�.
Aggregation operators are useful to de-

scribe/specify user preferences. An aggrega-
tion operator, when interpreted as a truth
function, may be an arithmetic mean, a
weighted sum or in general any monotone ap-
plication whose arguments are values of a com-
plete bounded lattice L. For example, if an
aggregator @ is interpreted as [[@]](x, y, z) =
(3x+2y+z)/6, we are giving the highest pref-
erence to the �rst argument, then to the sec-
ond, being the third argument the least signif-
icant.
Although these connectives are binary op-

erators, we usually generalize them as func-
tions with an arbitrary number of arguments.
So, we often write @(x1, . . . , xn) instead of
@(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the
truth function for an n-ary aggregation op-
erator [[@]] : Ln → L is required to be
monotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤,
[[@]](⊥, . . . ,⊥) = ⊥.
Additionally, our language ℒ contains

the values of a multi-adjoint lattice ⟨L,⪯
,←1,&1, . . . ,←n,&n⟩, equipped with a collec-
tion of adjoint pairs ⟨←i,&i⟩, where each &i

is a conjunctor which is intended to the eval-
uation of modus ponens [20]. More exactly, in
this setting the following items must be satis-
�ed:

∙ ⟨L,⪯⟩ is a bounded lattice, i.e. it has fal-
sum and verum elements, denoted by ⊥
and ⊤, respectively.

∙ Each operation &i is increasing in both
arguments.

∙ Each operation ←i is increasing in the
�rst argument and decreasing in the sec-
ond.

∙ If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩
then, for any x, y, z ∈ L, we have that:
x ⪯ (y ←i z) if and only if (x &i z) ⪯
y.

This last condition, called adjoint property,
could be considered the most important fea-
ture of the framework (in contrast with many



Multi-adjoint logic program P:

ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0,9
ℛ2 : q(a) ← witℎ 0,8
ℛ3 : r(X) ← witℎ 0,7
ℛ4 : s(X) ← witℎ 0,5

Admissible derivation:

⟨p(X); id⟩ →AS1
ℛ1

⟨&P(0,9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0,9,&G(0,8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0,9,&G(0,8,@aver(0,7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0,9,&G(0,8,@aver(0,7, 0,5))); {X/a,X1/a,X2/a,X3/a}⟩

Interpretive derivation:

⟨&P(0,9,&G(0,8,@aver(0,7, 0,5))); {X/a}⟩ →IS

⟨&P(0,9,&G(0,8, 0,6)); {X/a}⟩ →IS

⟨&P(0,9, 0,6); {X/a}⟩ →IS

⟨0,54; {X/a}⟩.

Figura 1: Multi-adjoint logic program P with admissible/interpretive derivations for goal p(X).

other approaches) which justi�es most of its
properties regarding crucial results for sound-
ness, completeness, applicability, etc.

In general, L may be the carrier of any com-
plete bounded lattice where a L-expression is
a well-formed expression composed by values
and connectives of L, as well as variable sym-
bols and primitive operators (i.e., arithmetic
symbols such as ∗,+,min, etc...).
In what follows, we assume that the truth

function of any connective @ in L is given by
its corresponding connective de�nition, that is,
an equation of the form @(x1, . . . , xn) ≜ E,
where E is a L-expression not containing vari-
able symbols apart from x1, . . . , xn. For in-
stance, in what follows we will be mainly con-
cerned with the following classical set of ad-
joint pairs (conjunctors and implications) in
⟨[0, 1],≤⟩, where labels L, G and P mean re-
spectively �ukasiewicz logic, Gödel intuition-
istic logic and product logic:

&P(x, y) ≜ x ∗ y

&G(x, y) ≜ mı́n(x, y)

{
1 if y ≤ x
x otherwise

&L(x, y) ≜ máx(0, x+ y − 1)

. . . and their adjoint implications:

←P (x, y) ≜ mı́n(1, x/y)

