
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262358878

A Fuzzy linguistic prolog and its applications

Article in Journal of Intelligent and Fuzzy Systems · May 2014

DOI: 10.3233/IFS-130834

CITATIONS

26
READS

173

2 authors:

Some of the authors of this publication are also working on these related projects:

HVAC layout optimization through artificial intelligence algorithms View project

Fuzzy Linguistic Prolog and Fuzzy Logic Programming View project

Clemente Rubio Manzano

Universidad de Cádiz

46 PUBLICATIONS 172 CITATIONS

SEE PROFILE

Pascual Julián Iranzo

University of Castilla-La Mancha

62 PUBLICATIONS 450 CITATIONS

SEE PROFILE

All content following this page was uploaded by Clemente Rubio Manzano on 08 November 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/262358878_A_Fuzzy_linguistic_prolog_and_its_applications?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/262358878_A_Fuzzy_linguistic_prolog_and_its_applications?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/HVAC-layout-optimization-through-artificial-intelligence-algorithms?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fuzzy-Linguistic-Prolog-and-Fuzzy-Logic-Programming?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Clemente_Manzano?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Clemente_Manzano?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Cadiz?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Clemente_Manzano?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pascual_Iranzo?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pascual_Iranzo?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Castilla-La_Mancha?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pascual_Iranzo?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Clemente_Manzano?enrichId=rgreq-c6e11ed4f5ae009ebda814750d340594-XXX&enrichSource=Y292ZXJQYWdlOzI2MjM1ODg3ODtBUzo0MjYwMDA1NzcyNDEwODhAMTQ3ODU3Nzg2MDA1MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Fuzzy linguistic prolog and its applications

Clemente Rubio-Manzano2 and Pascual Julián-Iranzo1

1 Dep. Information Technologies and Systems, University of Castilla-La Mancha, Spain.
Pascual.Julian@uclm.es

2 Dept. de Sistemas de Información, Universidad del Bío-Bío, Chile.
clrubio@ubiobio.cl

Abstract. In this work a fuzzy linguistic prolog language is presented and its
design, implementation and applications are detailed. A fuzzy linguistic prolog is
a fuzzy prolog which allows to work with both fuzzy linguistic and linguistic tools
in order to gear the prolog systems towards the computing with words paradigm
in which the linguistic resources can be very useful.

Keyword: Fuzzy Logic Programming, Fuzzy Linguistic Prolog, Fuzzy Unification,
Semantic Unification, Weak SLD Resolution

1 Introduction

The Prolog programming language has been used widely in the area of Artificial Intel-
ligence for knowledge representation, expert system development or natural language
processing. However, classical Prolog is not capable of representing and handling in
an explicit, natural way the vagueness and/or the imprecision existing in the real world
(as it will be shown in a number of examples along this paper). Certainly, dealing with
vagueness and/or imprecision is essential in most Artificial Intelligence application ar-
eas, such as expert systems, fuzzy control, robotics, computer vision, machine learning
or information retrieval. So, it is crucial to enhance these languages with new facilities.

Since the seminal work of Lee [21], in the early seventies of the last century, most of
the proposed and implemented fuzzy prolog systems modified the classical resolution
procedure, replacing it by a fuzzy one, while the unification mechanism was left intact
[4, 11, 13, 14, 22]. However, there exists an alternative line of work which has produced
fuzzy prolog systems that extends the classical SLD resolution principle by only chang-
ing its classical unification algorithm and substituting it by a fuzzy one, while the other
features of the SLD resolution principle remain untouched [10, 18, 23].

One distinguished feature of the first line of work is that it has produced program-
ming languages with explicitly annotated rules. Informally, these annotations or weights
are expressing the confidence which the user of the system has in the truth of the rules
integrating a program. This way of expressing vagueness and/or imprecision may be
inappropriate, or at least inconvenient, in some contexts (where knowledge is charac-
terized by means of linguistic concepts). Also it seems unnatural, from a declarative
point of view, to specify vagueness and/or imprecision by means of a precise number.
If we want to be more accurate to the spirit of declarative programming, we should find

mechanisms that allow us to express the vagueness in a way independent from the pro-
gram. That is, surpass the well known assertion stating that an “Algorithm = Logic +
Control” [20] and to move to a new assertion: an “Algorithm = Logic + Vague Knowl-
edge + Control”. In consonance with this argumentation, recently in a line of work
proposing a ‘natural’ fuzzy linguistic Prolog [35], it has been suggested that a ’nat-
ural’ fuzzy linguistic Prolog system should be able to work with linguistic resources
(i.e. electronic linguistic tools as WordNet or ConceptNet [24]) and the resolution rule
and unification mechanism should be modified in order to treat with linguistic relations
(such as synonymy or antonym).

For these reasons, if our objective is to design a true fuzzy linguistic prolog, the
second line of work seems to be more appropriate because: (i) it leads to languages that
allow a clean separation between Logic, Vague Knowledge and Control; (ii) thanks to
its fuzzy unification mechanism, it is easy to work with linguistic concepts and even to
incorporate both fuzzy linguistic and linguistic tools.

