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Fuzzy Logic Programming and Bousi Prolog

Fuzzy Logic Programming and Bousi Prolog

Fuzzy Logic Programming = Logic Prog. + Fuzzy Logic

Bousi∼Prolog (BPL) is a fuzzy logic programming language
whose main objective is to make flexible the query answering
process.

BPL is a conservative extension of Prolog, introducing as
many fuzzy characteristics while maintaining the Prolog
syntax.
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Bousi Prolog features and syntax

Bousi Prolog features and syntax

One distinguished feature of Bousi∼Prolog is that it makes
a separate treatment of Vague Knowledge.

Algorithm = Logic + Vague Knowledge + Control.

Logic: is specified by (possibly graded) facts and rules (most
of which respect the Prolog syntax).

Vague Knowledge: is specified by proximity equations
(and/or directives defining fuzzy subsets).

Control: is implemented by an operational semantics based
on Weak SLD Resolution (= SLD Resolution + Weak
Unification).
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Bousi Prolog features and syntax

Bousi Prolog features and syntax

% FACTS
likes teaching(john, physics).
likes teaching(mary, chemistry).
has degree(john, physics).
has degree(mary, chemistry).

% RULE
can teach(X,M):-has degree(X, M), likes teaching(X, M).

?- can teach(X,math).
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Bousi Prolog features and syntax

% FACTS
likes teaching(john, physics).
likes teaching(mary, chemistry).
has degree(john, physics).
has degree(mary, chemistry).

% RULE
can teach(X,M):-has degree(X, M), likes teaching(X, M).

% PROXIMITY EQUATIONS
physics ∼ math = 0.8.
physics ∼ chemistry = 0.8.
chemistry ∼ math = 0.6.

?- can teach(X,math).
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Bousi Prolog features and syntax

Bousi Prolog features and syntax

% FACTS
likes teaching(john, physics) with 0.8.
likes teaching(mary, chemistry) with 0.7.
has degree(john, physics).
has degree(mary, chemistry).

% RULE
can teach(X,M):-has degree(X, M), likes teaching(X, M) with 0.9.

% PROXIMITY EQUATIONS
physics ∼ math = 0.8.
physics ∼ chemistry = 0.8.
chemistry ∼ math = 0.6.

?- can teach(X,math).
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Aim of the Work

Aim of the Work

The goal of this work was to summarize our
accumulated experience during the last decade in the
development of the BPL system.

In this talk we focus our attention into the following main
points:

The fundamentals of the BPL language.
How its operational semantics is implemented by translating a
BPL program into Prolog clauses able to emulate
WSLD-resolution.
Some special BPL implementation features, including those
that make it more applicable.
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Architecture of the Bousi∼Prolog system.

The Bousi∼Prolog system is composed of three subsystems which
are integrated by a total of nine modules.

The bousi module initializes the system.

The bplShell module: command processing
functionalities.

The parser module: lexical, syntactic and
semantic analysis of the BPL programs and
queries.

The translator module: translates the BPL
source files and queries into TPL code. It
relies on the parser module.

The evaluator module: executes the TPL
code. Implements the loader/interpreter of
the BPL system.

Modules with specific tasks: bplHelp,
directives, flags and foreign.
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Proximity Relations

Proximity Relations

A binary fuzzy relation R on U is a mapping
R : U × U → [0, 1].

Some important properties fuzzy relations may have:

1 (Reflexive) R(x , x) = 1 for any x ∈ U ;
2 (Symmetric) R(x , y) = R(y , x) for any x , y ∈ U ;
3 (Transitive) R(x , z) ≥ R(x , y) ∧R(y , z) for any x , y , z ∈ U ;

Proximity relations are fuzzy binary relations holding the
reflexive and symmetric properties.

A proximity relation holding the transitive property is a
similarity relation.
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Proximity Relations

Proximity Blocks

Given a proximity relation R on a set U, a λ-cut
Rλ = {〈x , y〉 | R(x , y) ≥ λ}
Proximity block of level λ (or λ-block):

Given a proximity relation R on a set U ,
is a subset of U such that the restriction of Rλ to this subset
is a maximal total relation.

