
Building a Fuzzy Logic Programming Tool1

José M. Abietar, Pedro J. Morcillo and Ginés Moreno
Dept. of Computing Systems. University of Castilla-La Mancha. 02071, Albacete (Spain).

JoseM.Abietar@alu.uclm.es, PedroJ.Morcillo@alu.uclm.es, Gines.Moreno@uclm.es

Abstract

Fuzzy Logic Programming is an interesting and
still growing research area that agglutinates
the efforts for introducing fuzzy logic into logic
programming (LP), in order to incorporate
more expressive resources on such languages
for dealing with uncertainty and approximated
reasoning. The multi-adjoint logic program-
ming approach is a recent and extremely flex-
ible fuzzy logic paradigm for which, unfortu-
nately, we have not found practical tools im-
plemented till now. In this work, we describe
a prototype system that we are just develop-
ing to fulfill this gap. As an starting point,
our tool is able to directly translate fuzzy logic
programs into Prolog code in a similar style to
other implementations described in the litera-
ture for analogous fuzzy logic languages. This
action suffices for executing fuzzy programs in-
side a Prolog interpreter in a completely trans-
parent way for the final user. However, since
this option has a rather limited power for pro-
gram transformation purposes, we are nowa-
days incorporating to the system the capabil-
ity for generating a low-level representation of
the fuzzy code with the final goal of build-
ing (partial) execution trees, unfolded rules,
reductants, and so on.

1 Introduction

Logic Programming [10] has been widely used
for problem solving and knowledge represen-
tation in the past. Nevertheless, traditional
LP languages do not incorporate techniques or

1This work was partially supported by the EU
(FEDER), and the Spanish Science and Education
Ministry (MEC) under grant TIN 2004-07943-C04-03.

constructs to treat explicitly with uncertainty
and approximated reasoning. To overcome
this situation, during the last decades several
fuzzy logic programming systems have been
developed where the classical inference mech-
anism of SLD–Resolution is replaced with a
fuzzy variant able to handle partial truth and
to reason with uncertainty. Most of these sys-
tems implement the fuzzy resolution principle
introduced by Lee in [8], such as languages
Prolog-Elf [3], Fril [1] and F-Prolog [9].

Following this line, in the original version
of [13] a fuzzy logic program is conceived as
a set of weighted formulas, where the truth
degree of each clause is explicitly annotated.
The task of computing and propagating truth
degrees relies on an extension of the resolu-
tion principle, whereas the (syntactic) unifi-
cation mechanism remains untouched. Con-
tinuing this trail, two of the most modern,
flexible and evolved fuzzy dialects of Prolog
which follow this scheme, are the ones pre-
sented in [2] and [12]. Both approaches are
very close between themselves, with a similar
syntax based on “weighted” rules and levels
of flexibility and expressiveness perfectly com-
parable. However, whereas in the fuzzy lan-
guage presented in [2] truth degrees are based
on Borel Algebras (i.e., union of intervals of
real numbers), in the so called multi-adjoint
logic programming approach of [11, 12] truth
degrees are elements of any given lattice.

Perhaps the main differences between both
languages emerge at an operational level. In-
formally speaking, in the multi-adjoint logic
framework, a program can be seen as a set of
rules each one annotated by a truth degree,
and a goal is a query to the system, i.e., a set

of atoms linked with connectives called aggre-
gators. A state is a pair 〈Q, σ〉 where Q is a
goal and σ a substitution (initially, the iden-
tity substitution). States are evaluated in two
separate computational phases. During the
operational one, admissible steps (a general-
ization of the classical modus ponens inference
rule) are systematically applied by a backward
reasoning procedure in a similar way to classi-
cal resolution steps in pure logic programming,
thus returning a computed substitution to-
gether with an expression where all atoms have
been exploited. This last expression is then
interpreted under a given lattice during what
we call the interpretive phase, hence return-
ing a pair 〈truth degree; substitution〉 which is
the fuzzy counterpart of the classical notion of
computed answer traditionally used in LP.