Bousi∼Prolog (BPL for short) [16–18] is a fuzzy logic programming language,
that may be classified among those programming languages pertaining to the second
approach mentioned above. Moreover, it can be seen as a fuzzy linguistic logic sys-
tem since its design has been conceived to make a clear separation between Logic,
Vague Knowledge and Control. Bousi∼Prolog allows that a linguistic term may be
used as a regular symbol of a first order alphabet, that is, as a constant, a function,
or even a predicate symbol. Also it is able to work with electronic linguistic tools in
a natural way since it allows to represent and manipulate linguistic relationships as
the synonymy. For example, Bousi∼Prolog allows to work with WordNet::Similarity
[28]. WordNet::Similarity 3 is a freely available software package that offers an imple-
mentation of six measures of semantic resemblance and three measures of relatedness
between pairs of concepts (or word senses), all of which are based on the WordNet
lexical database [9]. Wordnet is a thesaurus but is also an ontology. It groups English
words into sets of synonyms called synsets. It also provides short, general definitions,
and records the various semantic relations between these synonym sets. Thus, it is pos-
sible to know the meaning of a word and, at the same time, to associate it with other
words using ontological relations like synonymy, antonymy, etc. The semantic relation-
ships and the synsets can be used to obtain a degree of closeness between two words
and thus, the set of words related to another word through the WordNet::Similarity API.
The following example shows this feature.

Assume a fragment of a deductive database that stores information about people
and their preferences.

%% mary loves chess
loves(mary, tracking).

%% john likes football
likes(john,football).

%% peter plays basketball
plays(peter,basketball).

3 http://wn-similarity.sourceforge.net

%% if a person practises sports, he/she is
%% healthy
healthy(X):- practises(X,sport).

In a standard Prolog system, if we ask about what persons are healthy “?-healthy(X).”
the system fails. However “mary”, “john” and “peter” also are reasonable candidates
to be a healthy person. Hence, if we are looking for a flexible query answering proce-
dure, more accurate to the real world behavior, “mary”, “john” and “peter” should
be appear as answers. As Bousi∼Prolog allows to work with linguistic dictionaries, a
list of similar concepts for the source concepts “practises” and “sport” could be
obtained by using WordNet::Similarity. This list can be represented in Bousi∼Prolog
by means of a set of proximity equations (see Section 2.4).

practises~loves=0.9. sport~basketball=1.0.
practises~likes=0.7. sport~football=1.0.
practises~plays=1.0. sport~tracking =0.8.

Now, the BPL system allows us to get the answers: “X=mary with 0.8 ”, “X=john
with 0.7 ”, and “X=peter with 1.0 ”. To obtain the first answer, the BPL system
operates as follows: since we have specified that “sport” is close to “tracking”,
with degree 0.8, and that “practises” is close to “loves” with 0.9. The terms
“practises(X,sport)” and “loves(mary, tracking)”may “weakly” unify with
approximation degree 0.8 ∧ 0.9 = 0.8, producing the binding X=mary; therefore,
the assertion healthy(mary) is stated with approximation degree 0.8. Similarly for
the remainder answers.

The above example, at the same time that confirms that Bousi∼Prolog can work
with linguistic relations (as synonymy), also serves to illustrate some aspects of the
syntax and the operational semantics of this programming language.

The aim of this paper is to present the main features of Bousi∼Prolog that make it a
good candidate to be considered a fuzzy linguistic prolog system. To this end, along this
work we precise the BPL syntax and operational semantics as well as we clarify other
important features that contribute to make this goal possible. Particularly, we describe
how to include linguistic variables into the core of this system. Also we want to show
the way Bousi∼Prolog may contribute to solve several problems extracted from differ-
ent application areas, where it is mandatory to deal with linguistic knowledge, such as:
deductive databases, knowledge-based systems, data retrieval or approximate reason-
ing. To accomplish this last goal, through the paper, we discuss and implement several
(small but meaningful) examples4, showing the great potential of this programming
language.

2 The Bousi∼Prolog Programming Language

Bousi∼Prolog is an extension of the standard Prolog language. Its operational semantics
is an adaptation of the Selection-function driven Linear resolution for Definite clauses

4 http://dectau.uclm.es/bousi

(SLD resolution) principle where classical unification has been replaced by a fuzzy uni-
fication algorithm based on proximity relations defined on a syntactic domain. Hence,
the operational mechanism is a generalization of the similarity-based SLD resolution
principle [32], we name weak SLD resolution.

Currently, Bousi∼Prolog is delivered in two implementation formats: a high level
and a low level implementation. The high level implementation and some of the main
features of this language are described in [18]. One step further, in [16] we presented the
structure and main features of a low level implementation for Bousi∼Prolog. It consists
in a compiler and an enlargement of the Warren Abstract Machine (WAM) able to
incorporate fuzzy unification and to execute BPL programs efficiently. The key to this
adaptation, without forcing the structure of the WAM, consists of transforming the BPL
source program into an intermediate level code compiling the information provided by
a proximity relation. It is important to note that, to the best of our knowledge, this is
the first WAM implementation that supports weak SLD resolution. Also, to allow the
development of BPL programs, a programming environment for this language has been
implemented. In this section we recall the foundations and syntax of Bousi∼Prolog.