←G (x, y) ≜

{
1 if y ≤ x
x otherwise

←L (x, y) ≜ mı́n{x− y + 1, 1}

A rule is a formula H ←i ℬ, where H is an
atomic formula (usually called the head) and
ℬ (which is called the body) is a formula built
from atomic formulas B1, . . . , Bn � n ≥ 0 �
, truth values of L, conjunctions, disjunctions
and aggregations. A goal is a body submitted
as a query to the system. Roughly speaking,



a multi-adjoint logic program is a set of pairs
⟨ℛ;�⟩ (we often write �ℛ witℎ ��), where ℛ
is a rule and � is a truth degree (a value of L)
expressing the con�dence of a programmer in
the truth of rule ℛ. By abuse of language, we
sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.

2.2. MALP Procedural Semantics

The procedural semantics of the multi�
adjoint logic language ℒ can be thought of
as an operational phase (based on admissible
steps) followed by an interpretive one. In the
following, C[A] denotes a formula where A is
a sub-expression which occurs in the �possibly
empty� context C[]. Moreover, C[A/A′] means
the replacement of A by A′ in context C[],
whereas Var(s) refers to the set of distinct
variables occurring in the syntactic object s,
and �[Var(s)] denotes the substitution ob-
tained from � by restricting its domain to
Var(s).

De�nition 2.1 (Admissible Step) Let Q
be a goal and let � be a substitution. The
pair ⟨Q;�⟩ is a state and we denote by ℰ
the set of states. Given a program P, an
admissible computation is formalized as a
state transition system, whose transition
relation →AS ⊆ (ℰ × ℰ) is the smallest
relation satisfying the following admissible
rules (where we always consider that A is
the selected atom in Q and mgu(E) denotes
the most general uni�er of an equation set E
[14]):

1) ⟨Q[A];�⟩→AS⟨(Q[A/v&iℬ])�;��⟩, if
� = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P
and ℬ is not empty.

2) ⟨Q[A];�⟩→AS⟨(Q[A/v])�;��⟩, if � =
mgu({A′ = A}) and ⟨A′←i; v⟩ in P.

3) ⟨Q[A];�⟩→AS⟨(Q[A/⊥]);�⟩, if there is
no rule in P whose head uni�es with A.

Note that 3tℎ case is introduced to cope with
(possible) unsuccessful admissible derivations.
As usual, rules are taken renamed apart. We
shall use the symbols →AS1, →AS2 and →AS3

to distinguish between computation steps per-
formed by applying one of the speci�c admis-
sible rules. Also, the application of a rule on a
step will be annotated as a superscript of the
→AS symbol.

De�nition 2.2 Let P be a program, Q
a goal and �id� the empty substitution.
An admissible derivation is a sequence
⟨Q; id⟩→AS . . .→AS⟨Q′; �⟩. When Q′ is a
formula not containing atoms (i.e., a L-
expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is called an admissible computed
answer (a.c.a.) for that derivation.

Example 2.3 Let P be the multi-adjoint
fuzzy logic program described in Figure 1,
where the equation de�ning the average aggre-
gator @aver must obviously has the form:

@aver(x1, x2) ≜ (x1 + x2)/2.

Now, we can generate the admissible
derivation shown in Figure 1 (we un-
derline the selected atom in each step).
So, the admissible computed answer
(a.c.a.) in this case is composed by the
pair: ⟨&P(0,9,&G(0,8,@aver(0,7, 0,5))); �⟩,
where � only referenciates bindings re-
lated with variables in the goal, i.e.,
� = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] =
{X/a}.