Example (1)

b

a c

Proximity relation

0.8 0.75

0.5

b

a c

B
0.5 = {a, b, c}

B
0.5
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Given a proximity relation R on a set U, a λ-cut
Rλ = {〈x , y〉 | R(x , y) ≥ λ}
Proximity block of level λ (or λ-block):

Given a proximity relation R on a set U ,
is a subset of U such that the restriction of Rλ to this subset
is a maximal total relation.
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B
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Proximity Relations

Proximity Relations on Syntactic Domains

Proximity relations can be defined on the alphabet of a first
order language and extended to terms and atomic formulas.

Declarative notion of proximity: two expressions of a
first-order language L are λ-approximate

1 When their symbols, at their corresponding positions, belong
to the same λ-block and

2 A certain symbol is always assigned to the same λ-block (i.e.,
it is playing the same role)
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Proximity Relations

Proximity Between Expressions

Example (2: Proximity between A1 ≡ p(b, b) and A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

p

b b

p

a c
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Proximity Relations

Proximity Between Expressions

Example (2: Proximity between A1 ≡ p(b, b) and A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

B0

B1 B1

B0

B1 c
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Proximity Relations

Proximity Between Expressions

Example (2: Proximity between A1 ≡ p(b, b) and A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

B0

B1 B1

B0

B1 B2

CLASH!

The atoms A1 and A2 are not approximate.
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An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

Our weak unification algorithm relies on the notion of
proximity just introduced.

The weak unification algorithm has three stages.

Stage 1: we analyze the proximity relation R extracting the
set of proximity blocks (Bron-Kerbosch algorithm).

Stage 2: we extend the proximity relation R into a new
relation RB, enhancing R with specific λ-block information.

These two previous steps are implemented by a foreign
predicate coded in C (SWI-Prolog Foreign Language
Interface).

Stages 1 and 2 are done at compile time !!

PROLE 2023. September, 12-14. Ciudad Real (Spain) 14 / 42



Introduction and Motivation BPL Fundamentals and its Implementation Techniques for efficiency Comparison Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

Stage 3: weak unification, formalized by a transition system.
It is characterized by a notion of unification state and a set of
transition rules.

A weak unification state is a tuple 〈P ,S ,C , α〉 where:

1 P is a (multi-)set of weak unification problems or failure;

2 S is a set of equations in solved form;

3 C is a set of block constraints of level λ;

4 α is a unification degree.
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An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

A block constraint is an ordered pair that links a symbol with
a proximity λ-block label. We denote these constraints as
bindings “< symbol>:< λ-block label>” .

Block constraints of level λ are used to detect inconsistencies
in “block assignments” for an alphabet symbol.

A satisfaction function, Sat, is used for block constraint
satisfaction.

Implement as a Prolog predicate, sat/3, which essentially
performs a membership test on an association list and can be
done efficiently at runtime!!
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An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

A weak unification process is formalized as a sequence of
transition steps performed using the proximity-based
unification relation “⇒”.

The proximity-based unification relation, “⇒”, is defined by a
set of transition rules:
Term decomposition:

(a) 〈{f (tn)≈ f (sn)} ∪ E , S ,C , α〉 ⇒ 〈{tn ≈ sn} ∪ E , S ,C , α)〉,

(b) 〈{f (tn)≈g(sn)} ∪ E ,S ,C ,α〉 ⇒

〈{tn≈sn}∪E , S , {(f :BλR), (g:Bλ
R
)}∪C , α△β〉,

if RB(f , g , Bλ
R
) = β≥λ and

Sat({(f :Bλ
R
), (g:Bλ

R
)},C ) 6= failure.

where RB is the extension of R with block information.
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An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

A weak unification process is formalized as a sequence of
transition steps performed using the proximity-based
unification relation “⇒”.