2.1 Fuzzy Relations and Weak Unification

A binary fuzzy relation on a set U [38] is a fuzzy subset on U × U (that is, a mapping
U×U −→ [0, 1]). A binary fuzzy relationR is said to be a proximity relation if it fulfills
the reflexive property (i.e.R(x, x) = 1 for any x ∈ U) and the symmetric property (i.e.
R(x, y) = R(y, x) for any x, y ∈ U). A proximity relation which in addition fulfills the
transitive relation (i.e., R(x, z) ≥ R(x, y)4R(y, z), for any x, y, z ∈ U) is said to be
a similarity relation. The operator ‘4’ is an arbitrary t-norm. The notion of transitivity
above is4-transitive. If the operator4 = ∧ (that is, it is the minimum of two elements),
we speak of mim-transitive or ∧-transitive. It is noteworthy that, when the transitivity
flag is enabled Bousi∼Prolog constructs a similarity using mim-transitivity.

Bousi∼Prolog implements a weak unification algorithm which is an extension of
the one appeared in [32], with proximity relations on syntactic domains.

It is formalized as a transition system supported on a proximity-based unifica-
tion relation “⇒”. The unification of two expressions E1 = f(t1, . . . , tn) and E2 =
g(s1, . . . , sn) is obtained by a state transformation sequence starting from an initial
state 〈G, id, α0〉, where G = {t1 ≈ s1, . . . , tn ≈ sn} is a set of unification problems 5,
id is the identity substitution and α0 = 1 is the initial proximity degree:

〈G, id, α0〉 ⇒ 〈G1, θ1, α1〉 ⇒ . . .⇒ 〈Gn, θn, αn〉.

When the final state 〈Gn, θn, αn〉, with Gn = ∅, is reached (i.e., the equations in the
initial state have been solved), the expressions E1 and E2 are unifiable by proximity with
weak most general unifier (w.m.g.u) θn and unification degree αn. Therefore, the final
state 〈∅, θn, αn〉 signals out the unification success. On the other hand, when expres-
sions E1 and E2 are not unifiable, the state transformation sequence ends with failure
(i.e., Gn = Fail).

5 Here, the symbol “≈” means that the arguments in E1 and E2 are capable to be “equals” by
proximity, that is, a substitution σ can be computed such thatR(E1σ, E2σ) > 0.

The proximity-based unification relation,“⇒”, is defined as the smallest relation
derived by a set of transition rules that behave as in the classical unification algorithm,
except for the rules in the following table:
• Term decomposition rule:

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, α〉 , R(f, g) = β > 0

〈{t1 ≈ s1, . . . , tn ≈ sn} ∪ E, θ, (α ∧ β)〉

• Failure rule:

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, α〉 , R(f, g) = 0

〈Fail, θ, α〉

In the rules above, E denotes a set of (remaining) equational goals in the preceding
state. Note that, when the proximity relation R is the diagonal relation6, this algorithm
conforms with the classical unification algorithm.

Certainly, the weak unification algorithm we have just presented can be weakened
(even more) allowing fuzzy relations that do not fulfill the symmetric property. This
last kind of fuzzy relations are useful for introducing the linguistic terms into the BPL
system [19].

2.2 Proximity-Based SLD Resolution

LetΠ be a set of Horn clauses andR a proximity relation on the alphabet of a first order
language L. Let Λ = {λ1, ..., λn} be the set of approximation levels of R. We define
Weak SLD (WSLD) resolution as a transition system 〈E,=⇒WSLD〉 where E is a set of
triples 〈G, θ, α〉 (goal, substitution, approximation degree), that we call the state of a
computation, and whose transition relation =⇒WSLD⊆ (E × E) is the smallest relation
that satisfies:

C = (A ←Q) << Π ,
σ = wmgu(A,A′) 6= fail, β = R(Aσ,A′σ)) ≥ λ
〈(←A′,Q′), θ, α〉 =⇒WSLD 〈← (Q,Q′)σ, θσ, α ∧ β〉

where Q, Q′ are conjunctions of atoms, the notation “C << Π” is representing that C is
a standardized apart clause inΠ , and that the value λ is a cut value in Λ, which imposes
a limit to the expansion of the search space in a computation. We say that the performed
step is a step of level λ because the computed approximation degree is greater than or
equal to λ.

A WSLD derivation of level λ for Π ∪ {G0} and R is a sequence of steps of
level λ: 〈G0, id, 1〉 =⇒WSLD . . . =⇒WSLD 〈Gn, θn, βn〉. That is, each βi ≥ λ. And
a WSLD refutation of level λ for Π ∪ {G0} and R is a WSLD derivation of level
λ for Π ∪ {G0} and R: 〈G0, id, 1〉 =⇒WSLD

∗ 〈2, σ, β〉, where the symbol “2” stands
for the empty clause, σ is the computed substitution and β is its approximation de-
gree. The output of a WSLD refutation is the pair 〈σ, β〉, which is said to be the
computed answer. Certainly, a WSLD refutation computes a family of answers, in
the sense that, if σ = {x1/t1, . . . , xn/tn} then, by definition, whatever substitution

6 That is,R(a, a) = 1 andR(a, b) = 0 (when a and b are distinct symbols in the alphabet).

θ′ = {x1/s1, . . . , xn/sn}, holding that R(si, ti) ≥ λ, for any 1 ≤ i ≤ n, is also a
computed substitution with approximation degree β ∧ (

∧n
1 R(si, ti)).

