
The Fuzzy Logic Programming Environment FLOPER

Pedro J. Morcillo and Gines Moreno
Department of Computing Systems
University of Castilla-La Mancha

02071, Albacete (Spain)
{pmorcillo, gmoreno}@dsi.uclm.es

Abstract

Declarative programming plays an im-
portant role when designing formal
methods for software engineering. Fuzzy
Logic Programming is an interesting and
still growing research area that aggluti-
nates the efforts for introducing fuzzy
logic into logic programming (LP), in
order to incorporate more expressive re-
sources on such languages for dealing
with uncertainty and approximated rea-
soning. The multi-adjoint logic pro-
gramming approach represents a re-
cent and extremely flexible fuzzy logic
paradigm for which, unfortunately, we
have not found practical tools imple-
mented so far.

In this work we describe a prototype
system, the FLOPER tool, which is
able to directly translate fuzzy logic pro-
grams into Prolog code in order to safely
execute these residual programs inside
any standard Prolog interpreter in a
completely transparent way for the fi-
nal user. Moreover, the system also gen-
erates a low-level representation of the
fuzzy code offering debugging (tracing)
capabilities and opening the door to the
design of more sophisticated program
manipulation tasks such as program op-
timization, program specialization, pro-
gram analysis and so on.

In order to support and apply formal
methods in industry, we think that the
development of such fuzzy logic lan-
guages and programing tools might have
high relevance, especially when design-
ing advanced software applications for
medicine, industrial control, and so on.

1 Introduction

Logic Programming [10] has been widely used
for problem solving and knowledge represen-
tation in the past. Nevertheless, traditional
LP languages do not incorporate techniques
or constructs to treat explicitly with uncer-
tainty and approximated reasoning. To over-
come this situation, during the last decades
several fuzzy logic programming systems have
been developed where the classical inference
mechanism of SLD–Resolution is replaced
with a fuzzy variant able to handle partial
truth and to reason with uncertainty. Most
of these systems implement the fuzzy resolu-
tion principle introduced by Lee in [8], such as
languages Prolog-Elf [4], Fril [2] and F-Prolog
[9].

Following this line, in the original version of
[13], a fuzzy logic program is conceived as
a set of weighted formulas, where the truth
degree of each clause is explicitly annotated.
The task of computing and propagating truth
degrees relies on an extension of the resolution
principle, whereas the (syntactic) unification
mechanism remains untouched. Continuing
this trail, one of the most modern, flexible and
evolved fuzzy dialects of Prolog which follow
this scheme, is the one presented in[12].

Informally speaking, in the multi-adjoint logic
framework, a program can be seen as a set of
rules each one annotated by a truth degree,
and a goal is a query to the system, i.e., a
set of atoms linked with connectives called
aggregators. A state is a pair 〈Q, σ〉 where
Q is a goal and σ a substitution (initially,

the identity substitution). States are evalu-
ated in two separate computational phases.
Firstly, admissible steps (a generalization of
the classical modus ponens inference rule) are
systematically applied by a backward reason-
ing procedure in a similar way to classical res-
olution steps in pure logic programming, thus
returning a computed substitution together
with an expression where all atoms have been
exploited. This last expression is then inter-
preted under a given lattice, hence returning
a pair 〈truth degree; substitution〉 which is the
fuzzy counterpart of the classical notion of
computed answer traditionally used in LP.

The main contribution of this paper is the
detailed description of the FLOPER system
(see a preliminary introduction in [1]), a
“Fuzzy LOgic Programming Environment for
Research” that we have developed in our re-
search group and which is freely available in:
http://www.dsi.uclm.es/investigacion/
dect/FLOPERpage.htm. Nowadays, the tool
provides facilities for executing as well as
for debugging (by generating declarative
traces) such kind of fuzzy programs, thus
fulfilling the gap we have detected in the
area. Our implementation methods are based
on two different, almost antagonistic ways
(regarding simplicity and precision features),
for generating pure Prolog code, with some
correspondences with other previous at-
tempts described in the specialized literature,
specially the ones detailed in [3] and [11].