The proximity-based unification relation, “⇒”, is defined by a
set of transition rules:
Failure rule:
〈{f (tn) ≈ g(sm)} ∪ E ,S ,C , α〉 ⇒ 〈fail ,S ,C , α〉,

if n 6= m, RB(f , g , BλR)<λ or Sat({(f :BλR), (g:B
λ
R)},C )=failure

where RB is the extension of R with block information.
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An Efficient Proximity-based Unification Algorithm

The Proximity-based Unification Algorithm in Action

Example (3: A1 ≡ p(b, b) and A2 ≡ p(a, c))

R(a, b)=0.8,R(b, c)=0.75

Stage 1: B1={a, b}, B2={b, c}

Stage 2: RB(a, b, B1) = 0.8,RB(b, c , B2) = 0.75, . . .

Stage 3: The atoms A1 and A2 do not weakly unify.

〈{p(b, b) ≈ p(a, c)}, id , ∅, 1〉

⇒1a〈{b≈a, b≈c}, id , ∅, 1〉
⇒1b〈{b ≈ c}, id , {(b:B1), (a:B1)}, 0.8 ∧ 1〉
⇒5〈failure, id , {(b:B1), (a:B1)}, 0.8〉
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An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm:

Some Implementation Details

The proximity-based weak unification algorithm is
implemented by the Prolog predicate weak unify a3/6.

weak unify a3(Term1, Term2, Lambda, Cin, Cout, Degree) :-
% Term decomposition

compound(Term1), compound(Term2), !,
Term1 =.. [Functor1|Args1], Term2 =.. [Functor2|Args2],
length(Args1, Arity), length(Args2, Arity),
(Functor1==Functor2
→ Cin1=Cin, DegreeFunctor=1.0
;
sim(Functor1, Functor2, Block, DegreeFunctor),
DegreeFunctor >= Lambda,
sat a3([Functor1:Block, Functor2:Block], Cin, Cin1),
),
weak unify args a3(Args1,Args2,Lambda, Cin1,Cout,DegreeArgs),
t norm op(DegreeFunctor, DegreeArgs, Degree).
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Weak SLD Resolution

Weak SLD Resolution (WSLD) (of level λ)

Let Π be a program, R be a proximity relation, △ a fixed
t-norm and a λ cut value.

Weak SLD (WSLD) resolution is defined as a transition
system 〈E ,⇒WSLD〉 where:

E is a set of tuples 〈G, θ, α,C 〉 (the state of a computation)
⇒WSLD ⊆ (E × E ) is the transition relation, defined as:

〈(←A′∧Q′), θ, α,C 〉 ⇒WSLD 〈← (Q∧Q′)σ, θσ, β△α△µ,C ′∪C 〉

if 1. R ≡ (A←Q with µ)<<Π,

2. wmguλ

R
(A,A′)= 〈σ,C ′,β〉,

3. Sat(C ′,C) 6= failure,

4. (β△α△µ)≥λ.

Where β and µ are truth degrees (in [0, 1]), Q and Q′ are
conjunctions of atoms.
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Weak SLD Resolution

Weak SLD Resolution (WSLD) (of level λ)

A WSLD derivation (of level λ) for Π ∪ {G0} is a sequence
of WSLD resolution steps

〈G0, id , 1, ∅〉 ⇒WSLD 〈G1, θ1, α1,C1〉 ⇒WSLD . . .⇒WSLD 〈Gn, θn, αn,Cn〉

WSLD refutation is a WSLD derivation (of level λ):

〈G, id , 1, ∅〉 ⇒WSLD
∗ 〈✷, σ, α,C 〉

output of the computation: 〈σ, α〉
σ = θ |̀ Var(G0) is a computed answer and α is its computed
approximation degree.

Block constraints are used to guarantee the consistency of the
final answer (although it is not part of it).
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Weak SLD Resolution

WSLD Resolution: Implementation details

Bousi∼Prolog implements WSLD resolution by compiling BPL
programs into a set of Prolog clauses that are able of
emulating it.