Observe that our definition of proximity based SLD resolution is parameterized by
a cut level λ ∈ Λ. This introduces an important conceptual distinction between our
approach an the similarity based SLD resolution presented in [32].

2.3 Semantic Unification

The weak unification algorithm described in Subsection 2.1 is syntactical in nature,
since the symbols involved in the unification process are treated syntactically. However,
when we want to unify linguistic terms, with fuzzy sets associated as their meaning, the
unification process relies on semantics. In this section we recall an efficient generic ap-
proach to include semantic unification in the framework of fuzzy logic programming
that first appear in [19]. Our approach differs from others because it compiles the infor-
mation provided by a linguistic variable into a set of fuzzy relations.

Formally, our approach relies on the concepts of a linguistic variable [39] and a
fuzzy relation. A linguistic variable is a quintuple 〈X,T (X), U,G,M〉 where: X is
the variable name, T (X) is the set of linguistic terms of X (i.e., the set of names of
linguistic values of X), U is the domain or universe of discourse, G is a grammar that
allows to generate T (X) andM is a semantic rule which assigns to each linguistic term
x in T (X) its meaning (i.e., a fuzzy subset of U —characterized by its membership
function µx—).

In this work we are interested in the definition of a fuzzy relation on the set of terms,
T (X), associated to a linguistic variable, X , in a way such that the linguistic variable
(including its semantic component) could be treated at a purely syntactic level. To this
end, we proceed as follows:

Suppose that T (X) = {xi | i ∈ I}, where I is a set of indexes. For each
xi and xj , with i, j ∈ I , we generate the entry of a fuzzy relation on T (X):
R(xi, xj) = α. The relationship degree α can be calculated as the relation be-
tween the fuzzy subsets M(xi) and M(xj) associated to these terms as mean-
ing.

For this purpose, we can make use of fuzzy matching techniques such as the ones devel-
oped in [6, 7], which have been successfully used in the system FuzzyClips [8]. Once
the fuzzy relation, R, has been generated, the operational mechanism of the language
manipulates the linguistic variable X and, more precisely, the terms in T (X) in a to-
tally standard way. That is, as symbols of a first order language which are capable of
participating in a weak unification process at the same level as the rest of symbols of
language alphabet. Therefore, we are able to manipulate a semantic unification process
by means of a weak unification algorithm which is syntactical in nature.

Ending this subsection, it is important to note that, if we want to cope with the dis-
tinction between general and specific knowledge introduced in [31], the fuzzy relation
constructed during this process must fulfill the reflexive property but not necessarily
the symmetric and/or transitive properties. In [31], and lately in [1], it is shown the
importance of distinguish between general and specific knowledge. For instance: let

Age be a linguistic variable and young and between_19_22 two terms in T (Age); it
is clear that the meaning of the linguistic term between_19_22 is included into the
meaning of the linguistic term young and not viceversa; therefore, the fuzzy relation
between young and between_19_22 should not be symmetric, if we want to represent
this knowledge properly. Taken into account this observation, our proposal not only
allows us to incorporate fuzzy sets in an easy, efficient way, solving some implementa-
tion problems mentioned in [37], but it also takes into account the distinction between
general and specific knowledge made in [31].

2.4 The Bousi∼Prolog Syntax

The BPL syntax is mainly the Prolog syntax but enriched with a built-in symbol “∼”
used for describing proximity relations7 by means of what we call a “proximity equa-
tion”. Proximity equations are expressions of the form: “<symbol> ~ <symbol> = <degree>.”.
Although, a proximity equation represents an arbitrary fuzzy binary relation, its intuitive
reading is that two constants, n-ary function symbols or n-ary predicate symbols are ap-
proximate or similar with a certain degree. That is, a proximity equation a ∼ b = α
can be understood in both directions: a is approximate/similar to b and b is approxi-
mate/similar to a with degree α. Therefore, a BPL program is a sequence of Prolog
facts and rules followed by a sequence of proximity equations.

In order to obtain a similarity relation, Bousi∼Prolog generates automatically a
reflexive, symmetric and transitive closure, starting from an arbitrary fuzzy binary rela-
tion. This feature gives a substantial support for the programmer, since it is not easy
to define a similarity relation due to the transitivity constrains, which may contra-
dict the initial proximity values. The formal aspects of this problem and an algorithm
for the construction of a transitive closure can be found in [15]. From the syntacti-
cal point of view, the construction of the transitive closure is enabled or disabled by
means of the directive transitivity. The syntax of this directive is as follows:
“:-transitivity(B).”, whereB is “yes” or “no”. IfB equals to “yes” then a sim-
ilarity relation is generated starting from the proximity equations provided by the user.
Otherwise, if B is “no” a proximity relation is generated (which is the default option).