On the other hand, the underlying opera-
tional principle of the language of [2] intro-
duces several problems when considering most
of the transformation techniques we are devel-
oping in our group. As we detail in [5], the ad-
equacy of this language for being used as the
basis of a fuzzy unfolding rule is rather lim-
ited: the real problem does not appear only
at the syntactic level, but what is worse, the
major inconvenience is the need for redefining
the core of its procedural mechanism to cope
with constraints possibly mixed with atoms.
For this reasons, in this work we are mainly
concerned with the approach of [11, 12], even
when several important ideas regarding im-
plementation issues have been inspired by [2]
where an interpreter conceived using Con-
straint Logic Programming over real numbers
(CLP (R)) has been efficiently implemented
by directly translating source programs into
executable CLP -based Prolog code. In par-
ticular, our notions of multi-adjoint lattice and
interpretive step have direct correspondences
with constraint domain and constraint solving,
respectively, in the CLP (R) representation of
[2].

In this last setting, computation steps
are described by means of an state tran-
sition system where, instead of two ele-
ments, each state contains three compo-
nents 〈atoms, substitution, constraints〉. Ini-

tial states have the first component (input) ful-
filled with a set of atoms of a given goal and
the two last components (outputs) are empty.
Vice versa, in final states the goal component
is empty whereas the two last ones represents
the fuzzy computed answer (substitution and
truth degree) for the original goal. Remem-
ber that the notion of state used in the multi–
adjoint logic approach avoids the last compo-
nent since atoms, aggregators and truth de-
grees can safely cohabit inside the first compo-
nent of an state, and also in the body of (trans-
formed) program rules, which enables the ef-
fective definition of unfolding in our setting
[4, 5]. Conversely, in the language of [2], the
strict separation of atoms and constraints (in
both, computation states and clause bodies)
represents a severe obstacle for the adaptation
of our notion of unfolding rule since it is nei-
ther easy to execute nor to code on the body of
unfolded clauses the constraints generated by
those computation steps performed at trans-
formation time.

Anyway, we remark again that we can profit
of the ideas presented in [2] when implement-
ing our tool. In fact, we think that when using
Borel lattices1 for modeling the fuzzy compo-
nent of truth-degrees in a given multi-adjoint
logic program, it could be almost immediate to
adopt a “constraint-solving” mechanism very
similar to the one used there.

The outline of this work is as follows. After
summarizing in Section 2 the main features of
multi-adjoint logic programming at a syntac-
tic level, in Section 3 we detail its procedural
semantics. Next, in Section 4 we propose an el-
egant method for “compiling” fuzzy programs
into standard Prolog code. Section 5 explains
the technical details of the prototype system
we are designing nowadays, which apart from
implementing the previous method, is being
equipped with options that manipulates the
fuzzy code at a low level, in order to help the
implementation of future options for perform-
ing advanced manipulations on such programs.
Finally, in Section 6 we conclude by proposing
some lines of future work.

1In our preliminary implementation we only con-
sider the real interval [0, 1] as carrier set.

2 Multi-Adjoint Logic Programs

This section is a short summary of the main
features of our language. We refer the reader
to [11, 12] for a complete formulation.

We work with a first order language, L,
containing variables, function symbols, pred-
icate symbols, constants, quantifiers, ∀ and
∃, and several (arbitrary) connectives to
increase language expressiveness. In our
fuzzy setting, we use implication connectives
(←1,←2, . . . ,←m) and also other connectives
which are grouped under the name of “ag-
gregators” or “aggregation operators”. They
are used to combine/propagate truth values
through the rules. The general definition of
aggregation operators subsumes conjunctive
operators (denoted by &1, &2, . . . , &k), dis-
junctive operators (∨1,∨2, . . . ,∨l), and aver-
age and hybrid operators (usually denoted by
@1, @2, . . . , @n). Although the connectives
&i, ∨i and @i are binary operators, we usu-
ally generalize them as functions with an ar-
bitrary number of arguments. In the follow-
ing, we often write @(x1, . . . , xn) instead of
@(x1, @(x2, . . . , @(xn−1, xn) . . .)).