It uses a program translation that we call BPL expansion:

1 Each BPL program rule is replaced by the set of rules which
are approximate (w.r.t. R) to the rule being transformed.

2 The head of those approximate rules are linearised to facilitate
the crisp unification of the defined predicate with a goal, while
the weak unification of their arguments are carried out
explicitly in the body of the transformed rules
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Weak SLD Resolution

WSLD Resolution: Implementation details

Definition (BPL expansion)

Let RB be the extension of R , △ the fixed t-norm and
λ ∈ [0, 1] a cut value.

Let p(t1, . . . , tn)← Q with δ be a graded rule in Π.

Then, for each entry RB(p, q, BλR) = α ≥ λ add to the
transformed program Π′ the e-clause:

〈q(x1, . . . , xn)← x1 ≈ t1∧· · ·∧xn ≈ tn∧Q; (δ△α); [p : BλR, q : BλR]〉

where each xi is a fresh variable and xi ≈ ti forces weak
unification, i.e, the evaluation of wmguλR(xi , ti ).
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Weak SLD Resolution

WSLD Resolution: Implementation details

Example (5)

% PROXIMITY EQUATIONS
p ∼ q = 0.9.

% FACTS RULE

p(a).

% PROXIMITY RELATION

RB(p,q,0) = 0.9.

RB(q,p,0) = 0.9.

% E-CLAUSES
<p(X1) :- X1≈a; 1 ; []>

<q(X1) :- X1≈a; 0.9; [(p,0), (q,0)]>
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Weak SLD Resolution

WSLD Resolution: Implementation details

Example (6)

% PROXIMITY EQUATIONS
a ∼ b = 0.7.

b ∼ c = 0.8.

p ∼ q = 0.9.

% FACTS RULE

p(X) :- r(X) with 0.75.

r(a).

% PROXIMITY RELATION

RB(a,b,2)=0.7. RB(c,b,1)=0.8.

RB(b,a,2)=0.7. RB(p,q,0)=0.9.

RB(b,c,1)=0.8. RB(q,p,0)=0.9.

% E-CLAUSES
<p(X1) :- X1≈X, r(X); 0.75 ; []>

<q(X1) :- X1≈X, r(X);

0.9 ∧ 0.75; [(p,0), (q,0)]>

<r(X1) :- X1≈a; 1; []>
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Weak SLD Resolution

WSLD Resolution: Implementation details

Definition (operational semantics for expanded programs)

Defined as a transition system 〈E ,⇒EXP〉 where

E is a set of tuples 〈G, α,C | θ〉 (goal, approximation degree,
block constraints, substitution),

⇒EXP⊆ (E × E ) is a transition relation which satisfies:

Rule 1: if wmguλ
R
(A,B) = 〈σ, β,C ′〉, Sat(C ∪ C ′) 6= failure and

(β△α) ≥ λ,

〈(←A ≈ B ∧Q), α,C | θ〉 ⇒EXP 〈← Qσ, β△α,C ∪ C ′ | θσ〉
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Weak SLD Resolution

WSLD Resolution: Implementation details

Definition (operational semantics for expanded programs)

Defined as a transition system 〈E ,⇒EXP〉 where

E is a set of tuples 〈G, α,C | θ〉 (goal, approximation degree,
block constraints, substitution),

⇒EXP⊆ (E × E ) is a transition relation which satisfies:

Rule 2: if 〈p(x1, . . . , xn)← x1≈ t1 ∧ · · · ∧xn≈ tn ∧Q′;β;C ′〉 << Π′ and
Sat(C ∪ C ′) 6= failure

〈(←p(s1, . . . , sn) ∧Q), α,C | θ〉 ⇒EXP

〈(← s1≈ t1 ∧ · · · ∧ sn≈ tn ∧ Q′ ∧ Q), β△α,C ∪ C ′ | θ〉

in Rule 2, we perform a syntactic unification of the selected
atom of the e-goal and the head of the e-clause.
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Weak SLD Resolution