We can impose a limit to the expansion of the search space in a computation by what
we called a “lambda cut”. When the LambdaCut flag is set to a value different than zero,
the weak unification process fails if the computed approximation degree goes below the
stored LambdaCut value. Therefore, the computation also fails and all possible branches
starting from that choice point are discarded. By default the LambdaCut value is zero.
However, the lambda cut flag can be set to a different value by means of a lambdacut
directive: “:-lambdaCut(N).”, where N is a number between 0 and 1. Of course,
Bousi∼Prolog also implements the cut operator, “!”, a non declarative built-in oper-
ator which allows us to prune the search space during the program execution. In this
case branches are cut unconditionally, without checking the computed approximation
degree.

7 Actually, fuzzy binary relations which are automatically converted into proximity or similarity
relations.

The BPL language makes use of two directives to define and declare the structure
of a linguistic variable [39]: domain and fuzzy_set. The domain directive allows
to declare and define the universe of discourse or domain associated to a linguistic
variable. The concrete syntax of this directive is:

:-domain(Dom_Name(n,m,Magnitude)).

where, Dom_Name is the name of the domain, n and m (with n < m) are the lower
and upper bounds of the real subinterval [n,m], and Magnitude is the name of the unit
wherein the domain elements are measured. For example, the directive “:-domain(age(0,100,
years)).” defines a domain with name age, whose values are numbers (between 0 and
100) measured in years. The fuzzy_set directive allows to declare and define a list
of fuzzy subsets (which are associated to the primary terms of a linguistic variable) on
a predefined domain. The concrete syntax of this directive is:

:-fuzzy_set(Dom_Name,[FSS_1(a1,b1,c1[,d1]),
...,
FSS_n(an,bn,cn[,dn]])).

Fuzzy subsets are defined by indicating their name, FSS_1, and membership func-
tion type. At this time, it is possible to define two types of membership functions: either
a trapezoidal function, if four arguments are used for defining the fuzzy subset or a
triangular function, if three arguments are used. It is important to note that, in gen-
eral, these kind of functions are well adapted to the definition of any concept, with the
advantage of their simplicity (what contributes to their efficient implementation).

Once a domain and the fuzzy sets associated to the primary terms have been de-
clared, composite terms may be generated through the following grammar:

<Term> ::= <Atomic_term> | <Composite_term>
<Composite_term> ::= <TModif>#<Atomic_term>
<TModif> ::= very | somewhat |

more_or_less | extremely

Additionally, a BPL program may include what we call “domain points” and “do-
main ranges”. A domain point is our practical artifice to represent a precise crisp value
in the universe of discourse, aiming to compare it with other linguistic terms.

Domain points have a different behavior (meaning) depending on weather they rep-
resent specific or general knowledge8. In the first case, the meaning assigned to a do-
main point will be its membership function. In the second case, the domain point will
be fuzzified into a fuzzy singleton set. Domain points are generated by means the fol-
lowing grammar.

<Dom_Point> ::= <Dom_Name>#<Dom_Value> |
<Composite_DP>

<Composite_DP> ::= <PModif>#<Dom_Point>
<PModif> ::= about

8 See [31] for a deeper explanation on the general/specific knowledge problem.

where <Dom_Value> is the set of symbols representing the elements in the universe of
discourse. Note that a domain point can be transformed in a linguistic label associated
to a fuzzy subset when it is preceded by the modifier “about”.

A domain range is a label for an interval of elements in the universe of discourse.
Domain range labels are generated by means of the following grammar:

<Dom_Range> ::= <Composite_DR>
| <Dom_Name>#<Dom_Value>#<Dom_Value>

<Composite_DR> ::= <RModif>#<Dom_Range>
<RModif> ::= about

As in the previous case, a domain range can be fuzzified adding the modifier about.
The use of linguistic terms is shown at a detailed level in Section 4.

3 Design and Implementation of Bousi∼Prolog.

The architecture of the BPL low level implementation is a multi-layer architecture with
three layers: the programming environment, the compiler and the similarity abstract ma-
chine (SWAM). It consists of over 6500 code lines, divided into 27 classes. It has been
implemented in Java, since this is an object oriented language that possesses facilities
to deploy the BPL system on the web.

3.1 Similarity-based WAM.

The Similarity-based WAM (SWAM) modifies the two main parts of a standard WAM:
the memory layout and the instruction set [16].

– Extension of the memory layout. The main changes are related to the incorporation
of data structures that allow us to manage proximity or similarity relationship. We
add the so called Proximity Matrix Area, which stores an adjacency matrix rep-
resentation of a proximity or similarity relation. Two new specific registers: the
Approximation Degree register (AD), which stores the current computed approxi-
mation degree of a derivation; and the Lambda-Cut register (LC) which stores the
lower bound for the approximation degree in a derivation. Also, we need to modify
the standard choice point frame structure by adding a new field, D, to save the value
stored in the AD register, prior to the creation of a choice point.