Aggregation operators are useful to de-
scribe/specify user preferences. An aggrega-
tion operator, when interpreted as a truth
function, may be an arithmetic mean, a
weighted sum or in general any monotone ap-
plication whose arguments are values of a com-
plete bounded lattice L. For example, if an
aggregator @ is interpreted as [[@]](x, y, z) =
(3x+2y+z)/6, we are giving the highest pref-
erence to the first argument, then to the sec-
ond, being the third argument the least sig-
nificant. By definition, the truth function for
an n-ary aggregation operator [[@]] : Ln →
L is required to be monotonous and fulfills
[[@]](>, . . . ,>) = >, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains
the values of a multi-adjoint lattice, 〈L,�
,←1, &1, . . . ,←n, &n〉, equipped with a collec-
tion of adjoint pairs 〈←i, &i〉, where each &i

is a conjunctor2 intended to the evaluation of
modus ponens. In general, the set of truth

2It is noteworthy that a symbol &j of L does not
always need to be part of an adjoint pair.

values L may be the carrier of any complete
bounded lattice but, for simplicity, in this pa-
per we shall select L as the set of real numbers
in the interval [0, 1].

A rule is a formula A ←i B, where A is an
atomic formula (usually called the head) and
B (which is called the body) is a formula built
from atomic formulas B1, . . . , Bn — n ≥ 0 —,
truth values of L and conjunctions, disjunc-
tions and aggregations. Rules with an empty
body are called facts. A goal is a body sub-
mitted as a query to the system. Variables in
a rule are assumed to be governed by universal
quantifiers.

Roughly speaking, a multi-adjoint logic pro-
gram is a set of pairs 〈R; α〉, where R is a rule
and α is a truth degree (a value of L) express-
ing the confidence which the user of the system
has in the truth of the rule R. Often, we will
write “R with α” instead of 〈R; α〉. Observe
that, truth degrees are axiomatically assigned
(for instance) by an expert.

3 Procedural Semantics

The procedural semantics of the multi–adjoint
logic language L can be thought as an oper-
ational phase followed by an interpretive one
[5].

In the following, C[A] denotes a formula
where A is a sub-expression (usually an atom)
which occurs in the –possibly empty– context
C[] whereas C[A/A′] means the replacement of
A by A′ in context C[]. Moreover, Var(s) de-
notes the set of distinct variables occurring in
the syntactic object s, θ[Var(s)] refers to the
substitution obtained from θ by restricting its
domain to Var(s) and mgu(E) denotes the
most general unifier (see [7]) of an equation
set E. In the following definition, we always
consider that A is the selected atom in goal Q.

Definition 3.1 (Admissible Steps) Let Q
be a goal and let σ be a substitution. The pair
〈Q; σ〉 is a state and we denote by E the set
of states. Given a program P, an admissible
computation is formalized as a state transi-
tion system, whose transition relation →AS ⊆
(E × E) is the smallest relation satisfying the
following admissible rules:

1) 〈Q[A]; σ〉→AS〈(Q[A/v&iB])θ; σθ〉 if θ =
mgu({A′ = A}), 〈A′←iB; v〉 in P and B
is not empty.

2) 〈Q[A]; σ〉→AS〈(Q[A/v])θ; σθ〉 if θ =
mgu({A′ = A}), and 〈A′←i; v〉 in P.

3) 〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉 if there is
no rule in P whose head unifies with A.

Note that the 3th case is introduced to cope
with (possible) unsuccessful admissible deriva-
tions. As usual, rules are taken renamed
apart. We shall use the symbols →AS1, →AS2

and→AS3 to distinguish between computation
steps performed by applying one of the spe-
cific admissible rules. Also, the application of
a rule on a step will be annotated as a super-
script of the →AS symbol.