WSLD Resolution: Implementation details

Example (8: e-clauses for the program of the last example 6)
p(X1,C0,C2,D):- unify arguments a3([[X1,X,C0,C1,D1]]),

r(X,C1,C2,D2),
degree composition([0.75,D1,D2],D),
over lambdacut(D).

q(X1,C0,C3,D):- over lambdacut(0.9),
sat a3([q:0,p:0],C0,C1),
unify arguments a3([[X1,X,C1,C2,D1]]),

r(X,C2,C3,D2),
degree composition([0.9,0.75,D1,D2],D),
over lambdacut(D).

r(X1,C0,C1,D):- unify arguments a3([[X1,a,C0,C1,D1]]),

degree composition([1,D1],D),
over lambdacut(D).
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The foreign module and the foreign library

The foreign module and the foreign library

The module foreign.pl collects a set of predicates that connect
programs written in C performing specific tasks which are critical:

ext tokenize/2: Lexically analyzes the string passed as a parameter.

ext closure/6: Calculates the reflexive, symmetric or transitive
closure of the equation list. It uses a fuzzy variant of the Warshall
algorithm.

ext block equs/4: Computes the proximity blocks of level λ
associated to a fuzzy relation R and generates the extended relation
RB. it uses an adaptation of the Bron-Kerbosch algorithm.

ext translate fuzzy sets/5: Transforms the information of a
linguistic variable into a reflexive fuzzy relation that simulates it. It
uses “fuzzy matching” techniques coming from FuzzyCLIPS.
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Filtering techniques

Filtering techniques

Imposing a λ-cut in a program discards answers below this
threshold.

The aim of Filtering is to reduce the search space eagerly in
the compilation stage:

Only those RB entries with an approximation degree greater
than or equal to the current λ-cut are generated.
Discarding the generation of extended rules for which their
approximation degree in RB is below the current λ-cut.
Loading a rule only if its weight is above the cut.

It can be activated/deactivated inside a program
:-filtering(+Boolean), or from the system prompt fl +Boolean.
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Tail recursion and indexing

Tail recursion

The previous implementation of WSLD-resolution by BPL
expansion breaks tail recursion of user programs.

Because partial degrees are composed by means of a last call
to the internal predicate degree composition/2.

This problem can be solved by computing the partial degrees
first and passing them, on the fly, through an accumulator of
each call in the body of a rule, keeping the last call as the
recursive call.
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Tail recursion and indexing

Tail recursion

Example (9: e-clauses for the program of the example 6)

p(X1,C0,C2,D0,D):-

unify arguments a3([[X1,X,C0,C1,D1]]),

degree composition([0.75,D0,D1],D2),

r(X,C1,C2,D2,D).

q(X1,C0,C3,D0,D):-

sat a3([q:0,p:0],C0,C1),

unify arguments a3([[X1,X,C1,C2,D1]]),

degree composition([0.75,0.9,D0,D1],D2),

r(X,C2,C3,D2,D).

r(X1,C0,C2,D0,D):-

unify arguments a3([[X1,a,C0,C2,D1]]),

degree composition([D0,D1],D).
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Tail recursion and indexing

Tail recursion

Tail Recursion Optimisation (TRO) improves both time and
space behaviour.

We test both behaviours with a simple example (a program
that sums the elements of a list with 20K integers):
my sum([],S,S).

my sum([X—Xs],C,S) :- C1 is C+X, my sum(Xs,C1,S).

The following table summarize the results of the experiment:

TRO Time Inferences Global Stack Local Stack

No 3,714 1,400,185 4,194,304 8,388,608
Yes 2,302 1,400,204 524,288 0

Time speed-up when enabling TRO is 1.6×.
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Tail recursion and indexing

Indexing

The previous implementation of WSLD-resolution by BPL
expansion breaks the indexing of user programs.

Because it is necessary to flatten and linearise the rules of the
BPL source program.