– Extension of the instruction set. As the choice point frame structure has been modi-
fied, the machine instructions that work in combination with it need also to be modi-
fied. That is, we have to modify the instructions: try_me_else,
retry_me_else, trust_me and backtrack. The first three machine instructions
essentially update the value of the AD register and backtrack helps to recover the
old approximation degree value after a failure. On the other hand, also it is nec-
essary to modify some machine instructions involved in the process of argument
unification, such as: get_structure, get_constant and unify.

The SWAM is executed as a thread inherited from the class Thread. The idea is to
allow a programmer to use interactive predicates or I/O predicates like, for instance, the
predicate read, for which it is necessary that the SWAM keeps waiting while the user
writes the input data.

3.2 The Bousi∼Prolog compiler.

One of the most important features of the BPL system is its ability to compile all the
information regarding the linguistic variables defined in a program. In this subsection
the different compilation phases of the data type fuzzy set are detailed.

The first phase is the Syntactical Analysis. During this phase it is verified whether
there exist syntactic errors in the source program. At the same time, the syntactic tree,
which is the basis for later code generation, is built. Additionally, in this phase, the di-
rectives “domain” and “fuzzy_set” are read and the domains and associated fuzzy
subsets are built. The directive domain triggers a procedure which creates an object
of type domain. Such an object is composed of a name, a range and a magnitude. On
the other hand, the directive fuzzy_set triggers a procedure that creates an object
of type fuzzy set. An object of type fuzzy set is composed by a domain (a reference
to the domain created previously), and a list of fuzzy subsets. In turn, each fuzzy
subset is formed by a linguistic label working as an identifier, which may be used
as a regular symbol of a first order alphabet9 and a membership function determined
by the parameters which are passed as the arguments of either a trapezoidal function
f(x, a, b, c, d) = max(min((x − a)/(b − a), 1, (d − x)/(d − c)), 0) or a triangular
function f(x, a, b, c) = max(min((x− a)/(b− a), (c− x)/(c− b)), 0).

Also, during the syntactical analysis phase the occurrence of composite terms, do-
main ranges and domain points in the source program is detected. These terms are
included into the table of linguistic terms. The meaning assigned to composite terms is
a membership function which depends on the modifier applied to their primary terms
(very(y) = y2, somewhat(y) = y0.333,more_or_less(y) =

√
y and extremely(y) =

y3). On the other hand, the meaning associated to a domain range domain_name#a#b
is a membership function µ defined by the trapezoidal function f(x, a, a, b, b). That is,
µ(x) = 1 if a ≤ x ≤ b and µ(x) = 0 otherwise. In other words, a domain range
is a crisp subset. As it has been indicated in the Section 2.4, a domain range admits
the modifier about. We associate the fuzzy subset defined by the trapezoidal function
f(x,max(a−F, n), a, b,min(b+F,m)) to the linguistic label about#domain_name#a#b,
where F = (m− n)× 2.5/100 is a fuzzification factor for the crisp set we start from.
We recall that n and m are, respectively, the lower and upper bound of the interval
[n,m] that forms the universe of discourse.

A domain point has no meaning assigned, since it is not properly considered as a
fuzzy subset in our approach. This design decision will require us a special treatment
of such kinds of terms in the next compilation phase. A domain point also admits the
modifier about. For the label about#domain_name#a, we associate a fuzzy subset
defined by the triangular function f(x,max(a − F, n), a,min(a + F,m)), where F
(defined as in the previous case) is a fuzzification factor which converts the value a into
a fuzzy subset.

We note that we shall only store information of those linguistic terms that appear in
the source code of a BPL program. That is, it is not necessary to generate, for instance,
all the composite terms derived from primary ones.

The Generation of fuzzy relations phase is the next step of the compilation pro-
cess. It is focused on generating fuzzy relations between linguistic terms in order to

9 That is, as a constant, a function or, even, a predicate symbol.

compile all the semantic information associated with them. It is implemented by means
of the algorithm 1, which takes into account the distinction between general and specific
knowledge. For the sake of simplicity, in the description of this algorithm, we focus our
attention on linguistic terms associated to one single linguistic variable.

Algorithm 1
Input: A Subset S = {〈xi, µxi〉 | i ∈ I} (where I is a set of indexes) of terms/meanings of a
linguistic variable X .
Output: A setR of entries which defines a fuzzy relation on S.
Initialization:R := ∅
For each 〈xi, µxi〉 and 〈xj , µxj 〉, with i, j ∈ I , do

Case of
1. µxi 6= ⊥ and µxj 6= ⊥:
R := R∪ {R(xi, xj) = match(µxj , µxi)};

2. µxi 6= ⊥ and µxj = ⊥:
Let xj = dom#uj inR :=R∪ {R(xi, xj)=µxi(uj)};

3. µxi = ⊥ and µxj 6= ⊥:
Let xi = dom#ui in µxi := singleton(ui);

R := R∪ {R(xi, xj) = match(µxj , µxi)};
endCase

endFor
ReturnR

The last algorithm deserves some comments. First, it is noteworthy that, the subset
S only contains the primary terms in T (X) an those composite terms occurring in the
source program. This is a good design option in order to keep controlled the size of the
fuzzy relation.