Definition 3.2 Let P be a program and let
Q be a goal. An admissible derivation is a
sequence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is a
formula not containing atoms, the pair 〈Q′; σ〉,
where σ = θ[Var(Q)], is called an admissible
computed answer (a.c.a.) for that derivation.

Example 3.3 Let P be the following program
and let ([0, 1],≤) be the lattice where ≤ is the
usual order on real numbers.

R1 : p(X)←prodq(X, Y)&G r(Y) with 0.8
R2 : q(a, Y)←prods(Y) with 0.7
R3 : q(b, Y)←lukar(Y) with 0.8
R4 : r(Y)← with 0.7
R5 : s(b)← with 0.9

The labels P, G and L mean for Product logic,
Gödel intuitionistic logic and Lukasiewicz
logic, respectively. That is, [[&P]](x, y) = x ·
y, [[&G]](x, y) = min(x, y), and [[&L]](x, y) =
max(0, x + y − 1). In the following admissi-
ble derivation for the program P and the goal
←p(X)&Gr(a), we underline the selected ex-
pression in each admissible step:
〈p(X)&Gr(a); id〉→AS1

R1

〈(0.8&P(q(X1, Y1)&Gr(Y1)))&Gr(a); σ1〉→AS1
R2

〈(0.8&P((0.7&Ps(Y2))&Gr(Y2)))&Gr(a); σ2〉→AS2
R5

〈(0.8&P((0.7&P0.9)&Gr(b)))&Gr(a); σ3〉→AS2
R4

〈(0.8&P((0.7&P0.9)&G0.7))&Gr(a); σ4〉→AS2
R4

〈(0.8&P((0.7&P0.9)&G0.7))&G0.7; σ5〉,

where:

σ1 = {X/X1},
σ2 = {X/a, X1/a, Y1/Y2}
σ3 = {X/a, X1/a, Y1/b, Y2/b}
σ4 = {X/a, X1/a, Y1/b, Y2/b, Y3/b}
σ5 = {X/a, X1/a, Y1/b, Y2/b, Y3/b, Y4/a}

So, since σ5[Var(Q)] = {X/a}, the a.c.a.
associated to this admissible derivation is:
〈(0.8&P((0.7&P0.9)&G0.7))&G0.7; {X/a}〉.

If we exploit all atoms of a goal, by applying
admissible steps as much as needed during the
operational phase, then it becomes a formula
with no atoms which can be then directly in-
terpreted in the multi–adjoint lattice L.

Definition 3.4 (Interpretive Step) Let P
be a program, Q a goal and σ a substitution.
We formalize the notion of interpretive com-
putation as a state transition system, whose
transition relation →IS⊆ (E ×E) is defined as
the least one satisfying: 〈Q[@(r1, r2)]; σ〉→IS

〈Q[@(r1,r2)/[[@]](r1,r2)];σ〉, where [[@]] is the
truth function of connective @ in the lattice
〈L,�〉 associated to P.

Definition 3.5 Let P be a program and
〈Q; σ〉 an a.c.a., that is, Q is a goal not con-
taining atoms. An interpretive derivation is a
sequence 〈Q; σ〉 →∗

IS 〈Q′; σ〉. When Q′ = r ∈
L, being 〈L,�〉 the lattice associated to P, the
state 〈r; σ〉 is called a fuzzy computed answer
(f.c.a.) for that derivation.

Example 3.6 We complete the previous
derivation of Example 3.3 by executing the
necessary interpretive steps to obtain the final
fuzzy computed answer 〈0.504; {X/a}〉 with
respect to lattice ([0, 1],≤).