The outline of this work is as follows. In Sec-
tion 2 we detail the main features of multi-
adjoint logic programming, both syntax and
procedural semantics. Next, in Section 3
we propose an elegant method for “compil-
ing” fuzzy programs into standard Prolog
code. Sections 4 and 5 explain, respectively,
how to execute and debug such programs in-
side our FLOPER tool, which nowadays is
being equipped with new options for per-
forming other advanced program manipula-
tion tasks (transformation, specialization, op-
timization). The benefits of our approach are
highlighted by contrasting them with some re-
lated works in Section 6. Finally, in Section 7
we conclude with some lines of future work.

2 Multi-Adjoint Logic Programs

In what follows, we present a short sum-
mary of the main features of our language
(we refer the reader to [12] for a complete for-
mulation). We work with a first order lan-
guage, L, containing variables, function sym-
bols, predicate symbols, constants, quantifiers
(∀ and ∃), and several (arbitrary) connectives
to increase language expressiveness. In our
fuzzy setting, we use implication connectives
(←1,←2, . . . ,←m) and also other connectives
which are grouped under the name of “ag-
gregators” or “aggregation operators”. They
are used to combine/propagate truth values
through the rules. The general definition of
aggregation operators subsumes conjunctive
operators (denoted by &1,&2, . . . ,&k), dis-
junctive operators (∨1,∨2, . . . ,∨l), and av-
erage and hybrid operators (usually denoted
by @1,@2, . . . ,@n). Although the connectives
&i, ∨i and @i are binary operators, we usu-
ally generalize them as functions with an ar-
bitrary number of arguments. In the follow-
ing, we often write @(x1, . . . , xn) instead of
@(x1,@(x2, . . . ,@(xn−1, xn) . . .)). By defini-
tion, the truth function for an n-ary aggre-
gation operator [[@]] : Ln → L is required to
be monotone and fulfills [[@]](, . . . ,) = 	,
[[@]](⊥, . . . ,⊥) = ⊥. Additionally, our lan-
guage L contains the values of a multi-adjoint
lattice, 〈L,�,←1,&1, . . . ,←n,&n〉, equipped
with a collection of adjoint pairs 〈←i,&i〉,
where each &i is a conjunctor intended to the
evaluation of modus ponens. In general, the
set of truth values L may be the carrier of any
complete bounded lattice but, for simplicity,
in this paper we shall select L as the set of
real numbers in the interval [0, 1].

A rule is a formula A ←i B, where A is an
atomic formula (usually called the head) and
B (which is called the body) is a formula built
from atomic formulas B1, . . . , Bn (n ≥ 0),
truth values of L and conjunctions, disjunc-
tions and aggregations. Rules with an empty
body are called facts. A goal is a body sub-
mitted as a query to the system. Variables
in a rule are assumed to be governed by uni-
versal quantifiers. Roughly speaking, a multi-
adjoint logic program is a set of pairs 〈R;α〉,

where R is a rule and α is a truth degree (a
value of L) expressing the confidence which
the user of the system has in the truth of the
rule R. Often, we will write “R with α” in-
stead of 〈R;α〉.
In order to describe the procedural semantics
of the multi–adjoint logic language, in the fol-
lowing we denote by C[A] a formula where A
is a sub-expression (usually an atom) which
occurs in the –possibly empty– context C[]
whereas C[A/A′] means the replacement of A
by A′ in context C[]. Moreover, Var(s) de-
notes the set of distinct variables occurring
in the syntactic object s, θ[Var(s)] refers to
the substitution obtained from θ by restrict-
ing its domain to Var(s) and mgu(E) denotes
the most general unifier of an equation set E.
In the following definition, we always consider
that A is the selected atom in goal Q.

Definition 2.1 (Admissible Steps) Let Q
be a goal and let σ be a substitution. The
pair 〈Q;σ〉 is a state and we denote by E
the set of states. Given a program P, an ad-
missible computation is formalized as a state
transition system, whose transition relation
→AS ⊆ (E × E) is the smallest relation sat-
isfying the following admissible rules:

1) 〈Q[A];σ〉→AS〈(Q[A/v&iB])θ;σθ〉 if
θ = mgu({A′ = A}), 〈A′←iB; v〉 in P
and B is not empty.