If we want to deal with the distinction between general and specific knowledge, as
it is done in [31], patterns passed to the arguments of a relation must be classified as
either general or specific. In a logic programming language the arguments of goals and
atomic formulas in the body of program clauses contain the general knowledge, whilst
the arguments of facts an the head of program clauses contain the specific knowledge.
On the other hand, due to the operational features of the weak SLD resolution principle,
for an entry R(x, y) of the fuzzy relation constructed by Algorithm 1, the argument x
is classified as general information and the argument y as specific information.

The matching function calculates the degree of relation between two fuzzy subsets
F and F ′ by using a resemblance measure. Following [6, 7], this measure is supported
by the concepts of possibility P and necessityN . More precisely, this function has been
defined as follows: match(F ,F ′) ={
P (F ,F ′) if N(F ,F ′) > 0.5;
(N(F ,F ′) + 0.5) ∗ P (F ,F ′) otherwise. where,P (F ,F ′) = max{min(µF (u), µF ′(u)) |

u ∈ U} and N(F ,F ′)=1− P (F ,F ′), being F the complement of F described by the
membership function: µF (u) = 1− µF (u), ∀u ∈ U .

Thematching function has an asymmetric behavior. Therefore, it is suitable to deal
with the distinction between general and specific knowledge when building a fuzzy rela-
tion starting from two linguistic terms with associated fuzzy sets as meaning. However,
when the fuzzy unification process involves domain points some subtleties arise and we
need to perform a special treatment.

Once the compilation phase is concluded, all the information represented by fuzzy
subsets has been stored in the fuzzy relation defined on the set of their linguistic labels.
Thanks to this artifice, the execution of a program proceeds on a standard way, follow-
ing the weak resolution mechanism. After that, the Similarity Generator calculates a
proximity relation or a similarity relation (if the transitivity option is enabled) starting
from the proximity equations provided by the programmer; the proximity/similarity re-
lation is stored into the Proximity Matrix memory area and its information is used at
compilation time, by the Adapter, and at execution time, when it is necessary during
the unification process. Next, the Adapter takes the syntactic tree and the proximity or
similarity relation and constructs an intermediate representation which is used by the
Code Generator to obtain the object code. Finally, the Code Generator produces the
machine code associated to the source program; once the machine code is generated, it
is stored in the Code Area, an addressable array of memory words.

4 Applications of Bousi∼Prolog

In this section we describe how Bousi∼Prolog may contribute to resolve several prob-
lems extracted from different application areas, where it is mandatory to deal with
vagueness and imprecision, such as: flexible deductive databases, fuzzy control, fuzzy
experts systems, data retrieval or approximate reasoning. Note that Bousi∼Prolog al-
lows the specification of a problem in a linguistic and declarative way.

4.1 Flexible Query Answering in Deductive Databases

Databases are software components that serve to collect and store information (that
users can retrieve, add, update or remove). As the real world information is often perme-
ated by vagueness and imprecision, database systems should deal with this topic. Also,
they should permit to retrieve information in a flexible way. These capabilities (among
others, like integrating semi-structured —XML— and unstructured —textual— data)
are highly appreciated in the field of information systems and have led up to the notion
of flexible databases.

There are several approaches to fuzzy flexible databases. We highlight two of them:
i) the model of Buckles-Petry [5] and Shenoi-Melton [34], where a relational database
is fuzzified by means of a similarity/proximity relation defined on an universal domain;
ii) the model of Prade-Testemale [29] in which attribute values may be expressed in
(vague) linguistic terms (roughly speaking, using fuzzy sets). In this section we show
how Bousi∼Prolog allows to simulate both fuzzy flexible database approaches effec-
tively. We begin with an example illustrating how to implement a fragment of a flexible
database in the the Buckles-Petry and Shenoi-Melton style. This example is adapted
from a work of Motro [26], although the techniques used there differs from ours. In

Motro’s work the relational data model is extended using data metrics, and the query
language is extended with a single feature, a similar-to comparator. On the other hand,
we concentrate on deductive databases, i.e., databases consisting of facts and rules that
have a deductive capability.

Assume a database storing information on films which are shown at some cinema
of a specific neighborhood of Los Angeles city. The database consists of three tables
(relations, represented by BPL facts) with a total of eight attributes. The film table has
three attributes: title, director and category of the film. The theater table is charac-
terized by the theater name, owner and location of the theater. The engagement table
is used to link the information stored in the first two tables and it has two attributes:
the title of the film and the name of the theater. The fuzzy component is defined by two
proximity relations. The first one states the similarity between the different film cate-
gories (i.e., it is defined on the syntactic domain of film categories) and the second one
states the closeness of two theater locations (i.e., it is defined on the syntactic domain
of theater locations). In this example, both fuzzy relations are implemented explicitly
by means of a set of proximity equations.

%% DIRECTIVE
:-lambdaCut(0.5).