〈(0.8&P((0.7&P0.9)&G0.7))&G0.7; {X/a}〉 →IS

〈(0.8&P(0.63&G0.7))&G0.7; {X/a}〉 →IS

〈(0.8&P0.63)&G0.7; {X/a}〉 →IS

〈0.504&G0.7; {X/a}〉 →IS

〈0.504; {X/a}〉

4 Translating Fuzzy Programs into
Prolog Code

This section is devoted to detail a simple,
but powerful method for translating fuzzy pro-

grams into directly executable standard Pro-
log code. The final goal is that the compiled
code be executed in any Prolog interpreter
in a completely transparent way for the final
user, i.e., our intention is that after introduc-
ing fuzzy programs and fuzzy goals to the sys-
tem, it be able to return fuzzy computed an-
swers (i.e., pairs including truth degrees and
substitutions) even when all intermediate com-
putations have been executed in a pure (not
fuzzy) logic environment.

Our approach is somehow inspired by [2],
where an interpreter conceived using Con-
straint Logic Programming over real num-
bers (CLP (R)) has been efficiently imple-
mented. We remark once again that this ap-
proach represents a real and interesting inspi-
ration source for implementation issues, spe-
cially taking into account that there is not yet
available an interpreter for the language origi-
nally described in [12]. In fact, due to the par-
allelism of both fuzzy logic programming ap-
proaches, the multi-adjoint language also ad-
mits a “constraint solving”-based implementa-
tion when considering Borel lattices, by adapt-
ing the guidelines detailed in [2]. Nowadays,
due to the preliminary state of the systems
we are designing, we have opted by a direct
translation to standard Prolog code by focus-
ing in a simple lattice whose carrier set is
the real interval [0, 1] and the connectives are
collected from classical fuzzy logics (as the
product, Lukasiewicz and Gödel intuitionistic
logic). Although the expressive power of our
preliminary approach is rather limited, and it
needs more research/implementation efforts,
we wish to remark some of its advantages:

• We think that using standard Prolog in-
stead of CLP (R) will make our ideas
more accessible to a wider audience.

• The approach of [2] is based in Borel Alge-
bras, which is clearly a more powerful way
for modeling truth degrees instead of real
numbers in the interval [0, 1] as we do.
However, in both approaches the under-
lying lattice associated to fuzzy programs
are fixed, whereas in the general multi-
adjoint logic scheme, these lattices might

vary as much as wanted. In this sense an
high-priority task for future developments
will be to let our system accept fuzzy pro-
grams as well as multi-adjoint lattices in a
parametric way, which implies the design
of appropriate protocols, interfaces, etc.

• Moreover, as we will see in the next
section, our Prolog code generation will
largely help us to produce a low level rep-
resentation of the final code very useful
for transformation purposes.

Now, we are ready to summarize the main fea-
tures of our technique. The syntactic conven-
tions that our system accepts when parsing
multi-adjoint logic programs are very close to
those seen in Section 2. For instance, we can
code the program of our running examples as:

p(X) <P q(X,Y) &G r(Y) with 0.8.

q(a,Y) <P s(Y) with 0.7.

q(b,Y) <L r(Y) with 0.8.

r(Y) with 0.7.

s(b) with 0.9.

The reader may easily check the strong simi-
larities between the previous code and the pro-
gram shown in Example 3.3. During the pars-
ing process, our system produces Prolog code
following these guidelines:
• Each atom appearing in a fuzzy rule is

translated into a Prolog atom extended with
an extra argument, called truth variable of
the form TVi. The intended objective of this
anonymous variable, is to contain the truth de-
gree obtained after the subsequent evaluation
of such atom.
• The role of aggregator operators can be

easily played by standard Prolog clauses defin-
ing “aggregator predicates” as follows:

and_P(X,Y,Z):- Z is X * Y.

and_G(X,Y,Z):- (X=<Y,Z=X;X>Y,Z=Y).

and_L(X,Y,Z):- H is X+Y-1,

(H=<0,Z=0;H>0,Z=H).