2) 〈Q[A];σ〉→AS〈(Q[A/v])θ;σθ〉 if θ =
mgu({A′ = A}), and 〈A′←i; v〉 in P.

3) 〈Q[A];σ〉→AS〈(Q[A/⊥]);σ〉 if there is
no rule in P whose head unifies with A.

Note that the 3th case is introduced to
cope with (possible) unsuccessful admissible
derivations. As usual, rules are taken re-
named apart. We shall use the symbols→AS1,
→AS2 and →AS3 to distinguish between com-
putation steps performed by applying one of
the specific admissible rules. Also, the appli-
cation of a rule on a step will be annotated as
a superscript of the →AS symbol.

Definition 2.2 Let P be a program and let
Q be a goal. An admissible derivation is a se-

quence 〈Q; id〉 →∗
AS 〈Q′; θ〉. When Q′ is a for-

mula not containing atoms, the pair 〈Q′;σ〉,
where σ = θ[Var(Q)], is called an admissible
computed answer (a.c.a.) for that derivation.

In order to illustrate our definitions, consider
now the following program P and lattice
([0, 1],≤), where ≤ is the usual order on real
numbers.
R1 : p(X)←P q(X,Y)&G r(Y) with 0.8
R2 : q(a, Y)←P s(Y) with 0.7
R3 : q(b, Y)←L r(Y) with 0.8
R4 : r(Y)← with 0.7
R5 : s(b)← with 0.9

The labels P, G and L mean for Prod-
uct logic, Gödel intuitionistic logic and
�Lukasiewicz logic, respectively. That is,
[[&P]](x, y) = x ·y, [[&G]](x, y) = min(x, y), and
[[&L]](x, y) = max(0, x + y− 1). In the follow-
ing admissible derivation for the program P
and the goal ←p(X)&Gr(a), we underline the
selected expression in each admissible step:
〈p(X)&Gr(a); id〉→AS1

R1

〈(0.8&P(q(X1, Y1)&Gr(Y1)))&Gr(a); σ1〉→AS1
R2

〈(0.8&P((0.7&Ps(Y2))&Gr(Y2)))&Gr(a); σ2〉→AS2
R5

〈(0.8&P((0.7&P0.9)&Gr(b)))&Gr(a); σ3〉→AS2
R4

〈(0.8&P((0.7&P0.9)&G0.7))&Gr(a); σ4〉→AS2
R4

〈(0.8&P((0.7&P0.9)&G0.7))&G0.7; σ5〉,
where:
σ1 = {X/X1},
σ2 = {X/a,X1/a, Y1/Y2}
σ3 = {X/a,X1/a, Y1/b, Y2/b}
σ4 = {X/a,X1/a, Y1/b, Y2/b, Y3/b}
σ5 = {X/a,X1/a, Y1/b, Y2/b, Y3/b, Y4/a}

So, since σ5[Var(Q)] = {X/a}, the a.c.a.
associated to this admissible derivation
is: 〈(0.8&P((0.7&P0.9)&G0.7))&G0.7; {X/a}〉.
Now, after evaluating the first arithmetic ex-
pression (where all atoms have been solved),
we obtain the final fuzzy computed answer
(f.c.a.) 〈0.504; {X/a}〉.

3 Translating Multi-adjoint Logic
Programs into Pure Prolog Code

This section is devoted to detail a simple, but
powerful method for translating fuzzy pro-
grams into directly executable standard Pro-
log code [1]. The final goal is that the com-
piled code be executed in any Prolog inter-
preter in a completely transparent way for the

final user, i.e., our intention is that after in-
troducing fuzzy programs and fuzzy goals to
the system, it be able to return fuzzy com-
puted answers (i.e., pairs including truth de-
grees and substitutions) even when all inter-
mediate computations have been executed in
a pure (not fuzzy) logic environment.

The syntactic conventions that our system ac-
cepts when parsing multi-adjoint logic pro-
grams are very close to those seen in Section
2. For instance, we can code the program of
our running example as:
p(X) <prod q(X,Y) &godel r(Y) with 0.8.
q(a,Y) <prod s(Y) with 0.7.
q(b,Y) <luka r(Y) with 0.8.
r(Y) with 0.7.
s(b) with 0.9.