If we exploit all atoms of a given goal, by ap-
plying admissible steps as much as needed dur-
ing the operational phase, then it becomes a
formula with no atoms (a L-expression) which
can be then directly interpreted w.r.t. lattice
L by applying the following de�nition we ini-
tially presented in [10]:

De�nition 2.4 (Interpretive Step) Let P
be a program, Q a goal and � a substitution.
Assume that [[@]] is the truth function of con-
nective @ in the lattice ⟨L,⪯⟩ associated to
P, such that, for values r1, . . . , rn, rn+1 ∈ L,
we have that [[@]](r1, . . . , rn) = rn+1. Then, we
formalize the notion of interpretive computa-
tion as a state transition system, whose tran-
sition relation →IS ⊆ (ℰ ×ℰ) is de�ned as the
least one satisfying:



⟨Q[@(r1, . . . , rn)];�⟩ →IS

⟨Q[@(r1, . . . , rn)/rn+1];�⟩.

De�nition 2.5 Let P be a program and
⟨Q;�⟩ an a.c.a., that is, Q is a goal
not containing atoms (i.e., a L-expression).
An interpretive derivation is a sequence
⟨Q;�⟩→IS . . .→IS⟨Q′;�⟩. When Q′ = r ∈ L,
being ⟨L,⪯⟩ the lattice associated to P, the
state ⟨r;�⟩ is called a fuzzy computed answer
(f.c.a.) for that derivation.

Example 2.6 If we complete the previous
derivation of Example 2.3 by applying 3 in-
terpretive steps in order to obtain the �nal
f.c.a. ⟨0,54; {X/a}⟩, we generate the interpre-
tive derivation D1 shown in Figure 1.

3. Truth-Degrees and Multi-adjoint

Lattices in Practice

We have recently conceived a very easy way
to model truth-degree lattices for being includ-
ed into the FLOPER tool. All relevant compo-
nents of each lattice can be encapsulated inside
a Prolog �le which must necessarily contain
the de�nitions of a minimal set of predicates
de�ning the set of valid elements (including
special mentions to the �top� and �bottom�
ones), the full or partial ordering established
among them, as well as the repertoire of fuzzy
connectives which can be used for their subse-
quent manipulation. In order to simplify our
explanation, assume that �le �bool.pl� refers
to the simplest notion of (a binary) adjoint
lattice, thus implementing the following set of
predicates:

∙ member/1 which is satis�ed when being
called with a parameter representing a
valid truth degree. In the case of �nite
lattices, it is also recommend to imple-
ment members/1 which returns in one go
a list containing the whole set of truth de-
grees. For instance, in the Boolean case,
both predicates can be simply modeled by
the Prolog facts: member(0)., member(1).
and members([0,1]).

∙ bot/1 and top/1 obviously answer with
the top and bottom element of the lattice,
respectively. Both are implemented into
�bool.pl� as bot(0). and top(1).

∙ leq/2models the ordering relation among
all the possible pairs of truth degrees, and
obviously it is only satis�ed when it is in-
voked with two elements verifying that
the �rst parameter is equal or smaller
than the second one. So, in our example
it su�ces with including into �bool.pl� the
facts: leq(0,X). and leq(X,1).

∙ Finally, given some fuzzy connectives
of the form &label1 (conjunction),
∨label2 (disjunction) or @label3 (ag-
gregation) with arities n1, n2 and n3

respectively, we must provide claus-
es de�ning the connective predicates
�and_label1/(n1+1)�, �or_label2/(n2+1)�
and �agr_label3/(n3+1)�, where the extra
argument of each predicate is intended
to contain the result achieved after the
evaluation of the proper connective.
For instance, in the Boolean case, the
following two facts model in a very easy
way the behaviour of the classical con-
junction operation: and_bool(0,_,0).

and_bool(1,X,X).

The reader can easily check that the
use of lattice �bool.pl� when working with
MALP programs whose rules have the form
�A ←bool &bool(B1, . . . , Bn) witℎ 1�,
being A and Bi typical atoms1, successful-
ly mimics the behaviour of classical Prolog
programs where clauses accomplish with the
shape �A : − B1, . . . , Bn�. As a novelty in the
fuzzy setting, when evaluating goals accord-
ing to the procedural semantics described in
Section 2, each output will contain the corre-
sponding Prolog's substitution (i.e., the crisp
notion of computed answer obtained by means
of classical SLD-resolution) together with the
maximum truth degree 1.
On the other hand and following the Prolog

style regulated by the previous guidelines, in

1Here we also assume that several versions of the
classical conjunction operation have been implement-
ed with di�erent arities.