• Program facts (i.e., rules with no body)
are expanded at compilation time to Prolog
facts, where the additional argument of the
(head) atom, instead of being a truth variable,

is just the truth degree of the corresponding
rule. For instance, rules R4 and R5 in Exam-
ple 3.3, can be represented by the Prolog facts
r(Y,0.7) and s(b,0.9), respectively.

• Program rules are translated into Prolog
clauses by performing the appropriate calls to
the atoms presented in its body. Regarding
the calls to aggregator predicates, they must
be postponed at the end of the body, in or-
der to guarantee that the truth variables used
as arguments be correctly instantiated when
needed. In this sense, it is also important to re-
spect an appropriate ordering when perform-
ing the calls. In particular, the last call must
necessarily be to the “aggregator predicate”
modeling the adjoint conjunction of the impli-
cation operator of the rule, by also using its
truth degree. For instance, rules R1,R2 and
R3 in Example 3.3, can be represented by the
Prolog clauses:

p(X,_TV0) :- q(X,Y,_TV1),r(Y,_TV2),

and_G(_TV1,_TV2,_TV3),

and_P(0.8,_TV3,_TV0).

q(a,Y,_TV0) :- s(Y,_TV1),

and_P(0.7,_TV1,_TV0).

q(b,Y,_TV0) :- r(Y,_TV1),

and_L(0.8,_TV1,_TV0).

• A fuzzy goal is translated into a Prolog
goal where the corresponding calls to atoms
appear in their textual order before the ones
for “aggregator predicates”. Since aggrega-
tors are not associative in general, they must
appear in an appropriate sequence, as also
occurred with the translation of clause bod-
ies explained before. For instance, the goal
←p(X)&Gr(a) in Example 3.3, can be repre-
sented by the following Prolog goal:

?- p(X,_TV1),r(a,_TV2),

and_G(_TV1,_TV2,_TV3).

Following this method, we have just translated
to standard Prolog code the multi-adjoint logic
program and goal shown in previous sections.
In particular, we have used Sicstus Prolog
v.3.12.5 for executing them as well as for im-
plementing the tool that we are going to ex-
plain immediately.

5 The Prototype Tool

Our parser has been implemented by using
the classical DCG’s (Definite Clause Gram-
mars) resource of the Prolog language, since it
is a convenient notation for expressing gram-
mar rules. The application contains about 300
clauses and once it is loaded inside a Prolog in-
terpreter (in our case, Sicstus Prolog), it shows
a menu which includes (among others) options
for:

• Loading a prolog file with extension
‘.pl’. This action is useful for reading a file
containing a set of clauses implementing aggre-
gators, user predicates, etc. Nevertheless, the
original connectives of the Product, Gödel and
 Lukasiewicz logic, expressed in the Prolog style
seen in the previous section, are defined in file
prelude.pl, which is automatically loaded by
the system at the beginning of each work ses-
sion.

• Parsing a fuzzy program included in a file
with extension ‘.fpl’. In order to simulta-
neously perform the parsing process with the
code generation, each parsing predicate used
in DCG’s rules, has been augmented with a
variable as extra argument which is intended
to contain the Prolog code generated after
parsing the corresponding fragment of fuzzy
code. We also admit the presence of pure Pro-
log clauses inside a ‘.fpl’ file, by preceding
them with a ‘$’ symbol.

• Listing the set of Prolog clauses loaded
from a ‘.pl’ file as well as those ones obtained
after compiling an ‘.fpl’ file. Of course, the
original fuzzy program contained in this last
file is also displayed.

• Saving the resulting Prolog code into
a file. Here we want to point out that the
set of clauses obtained during the compilation
process is also automatically asserted in the
data base of the Prolog interpreter, which ob-
viously also contains the clauses implementing
the proper tool. This action helps the devel-
opment of the following option.