One possible solution: to mimicking the same technique that
we apply to simulate the fuzzy unification of the symbols at
the root of the head rule by means of a crisp unification.
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Tail recursion and indexing

Indexing

Example (10: Program expansion and indexing)

Consider the following program:

a∼b=1.0.

p(a).

whose standard translation is:

p(X1,C1,C2,D1,D):- unify arguments a3([[X1,a,C1,C2,D2]]),

degree composition([D1,D2],D).

A posible translation for the fact preserving indexing could be:

p(a,C,C,D,D).

p(b,Ci,Co,D,D) :- sat a3([a:0,b:0],Ci,Co).

This translation technique breaks our entended operational
semantics consisting in returning a representative with the higher
approximation degree of all unifiers.
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Tail recursion and indexing

Indexing

Though this translation is not applicable in general in our
setting, we can still retain it for all data symbols which do not
participate in any proximity equation.

An important data structure that benefit from this are lists
(for which it is not expected to be involved in any proximity
equation).

This implies great performance improvements which amounts
to a speed-up of 190× for the optimised version in some tests.

PROLE 2023. September, 12-14. Ciudad Real (Spain) 35 / 42



Introduction and Motivation BPL Fundamentals and its Implementation Techniques for efficiency Comparison Conclusions

Tail recursion and indexing

Tail recursion optimisation and indexing

Combined effect of Tail Recursion Optimisation (TRO) and
indexing solving a linguistic application.

Syst. TRO Indexing Time Inferences Glo. Stack Loc. Stack

BPL No No 1,284 2,926,462 2,097,152 2,064,384
BPL Yes No 1.291 2,926,481 2,097,152 0
BPL No Yes 0.589 2,606,458 2,097,152 4,161,536
BPL Yes Yes 0.597 2,606,469 2,097,152 0
SWI Yes Yes 0.250 2,370,737 2,097,152 0

When TRO and indexing are enabled, we can spect speed-up
of about 2×.
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Comparison of different systems

We tested the applicability of uncertainty systems to face
crisp applications as a way to measure the cost of processing
weak unification and other features: Queens benchmark.

N BPL FASILL FLOPER SQCLP SQCLP+w SWI

8 0.186 8.533 0.008 0.005 0.502 0.005
9 0.786 45.131 0.020 0.022 1.956 0.014

10 3.705 253.208 0.119 0.091 10.475 0.053
11 15.658 1259.431 0.577 0.424 63.245 0.345
12 89.820 7743.477 2.592 1.820 378.099 1.669
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Comparison of different systems

Testing weak unification and weights on different systems by
means of an instrumented benchmark.

BPL FASILL SQCLP+w
N Time Inferences Time Inferences Time Inferences

200 0.014 136,037 2.642 17,632,711 0.067 397,786
400 0.041 511,437 18.411 70,225,711 0.341 1,475,377
600 0.089 1,126,837 31.067 157,778,711 0.566 3,232,796
800 0.155 1,982,237 63.281 280,291,711 1.036 5,670,368
1000 0.233 3,077,637 120.433 437,764,711 1.703 8,787,900

Speed-up ranging from 4.8× to 7.3× between BPL and
SQCLP+w.
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Comparison of different systems

Measure ratios between Bousi∼Prolog and other systems for
the library example (Caballero et al., 2014).

FASILL SQCLP+w
N Speed-up Inferences Global Local Speed-up Inferences Global Local

150 124 80 67 8 2,352 1,169 16 1,021
300 136 94 99 8 2,116 1,233 24 4,093
450 161 107 264 8 1,615 1,277 66 4,680
600 195 121 195 8 1,629 1,308 49 7,021
750 215 134 390 17 1,810 1,324 97 9,361
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Conclusions

We have summarized our accumulated experience during more
than a decade in the development of BPL.

We described the structure of the BPLa system, and how its
operational semantics is implemented by BPL expansion.

We have introduced a number of translation techniques:
Filtering; TRO; some indexing capabilities.

Other techniques for efficiency are embodied into a foreign
library written in C.

Finally, these optimisations have been tested and the BPL
system compared to others: The experiment results confirm
considerable gains on efficiency.
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