The reader may easily check the strong sim-
ilarities between the previous code and the
program shown in the example of the previ-
ous section. During the parsing process, our
system produces Prolog code following these
guidelines:

• Each atom appearing in a fuzzy rule is trans-
lated into a Prolog atom extended with an ex-
tra argument, called truth variable of the form
TVi. The intended objective of this anony-

mous variable, is to contain the truth degree
obtained after the subsequent evaluation of
such atom.

• The role of aggregator operators can be eas-
ily played by standard Prolog clauses defining
“aggregator predicates” as follows:
agr_aver(X,Y,Z) :- Z is (X+Y)/2.
and_prod(X,Y,Z):- Z is X * Y.
and_godel(X,Y,Z):- (X=<Y,Z=X;X>Y,Z=Y).
and_luka(X,Y,Z):- H is X+Y-1,

(H=<0,Z=0;H>0,Z=H).

• Program facts (i.e., rules with no body) are
expanded at compilation time to Prolog facts,
where the additional argument of the (head)
atom, instead of being a truth variable, is just
the truth degree of the corresponding rule.
For instance, rules R4 and R5 in our running
example, can be represented by the Prolog
facts r(Y,0.7) and s(b,0.9), respectively.

• Program rules are translated into Prolog
clauses by performing the appropriate calls to
the atoms presented in its body. Regarding
the calls to aggregator predicates, they must

be postponed at the end of the body, in or-
der to guarantee that the truth variables used
as arguments be correctly instantiated when
needed. In this sense, it is also important
to respect an appropriate ordering when per-
forming the calls. In particular, the last call
must necessarily be to the “aggregator predi-
cate” modeling the adjoint conjunction of the
implication operator of the rule, by also using
its truth degree. For instance, rules R1,R2

andR3 in the example of the previous section,
can be represented by the Prolog clauses:
p(X,_TV0) :- q(X,Y,_TV1),r(Y,_TV2),

and_godel(_TV1,_TV2,_TV3),
and_prod(0.8,_TV3,_TV0).

q(a,Y,_TV0) :- s(Y,_TV1),
and_prod(0.7,_TV1,_TV0).

q(b,Y,_TV0) :- r(Y,_TV1),
and_luka(0.8,_TV1,_TV0).

• A fuzzy goal is translated into a Prolog goal
where the corresponding calls to atoms ap-
pear in their textual order before the ones
for “aggregator predicates”. Since aggrega-
tors are not associative in general, they must
appear in an appropriate sequence, as also
occurred with the translation of clause bod-
ies explained before. For instance, the goal
←p(X)&G r(a) in our running example, can
be represented by the following Prolog goal:

?- p(X,_TV1),r(a,_TV2),
and_godel(_TV1,_TV2,_TV3).

Following this method, we have just trans-
lated into standard Prolog code the multi-
adjoint logic program and goal shown in previ-
ous sections. In particular, we have used Sics-
tus Prolog v.3.12.5 for executing them as well
as for implementing the FLOPER tool, whose
capabilities for running/debugging fuzzy pro-
grams will be explained immediately.

4 Running Fuzzy Programs

As detailed in [1], our parser has been imple-
mented by using the classical DCG’s (Definite
Clause Grammars) resource of the Prolog lan-
guage, since it is a convenient notation for ex-
pressing grammar rules. The application con-
tains about 300 clauses and once it is loaded
inside a Prolog interpreter (in our case, Sics-
tus Prolog), it shows a menu which includes
the following options (among other classical
ones, like "clean", "stop" or "quit"):

• "load", in order to charge a prolog file with
extension ‘.pl’. This action is useful for
reading a file containing a set of clauses im-
plementing aggregators, user predicates, etc.
Nevertheless, the original connectives of the
Product, Gödel and �Lukasiewicz logic, ex-
pressed in the Prolog style seen in the pre-
vious section, are defined in file prelude.pl,
which is automatically loaded by the system
at the beginning of each work session.