�le �num.lat� we have included the following
de�nitions:

member(X) :- number(X),0=<X,X=<1.

bot(0).

top(1).

leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),

pri_sub(U1,1,U2),

pri_max(0,U2,Z).

and_godel(X,Y,Z):- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),

pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :- pri_prod(X,Y,U1),

pri_add(X,Y,U2),

pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),

pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y.

pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

pri_sub(X,Y,Z) :- Z is X-Y.

pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).

pri_prod(X,Y,Z) :- Z is X * Y.

pri_div(X,Y,Z) :- Z is X/Y.

Here, we have modeled the more �exible lat-
tice (that we will mainly use in our examples,
beyond the boolean case) which enables the
possibility of working with truth degrees in the
in�nite space (note that this condition disables
the implementation of the consulting predi-
cate �members/1�) of the real numbers between
0 and 1, allowing too the possibility of using
conjunction and disjunction operators recast-
ed from the three typical fuzzy logics proposals
described before (i.e., the �ukasiewicz, Gödel
and product logics), as well as a useful descrip-
tion for the hybrid aggregator average. Note
also we have included de�nitions for auxiliary
predicates, whose names always begin with the

pre�x �pri_�. All of them are intended to de-
scribe primitive/arithmetic operators (in our
case +, −, ∗, /, min and max) in a Prolog
style, for being appropriately called from the
bodies of clauses de�ning predicates with high-
er levels of expressivity (this is the case for in-
stance, of the three kinds of fuzzy connectives
we are considering: conjuntions, disjunctions
and agreggations).
Since till now we have considered two clas-

sical, fully ordered lattices (with a �nite and
in�nite number of elements, collected in �les
�bool.pl� and �num.pl�, respectively), we wish
now to introduce a di�erent case coping with a
very simple lattice where not always any pair
of truth degrees are comparable. So, consider
the following partially ordered multi-adjoint
lattice in the diagram below for which the
conjunction and implication connectives based
on the Gödel intuistionistic logic described in
Section 2 conform an adjoint pair.... but with
the particularity now that, in the general case,
the Gödel 's conjunction must be expressed as
&G(x, y) ≜ inf(x, y), where it is important to
note that we must replace the use of �min� by
�inf � in the connective de�nition.

top

/ \

/ \

alpha beta

\ /

\ /

bottom

members([bottom,alpha,beta,top]).

leq(bottom,X).

leq(alpha,alpha).

leq(alpha,top).

leq(beta,beta).

leq(beta,top).

leq(X,top).



and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom):-!.

pri_inf(alpha,X,alpha):-leq(alpha,X),!.

pri_inf(beta,X,beta):-leq(beta,X),!.}

pri_inf(top,X,X):-!.

pri_inf(X,Y,bottom).

To this end, observe in the Prolog code ac-
companying the �gure above that we have in-
troduced �ve clauses de�ning the new prim-
itive operator �pri_inf/3� which is intended
to return the in�mum of two elements. Related
with this fact, we must point out the following
aspects:

∙ Note that since truth degrees � and �
(or their corresponding representations
as Prolog terms �alpha� and �beta�
used for instance in the de�nition(s) of
�member(s)/1�) are incomparable then,
any call to both �?- leq(alpha,beta).�
or �?- leq(beta,alpha).� will always
fail.

∙ Fortunately, a goal of the form
�?- pri_inf(alpha,beta,X).�, or alter-
natively �?- pri_inf(beta,alpha,X).�,
instead of failing, successfully produces
the desired result �X=bottom�.