• Executing a fuzzy goal after be-
ing introduced from the keyboard. As
we have seen in the previous section, if
the goal provided by the user is p(X) &G

r(a), then the system translates it into the
standard Prolog goal p(X, TV1),r(a, TV2),

and G(TV1, TV2, TV3). However, this ex-
pression needs a final manipulation before
being executed, which consists in renaming
its last truth variable (in this case TV3) by
With Truth Degree. Now, note that the set
of non anonymous variables in the resulting
Prolog goal, are simply those ones belonging
to the original fuzzy goal (i.e., X) and the
one containing its associated truth degree (i.e.,
With Truth Degree). Then, after reevaluat-
ing the Prolog goal ?- p(X, TV1),r(a, TV2),

and G(TV1, TV2, With Truth Degree), the
Prolog interpreter returns the following pair
of desired fuzzy computed answers:

X=a, With_Truth_Degree=0.504;

X=b, With_Truth_Degree=0.4;

no

The previous sets of options suffices for ex-
ecuting fuzzy programs: all internal compu-
tations (including compiling and executing)
are pure Prolog derivations whereas inputs
(fuzzy programs and goals) and outputs (fuzzy
computed answers) have always a fuzzy taste,
which produces the illusion on the user of be-
ing working with a purely fuzzy tool.

However, when trying to go beyond program
execution, our method becomes insufficient.
In particular, observe that we can only simu-
late complete fuzzy derivations (by performing
the corresponding Prolog derivations based on
SLD-resolution) but we can not generate par-
tial derivations or even apply a single admissi-
ble/interpretive step on a given fuzzy expres-
sion. This kind of low-level manipulations are
mandatory when trying to incorporate to the
tool some program transformation techniques
such as those based on fold/unfold or partial
evaluation we have described in [4, 5, 6]. For
instance, our fuzzy unfolding transformation
is defined as the replacement of a program
rule R : (A ←i B with α) by the set of rules
{Aσ ←i B′ with α | 〈B; id〉 →AS/IS 〈B′; σ〉},
which obviously requires the implementation
of mechanisms for generating derivations of a
single step, rearranging the body of a program
rule, applying substitutions to its head, etc.

To achieve this aim, we have conceived
a new low-level representation for the fuzzy
code: each parsing predicate used in DCG’s
rules (which already contains a parameter al-
locating the Prolog code obtained after the
compilation process) has also been augmented
with a second extra argument for storing now
the new representation associated to the cor-
responding fragment of parsed fuzzy code. For
instance, after parsing the first rule of our
program, we obtain the following expression
(whose components have obvious meanings):

rule(number(1),

head(atom(pred(p,1),

[var(‘X’)])),

impl(‘P’),

body(and(‘G’,2,

[atom(pred(q,2),

[var(’X’),var(’Y’)]),

atom(pred(r,1),

[var(’Y’)])])),

td(0.8)).

Once obtained at compilation time, this term
is then asserted into the data base of the Pro-
log interpreter as a Prolog fact, thus making
accessible this low-level representation of the
fuzzy rule to the whole application. Two more
examples: substitutions are modeled by lists
of terms of the form link(V, T) where V and
T contains the code associated to an original
variable and its corresponding (linked) fuzzy
term, respectively, whereas an state is repre-
sented by a term with functor state/2. We
have implemented predicates for manipulating
such kind of code at a very low level in order to
unify expressions, compose substitutions, ap-
ply admisible/interpretive steps, etc.

With this nice representation, we can
also build execution trees with any level of
depth, thus producing terms of the the form
tree(S, L), where S represents the state root-
ing the tree, and L is the list containing its set
of children trees. From here, we are just im-
plementing all the transformation techniques
we are proposed in the past: the key point is
the correct manipulation of the leaves of this
kind of partially evaluated trees, in order to
produce unfolded rules, reductants, and so on.