• "parse", for loading a fuzzy program in-
cluded in a file with extension ‘.fpl’. In
order to simultaneously perform the parsing
process with the code generation, each pars-
ing predicate used in DCG’s rules, has been
augmented with a variable as extra argu-
ment which is intended to contain the Prolog
code generated after parsing the correspond-
ing fragment of fuzzy code. We also admit
the presence of pure Prolog clauses inside a
‘.fpl’ file, by including them between ‘$’.

• "list", which displays the set of Prolog
clauses loaded from a ‘.pl’ file as well as
those ones obtained after compiling an ‘.fpl’
file. Of course, the original fuzzy program
contained in this last file is also displayed.

• "save", which stores the resulting Prolog
code into a file. We wish to point out that
the set of clauses obtained during the compi-
lation process is also automatically asserted
in the data base of the Prolog interpreter,
which obviously also contains the clauses im-
plementing the proper tool. This action helps
the development of the following option.

• "run", for executing a fuzzy goal after
being introduced from the keyboard by
using option "intro". As we have seen in
the previous section, if the goal provided
by the user is ‘p(X) &godel r(a)’, then
the system translates it into the stan-
dard Prolog goal ‘p(X, TV1),r(a, TV2),

and godel(TV1, TV2, TV3)’. However, this
query needs a final manipulation before being
executed, which consists in renaming its
last truth variable (TV3) by Truth degree.
Now, note that the set of non anonymous
variables in the resulting Prolog goal,
are simply those ones belonging to the

original fuzzy goal (i.e., X) and the one
containing its associated ‘Truth degree’.
Then, after reevaluating the Prolog goal
‘p(X, TV1),r(a, TV2), and godel(TV1, TV2,

Truth degree)’, the Prolog interpreter re-
turns the following pair of desired fuzzy com-
puted answers: [Truth degree=0.504,X=a]

and [Truth degree=0.4,X=b].
The previous set of options suffices for
running fuzzy programs: all internal compu-
tations (including compiling and executing)
are pure Prolog derivations whereas inputs
(fuzzy programs and goals) and outputs
(fuzzy computed answers) have always a
fuzzy taste, which produces the illusion on
the final user of being working with a purely
fuzzy logic programming tool.

However, when trying to go beyond pro-
gram execution, our method becomes insuffi-
cient. In particular, observe that we can only
simulate complete fuzzy derivations (by per-
forming the corresponding Prolog derivations
based on SLD-resolution) but we can not gen-
erate partial derivations or even apply a sin-
gle admissible step on a given fuzzy expres-
sion. This kind of low-level manipulations are
mandatory when trying to incorporate to the
tool some program transformation techniques
such as those based on fold/unfold or partial
evaluation we have described in [5, 6, 7]. For
instance, our fuzzy unfolding transformation
is defined as the replacement of a program
rule R : (A ←i B with α) by the set of rules
{Aσ ←i B′ with α | 〈B; id〉 →AS 〈B′;σ〉},
which obviously requires the implementation
of mechanisms for generating derivations of
a single step, rearranging the body of a pro-
gram rule, applying substitutions to its head,
etc. To achieve this aim, we have conceived
a new low-level representation for the fuzzy
code which nowadays already offers the pos-
sibility of performing debugging actions such
as tracing a FLOPER work session.

5 Debugging Fuzzy Programs

Each parsing predicate used in DCG’s rules
(which already contains a parameter allocat-
ing the Prolog code obtained after the compi-
lation process) has also been augmented with

% TRACE 1: Execution tree with depth 4 for goal p(a) w.r.t. the multi-adjoint logic program P1.
R0 < p(a), {} >

R1 < &prod(0.9,q(a)), {X1/a} >
R3 < &prod(0.9,&luka(0.7,q(a))), {X1/a,X7/a} >

R3 < &prod(0.9,&luka(0.7,&luka(0.7,q(a)))), {X1/a,X7/a,X11/a} >
R3 < &prod(0.9,&luka(0.7,&luka(0.7,&luka(0.7,q(a))))), {X1/a,...} >

R2 < &godel(0.8,r(a)), {X2/a} >
R4 < &godel(0.8,0.6), {X2/a} >

% TRACE 2: Execution tree with depth 2 for goal p(X) w.r.t. the multi-adjoint logic program P2.
R0 < p(X), {} >

R1 < &prod(0.9,@aver(1,p(b))), {X/a} >
R0 < &prod(0.9,@aver(1,0)), {X/a} >

Figure 1: Traces and execution trees generated by FLOPER.

a second extra argument for storing now the
new representation associated to the corre-
sponding fragment of parsed fuzzy code. For
instance, after parsing the first rule of our
program, we obtain the following expression
(whose components have obvious meanings):
rule(number(1),
head(atom(pred(p,1),var(‘X’)])),
impl(‘prod’),
body(and(‘godel’,2,
[atom(pred(q,2),[var(‘X’),var(‘Y’)]),
atom(pred(r,1),[var(‘Y’)])])),

td(0.8)).