∙ Note anyway that the implementation of
the �pri_inf/1� predicate is mandato-
ry for coding the general de�nition of
�and_godel/3�.

4. The FLOPER System in Action

As detailed in [1, 23], our parser has been
implemented by using the classical DCG's
(De�nite Clause Grammars) resource of the
Prolog language, since it is a convenient nota-
tion for expressing grammar rules. Once the
application is loaded inside a Prolog inter-
preter (in our case, Sicstus Prolog v.3.12.5),
it shows a menu which includes options for
loading, parsing, listing and saving fuzzy pro-
grams, as well as for executing fuzzy goals (see
Figure 2).

All these actions are based in the transla-
tion of the fuzzy code into standard Prolog
code. The key point is to extend each atom
with an extra argument, called truth variable
of the form �_TVi�, which is intended to con-
tain the truth degree obtained after the subse-
quent evaluation of the atom. For instance, the
�rst clause in our target program is translated
into:

p(X,TV0) :- q(X,_TV1),

r(X,_TV2),

s(X,_TV3),

agr_aver(_TV2,_TV3,_TV4),

and_godel(_TV1,_TV4,_TV5),

and_prod(0.9,_TV5,TV0).

Moreover, the second clause in our target pro-
gram, becomes the pure Prolog fact �q(a, 0,8)�
while a fuzzy goal like �p(X)�, is translated in-
to the pure Prolog goal: �p(X, Truth_degree)�
(note that the last truth degree variable is
not anonymous now) for which the Prolog in-
terpreter returns the desired fuzzy comput-
ed answer [Truth_degree = 0,54, X = a]. The
previous set of options su�ces for running
fuzzy programs (the �run� choice also uses the
clauses contained in �num.pl�, which represent
the default lattice): all internal computations
(including compiling and executing) are pure
Prolog derivations whereas inputs (fuzzy pro-
grams and goals) and outputs (fuzzy comput-
ed answers) have always a fuzzy taste, thus
producing the illusion of being working with a
purely fuzzy logic programming tool.

On the other hand, as showed in the down-
middle, dark part of Figure 2, FLOPER has
been recently equipped with a new option,
called �loadLat� for allowing the possibility
of changing the multi-adjoint lattice associ-
ated to a given program. For instance, as-
sume that �new_num.pl� contains the same
Prolog code than �num.pl� with the excep-
tion of the de�nition regarding the average
aggregator. Now, instead of computing the
average of two truth degrees, let us consid-
er the average between the results achieved
after applying to both elements the dis-
junctions of Gödel and �ukasiewicz, that is,
@aver(x1, x2) ≜ (∨G(x1, x2) + ∨L(x1, x2))/2. A



Figura 2: Example of a work session with FLOPER showing �Small Interpretive Steps� and program/goal
menus

Prolog clause modeling such de�nition into the
�new_num.pl� �le could be:

agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),

or_luka(X,Y,Z2),

pri_add(Z1,Z2,Z3),

pri_div(Z3,2,Z).

and now, by selecting again the �run� op-
tion (without changing the program and goal),
the system would display the new solution:
[Truth_degree = 0,72, X = a].
However, when trying to go beyond program

execution, the previous method becomes insuf-
�cient. In particular, observe that we can only
simulate complete fuzzy derivations (by per-
forming the corresponding Prolog derivations
based on SLD-resolution) but we can not gen-
erate partial derivations or even apply a sin-
gle admissible step on a given fuzzy expres-
sion. This kind of low-level manipulations are

mandatory when trying to incorporate to the
tool some program transformation techniques
such as those based on fold/unfold or partial
evaluation we have described in [5, 9, 12].
To this end, in [23] we presented a new low-

level representation for the fuzzy code which
currently o�ers the possibility of performing
debugging actions such as tracing a FLOPER
work session. For instance, after parsing the
�rst rule of our program, we obtain the follow-
ing expression which is asserted into the inter-
preter's database as a Prolog fact and collects
in detail all relevant components of rules (com-
position of atoms in heads/bodies, attached
weights, etc):

rule(

1,

head(atom(pred(p,1),[var('X')])),

impl(prod),



body(and(godel,2,

[atom(pred(q,1),[var('X')]),

agr(aver,2,

[atom(pred(r,1),[var('X')]),

atom(pred(s,1),[var('X')])

])

])

),

td(0.9)).