6 Conclusions and Future Work

In this paper we were concerned with imple-
mentation techniques for fuzzy logic program-
ming, being this field an emergent declara-
tive paradigm for which there are not abun-
dant tools available in practice. We have
adopted the so called multi-adjoint logic ap-
proach, due to its high levels of expressiv-
ity and its clear operational mechanism. We
have firstly proposed a technique for execut-
ing such kinds of programs based on a “trans-
parent compilation process” to standard Pro-
log code. To the best of our knowledge, it is
the first time that this method (which have
some correspondences with other approaches
rehearsed in other similar fuzzy settings) has
been put in practice in the multi-adjoint logic
approach. Going on deeper, we have next pro-
posed a second compilation way which pro-
duces a low-level representation of the fuzzy
code thus enabling the possibility of perform-
ing “partial computations” which opens the
door to new program manipulation techniques
in which we are working nowadays. This ac-
tions, together with the study of mechanism
for surpassing the simpler case of modeling
truth degrees with real numbers, are some pri-
oritary task in our group for the near future.

References

[1] J. F. Baldwin, T. P. Martin, and B. W.
Pilsworth. Fril- Fuzzy and Evidential Rea-
soning in Artificial Intelligence. John Wi-
ley & Sons, Inc., 1995.

[2] S. Guadarrama, S. Muñoz, and
C. Vaucheret. Fuzzy Prolog: A new
approach using soft constraints propaga-
tion. Fuzzy Sets and Systems, Elsevier,
144(1):127–150, 2004.

[3] M. Ishizuka and N. Kanai. Prolog-ELF In-
corporating Fuzzy Logic. In Aravind K.
Joshi, editor, Proceedings of the 9th In-
ternational Joint Conference on Artifi-
cial Intelligence (IJCAI’85). Los Angeles,
CA, August 1985., pages 701–703. Morgan
Kaufmann, 1985.

[4] P. Julián, G. Moreno, and J. Penabad.
On Fuzzy Unfolding. A Multi-Adjoint Ap-
proach. Fuzzy Sets and Systems, Elsevier,
154:16–33, 2005.

[5] P. Julián, G. Moreno, and J. Penabad. Op-
erational/Interpretive Unfolding of Multi-
adjoint Logic Programs. Journal of Uni-
versal Computer Science, 12 (11):1679–
1699, 2006.

[6] P. Julián, G. Moreno, and J. Penabad.
Efficient Reductants Calculi using Partial
Evaluation Techniques with Thresholding.
In P. Lucio, editor, Electronic Notes in
Theoretical Computer Science, page 15. El-
sevier (in press), 2007.

[7] J. L. Lassez, M. J. Maher, and K. Marriott.
Unification Revisited. In J. Minker, editor,
Foundations of Deductive Databases and
Logic Programming, pages 587–625. Mor-
gan Kaufmann, Los Altos, Ca., 1988.

[8] R.C.T. Lee. Fuzzy Logic and the Res-
olution Principle. Journal of the ACM,
19(1):119–129, 1972.

[9] Deyi Li and Dongbo Liu. A fuzzy Prolog
database system. John Wiley & Sons, Inc.,
1990.

[10] J.W. Lloyd. Foundations of Logic Pro-
gramming. Springer-Verlag, Berlin, 1987.
Second edition.

[11] J. Medina, M. Ojeda-Aciego, and
P. Vojtáš. Multi-adjoint logic program-
ming with continuous semantics. Proc of
Logic Programming and Non-Monotonic
Reasoning, LPNMR’01, Springer-Verlag,
LNAI, 2173:351–364, 2001.

[12] J. Medina, M. Ojeda-Aciego, and
P. Vojtáš. Similarity-based Unification: a
multi-adjoint approach. Fuzzy Sets and
Systems, Elsevier, 146:43–62, 2004.

[13] P. Vojtáš and L. Pauĺık. Soundness
and completeness of non-classical extended
SLD-resolution. In R. Dyckhoff et al, edi-
tor, Proc. ELP’96 Leipzig, pages 289–301.
LNCS 1050, Springer Verlag, 1996.