Once obtained at compilation time, this term is
then asserted into the data base of the Prolog in-
terpreter as a Prolog fact, thus making accessible
this low-level representation of the fuzzy rule to
the whole application. Two more examples: sub-
stitutions are modeled by lists of terms of the form
link(V, T) where V and T contains the code associ-
ated to an original variable and its corresponding
(linked) fuzzy term, respectively, whereas an state
is represented by a term with functor state/2.
We have implemented predicates for manipulat-
ing such kind of code at a very low level in order
to unify expressions, compose substitutions, apply
admisible/interpretive steps, etc.

With this nice representation, we can also build
execution trees with any level of depth, thus pro-
ducing terms of the the form tree(S, L), where
S represents the state rooting the tree, and L is
the list containing its set of children trees. Re-
cently, FLOPER has been equipped with two new
options, called "tree" and "depth", for visualiz-
ing such trees and fixing the maximum length al-
lowed for their branches (initially 3), respectively.
Apart for the important role they could play in
future developments, these options are nowadays

very useful for debugging purposes: in particular,
they allow the possibility of generating declara-
tive traces of the execution of a given goal and
program, as showed in Figure 1.

By displaying execution trees, FLOPER provides
a much more precise information than the one ob-
tained by using the simple "run" option based on
the method described in Section 3. The complete
trace of the execution of a given goal w.r.t. a pro-
gram seems to be crucial when the "run" option
fails. Let us explain its power by means of two ex-
amples which, thanks to their simplicity, reinforce
this claim. Firstly, consider the following fuzzy
program P1:

p(X) <prod q(X) with 0.9.
p(X) <godel r(X) with 0.8.
q(X) <luka q(X) with 0.7.
r(a) with 0.6.

For goal p(a), FLOPER displays the first tree
(trace 1) showed in Figure 1. Observe that each
node contains an state (composed by the corre-
sponding goal and substitution) preceded by the
number of the program rule used by the admissible
step leading to it (root nodes are always labeled
with the virtual, non existing rule R0). Nodes
belonging to the same branch appear in different
lines appropriately indented to help the readabil-
ity of the figure. In our case, the tree contains
only two different branches. It is easy to see that
the first one, corresponding to the first five lines of
the figure, represents an infinite branch, whereas
the second one, identified by lines 1, 6 and 7, in-
dicates that the goal has just one solution with
truth degree 0.6 (which is the result of evaluating
the arithmetic expression &godel(0.8, 0.6)).

It is important to remark that, when analyzing the
tree with care, we can conclude that the original
goal is solvable, even when by using the "run" op-

tion of FLOPER, the system answers ‘‘There is
no solution’’, after aborting the infinite loop in
which the Prolog interpreter falls down when gen-
erating (the SLD-resolution derivation associated
to) the first branch of the tree.

Our second example is not involved with infi-
nite branches, but it copes with other kind of
(pure Prolog) unsuccessful behaviour. Consider
now a fuzzy program, say P2, containing the sin-
gle rule ‘p(a) < prod @aver(1, p(b)) with 0.9’
(where the average aggregator @aver has the ob-
vious meaning: see its Prolog-based definition in
Section 3) which, once parsed by FLOPER, is
translated into the following pure Prolog clause:
p(a, TV0) : − p(b, TV1), agr aver(1, TV1, TV2),
and prod(0.9, TV2, TV0). It is easy to see that, in
order to execute goal p(X) by means of the "run"
option, the Prolog interpreter will fail when try-
ing to solve the first atom, "p(b, TV1)", appear-
ing in the body of this Prolog clause. However, in
the fuzzy setting we know that the proposed goal
has a solution, as revealed by the (single) success-
ful branch appearing in the second trace of Figure
1. By applying and admissible step of kind 3 (see
→AS3 in Definition 2.1), on the second node of
the tree, we generate the final state showed in the
third line of the figure (the system simply replaces
the non solvable selected atom p(b) by the low-
est truth degree 0). Note that this last state (la-
beled with the virtual rule R0 -as also occurs with
the root node- because no program rule has been
applied to perform the computation), once evalu-
ated the associated arithmetic expression, returns
a fuzzy computed answer confirming that p(X) is
true with truth degree 0.45 when X = a.