Two more examples: substitutions are modeled
by lists of terms of the form link(V, T) where
V and T contains the code associated to an
original variable and its corresponding (linked)
fuzzy term, respectively, whereas a state is rep-
resented by a term with functor state/2. We
have implemented predicates for manipulating
such kind of code at a very low level in order to
unify expressions, compose substitutions, ap-
ply admisible/interpretive steps, etc.
Looking again to the darked part of Fig-

ure 2, observe in the FLOPER's goal menu
the �tree� and �depth� options, which are
useful for tracing execution trees and �x-
ing the maximum length allowed for their
branches (initially 3), respectively. Working
with these options is crucial when the �run�

choice fails: remember that this last option is
based on the generation of pure logic SLD-
derivations which might fall in loop or direct-
ly fail in some cases as the experiments of
[23] show, in contrast with the traces (based
on �nite, non-failed, admissible derivations)
that the �tree� option displays. As the top-
middle of Figure 2 illustrates, the system dis-
plays states on di�erent lines, appropriately
indented to distinguish the proper relation-
ship -parent/child/grandchild...- among nodes
on unfolding trees.
Strongly related with these last options, the

�ismode� choice decides among three levels of
detail when visualizing the interpretive phase
performed during the generation of �unfolding
trees�. So, whereas

∙ �Large� means to obtain the �nal result
in one go,

∙ �Medium� implements the notion of �inter-
pretive step� according De�nition 2.4 [10]

and

∙ �Small� allows to visualize in detail both
the direct/indirect calls to connective
de�nitions and primitive operators per-
formed along the whole interpretive phase
[22].

The reader can observe at the beginning of
Figure 2, the aspect o�ered by FLOPER when
visualizing in detail the behaviour of our run-
ning example (using our last de�nition of the
average aggregator) once we have choosen the
last option just commented before. In particu-
lar, observe that program rules applied on ad-
missible steps always precede the correspond-
ing state (FLOPER labels the root goal with
the �virtual� program rule R0)), whereas the
interpretive phase applies �small interpretive
steps� of kind →SIS1 or →SIS2 (according to
[22]) when expanding connective de�nitions or
evaluating primitive operators on states (no-
tice in the �gure that each primitive opera-
tors is always labeled by pre�x �#�). These
facts justify why in our Prolog-based imple-
mentation of lattices, clauses de�ning connec-
tive predicates only perform calls to predicates
of the form �and_*�, �or_*�, �agr_*� (useful
for identifying further→SIS1 steps) or �pri_*�
(associated to →SIS2 steps).

5. Conclusions and Future Work

The experience acquired in our research
group regarding the design of techniques/me-
thods based on fuzzy logic in close relationship
with the so-called multi-adjoint logic program-
ming approach ([10, 5, 9, 11, 12, 7, 8, 24, 21]),
has motivated our interest for putting in prac-
tice all our developments around the design of
the FLOPER environment [23, 22]. Our phi-
losophy is to friendly connect this fuzzy frame-
work with Prolog programmers: our system,
apart for being implemented in Prolog, also
translates the fuzzy code to classical clauses
(in two di�erent representations) and, what is
more, in this paper we have also shown that a
wide range of lattices modeling truth degrees
also admit nice characterizations into Prolog.



Nowadays we are extending FLOPER with
testing techniques for automatically checking
that lattices modeled in this way verify the re-
quirements of our fuzzy setting (specially, the
adjoint property).
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