As we have seen, the generation of traces based on
execution trees, contribute to increase the power
of FLOPER by providing debugging capabilities
which allows us to discover solutions for queries
even when a pure Prolog compilation-execution
process fails. For the future and also supported on
the generation of execution trees, we plan to in-
troduce new options into the FLOPER menu im-
plementing all the transformation techniques we
are proposed in the past [5, 6, 7]: the key point is
the correct manipulation of the leaves of this kind
of partially evaluated trees, in order to produce
unfolded rules, reductants, and so on.

6 Related Work

The multi-adjoint logic approach and the fuzzy
logic language described in [3] are very close be-
tween themselves, with a similar syntax based
on “weighted” rules and levels of flexibility and

expressiveness somehow comparable. However,
whereas in the fuzzy language presented in [3]
truth degrees are based on Borel Algebras (i.e.,
union of intervals of real numbers), in the so
called multi-adjoint logic programming approach
of [12, 11] truth degrees are elements of any
given lattice. Other important difference be-
tween both languages emerge at an operational
level, since the underlying procedural principle
of the language of [3] introduces several prob-
lems when considering most of the transforma-
tion techniques we are developing in our group:
the real problem does not appear only at the
syntactic level, but what is worse, the major in-
convenience is the need for redefining the core
of its procedural mechanism to cope with con-
straints possibly mixed with atoms. In this last
setting, computation steps are described by means
of an state transition system where, instead of two
elements, each state contains three components
〈atoms, substitution, constraints〉. This strict
separation of atoms and constraints (in both, com-
putation states and clause bodies) represents a se-
vere obstacle for the adaptation of our notion of
unfolding rule since it is neither easy to execute
nor to code on the body of unfolded clauses the
constraints generated by those computation steps
performed at transformation time. This is one of
the most important reasons for which, in our re-
search group, we are mainly concerned with the
approach of [12]. Despite the needs for more re-
search efforts, our approach reported in this pa-
per enjoys the following advantages w.r.t. [3]: 1)
we think that using standard Prolog instead of
CLP (R) will make our ideas more accessible to a
wider audience and 2) as we have seen in previ-
ous sections, our Prolog code generation (and im-
plementation) largely helped us to produce a low
level representation of the final code very useful
for debugging and transformation purposes.

Focusing now in the multi-adjoint logic approach,
it is unavoidable to mention the implementation
issues documented in [11]. Like our proposal, we
all deal with the same target ([0;1]-valued) multi-
adjoint logic language1, and also our developments
are based in pure Prolog code (even when they are
supported on a neural net architecture). However,
whereas they are restricted to the propositional
case, we have lifted our results to the more gen-

1We all focus in a simple lattice whose carrier set is
the real interval [0, 1] and the connectives are collected
from classical fuzzy logics (as the product, �Lukasiewicz
and Gödel intuitionistic logic). An high-priority task
for future developments will be to let our system ac-
cept fuzzy programs as well as multi-adjoint lattices
in a parametric way, which implies the design of ap-
propriate protocols, interfaces, etc.

eral first-order case. Moreover, the procedural se-
mantics implemented in [11] has being conceived
as a bottom-up procedure where the repeated it-
eration of an appropriately defined consequence
operator reproduces the model of a program, thus
obtaining the computed truth-values of all propo-
sitional symbols involved in that program (in a
parallel way). In a complementary sense (which
invokes the integration of both methods in a single
framework), the executing and debugging “query
answering” procedures implemented in FLOPER,
are goal-oriented and have a top-down behaviour.

7 Conclusions and Future Work

In this paper we were concerned with im-
plementation techniques for fuzzy logic pro-
gramming and more exactly, for the multi-
adjoint logic approach, which enjoys high levels
of expressivity and a clear operational mecha-
nism. Apart from [11] and our prototype tool
FLOPER (see a preliminary description in [1] and
visit http://www.dsi.uclm.es/investigacion/
dect/FLOPERpage.htm), there are not abundant
tools available in practice. We have firstly pro-
posed a technique for running such kinds of pro-
grams based on a “transparent compilation pro-
cess” to standard Prolog code. Secondly, we have
next proposed a low-level representation of the
fuzzy code allowing the possibility of debugging
(by generating declarative traces) the execution of
a given program and goal. This last development
also opens the door to implement new and power-
ful program manipulation techniques in which we
are working nowadays. These actions, together
with the study of mechanism for surpassing the
simpler case of modeling truth degrees with real
numbers, are some prioritary tasks in our research
group for the near future.

Acknowledgements

This work has been partially supported by the EU
(FEDER), and the Spanish Science and Education
Ministry (MEC) under grants TIN 2004-07943-
C04-03 and TIN 2007-65749.

References

[1] J.M. Abietar, P.J. Morcillo, and G. Moreno.
Designing a software tool for fuzzy logic pro-
gramming. In T.E. Simos and G. Maroulis,
editors, Proc. of the International Conference
of Computational Methods in Sciences and
Engineering ICCMSE’07, Volume 2 (Com-
putation in Modern Science and Engineer-

ing), pages 1117–1120. American Institute of
Physics, Springer, 2007.

[2] J. F. Baldwin, T. P. Martin, and B. W.
Pilsworth. Fril- Fuzzy and Evidential Rea-
soning in Artificial Intelligence. John Wiley
& Sons, Inc., 1995.

[3] S. Guadarrama, S. Muñoz, and C. Vaucheret.
Fuzzy Prolog: A new approach using soft
constraints propagation. Fuzzy Sets and Sys-
tems, Elsevier, 144(1):127–150, 2004.

[4] M. Ishizuka and N. Kanai. Prolog-ELF Incor-
porating Fuzzy Logic. In Aravind K. Joshi,
editor, Proceedings of the 9th International
Joint Conference on Artificial Intelligence
(IJCAI’85). Los Angeles, CA, August 1985.,
pages 701–703. Morgan Kaufmann, 1985.

[5] P. Julián, G. Moreno, and J. Penabad. On
Fuzzy Unfolding. A Multi-adjoint Approach.
Fuzzy Sets and Systems, Elsevier, 154:16–33,
2005.

[6] P. Julián, G. Moreno, and J. Penabad.
Operational/Interpretive Unfolding of Multi-
adjoint Logic Programs. Journal of Universal
Computer Science, 12(11):1679–1699, 2006.

[7] P. Julián, G. Moreno, and J. Penabad. Effi-
cient reductants calculi using partial evalua-
tion techniques with thresholding. Electronic
Notes in Theoretical Computer Science, Else-
vier Science, 188:77–90, 2007.

[8] R.C.T. Lee. Fuzzy Logic and the Resolution
Principle. Journal of the ACM, 19(1):119–
129, 1972.

[9] Deyi Li and Dongbo Liu. A fuzzy Prolog
database system. John Wiley & Sons, Inc.,
1990.

[10] J.W. Lloyd. Foundations of Logic Program-
ming. Springer-Verlag, Berlin, 1987. Second
edition.

[11] J. Medina, E. Mérida-Casermeiro, and
M. Ojeda-Aciego. A neural implementa-
tion of multi-adjoint logic programs via sf-
homogeneous programs. Mathware & Soft
Computing, XII:199–216, 2005.

[12] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Similarity-based Unification: a multi-adjoint
approach. Fuzzy Sets and Systems, 146:43–
62, 2004.

[13] P. Vojtáš and L. Pauĺık. Soundness and
completeness of non-classical extended SLD-
resolution. In R. Dyckhoff et al, editor, Proc.
ELP’96 Leipzig, pages 289–301. LNCS 1050,
Springer Verlag, 1996.