%% PROXIMITY RELATIONS
%% Location Distance Relationship
bervely_hills~downtown=0.3.
bervely_hills~santa_monica=0.45.
bervely_hills~hollywood=0.56.
bervely_hills~westwood=0.9.
downtown~hollywood=0.45.
downtown~santa_monica=0.23.
downtown~westwood=0.25.
hollywood~santa_monica=0.3.
hollywood~westwood=0.45.
santa_monica~westwood=0.9.

%% Category Relationship
comedy~drama=0.6.
comedy~adventure=0.3.
comedy~suspense=0.3.
drama~adventure=0.6.
drama~suspense=0.6.
adventure~suspense=0.9.

%% Films Table
%% film(Title, Director, Category)
film(four_feathers, korda, adventure).
film(modern_times, chaplin, comedy).
film(psycho, hitchcock, suspense).
film(rear_window, hitchcock, suspense).
film(robbery, yates, suspense).
film(star_wars, lucas, adventure).

film(surf_party, dexter, drama).

%% Theaters Table
%% theater(Name,Owner,Location).
theater(chinese,mann,hollywood).
theater(egyptian,va,westwood).
theater(music_hall,lae,bervely_hills).
theater(odeon,cineplex,santa_monica).
theater(rialto,independent,downtown).
theater(village,mann,westwood).

%% Engagements Table
%% engagement(Film,Theater)
engagement(modern_times,rialto).
engagement(start_wars,rialto).
engagement(star_wars,chinese).
engagement(rear_window,egyptian).
engagement(surf_party,village).
engagement(robbery,odeon).
engagement(modern_times,odeon).
engagement(four_feathers,music_hall).

%% MAIN RULE
%% search(input, input, output, output)
search(Category, Location, Film, Theater) :-

film(Film, _, Category),
engagement(Film, Theater),
theater(Theater, _, Location).

The predicate search/4 allows us to know the cinema which is showing a film closest
to our location and category of preference. If we launch the goal “search(adventure,
westwood, Film, Theater).”, the system answers: “Film = rear_window, Theater
= egyptian, with 0.9” (a suspense film located at west- wood), “Film = surf_party,

Theater = vi- llage, with 0.6” (a drama film located at westwood), “Film =

robbery, Theater = odeon, with 0.9” (a suspense film located at santa_monica),
“Film = four_feathers, Theater = music_hall, with 0.9” (an adventure
film located at bervely_hills).

Next, we present a BPL program implementing a fragment of a flexible deductive
database in the style of Prade and Testemale. That is, databases that incorporate the
notion of fuzziness by means of fuzzy sets that may be used as attributes of a table.

In this example we model a database fragment for a real state company with infor-
mation about flats to be hired. The company wants to help clients to select flats in stock,
according their preferences.

%% DIRECTIVES
%% Linguistic variable: rental
:-domain(rental(0,600,euros)).
:-fuzzy_set(rental, [cheap(100,100,250,500),

normal(100,300,400,600),

expensive(300,450,600,600)]).

%% Linguistic variable: distance
:-domain(distance(0,50,minutes)).
:-fuzzy_set(distance, [close(0,0,15,40),

medial(15,25,30,35), far(20,35,50,50)]).

%% Linguistic variable: flat conditions
:-domain(condition(0,10,conditions)).
:-fuzzy_set(conditions, [unfair(0,0,1,3),

fair(1,3,6), good(4,6,8),
excellent(7,9,10,10)]).

%% FACTS
%% Flats table
%% flat(Code, Street, Rental, Condition).
flat(f1, libertad_street,

rental#300, more_or_less#good).
flat(f2, ciruela_street,

rental#450, somewhat#good).
flat(f3, granja_street,rental#200,unfair).

%% Streets table
%% street(Name, District)
street(libertad_street,ronda_la_mata).
street(ciruela_street,downtwon).
street(granja_street,ronda_santa_maria).
%% Distance table
%% distance(District, District, Distance)
%% to university campus
distance(ronda_la_mata,campus,somewhat#close).
distance(downtwon,campus,medial).
distance(ronda_santa_maria,campus,far).

%% RULES
%% close_to(Flat, District)
close_to(Flat, District):-
flat(Flat, Street, _, _),
street(Street, Flat_Dist),
distance(Flat_Dist, District, close).

select_flat(Flat, Street):-
flat(Flat, Street, cheap, good),
close_to(Flat,campus).

Now select_flat/2 selects those flats which may be considered cheap, good and
close to the campus with a certain degree. More precisely, if we launch the goal “?-
select_flat(Flat, Street).”, we obtain: “Flat = f1, Street = libertad,

with 0.8” and “Flat = f2, Street = ciruela, with 0.2”, being flat f3 at
granja street disregarded.

Finally, it is noteworthy that in many cases it will be necessary, or preferable, to
combine both approaches, in order to model a problem properly. That is, to declare and
define linguistic variables in conjunction with proximity relations. This last option is
completely feasible in Bousi∼Prolog.

4.2 Knowledge-Based Systems

Knowledge-Based Systems focuses on systems that use knowledge-based techniques
to support decision-making, learning and action [25]. As an example of Knowledge
Based System, we implement a fuzzy logic controller which is an adaptation of the
one described in [33]. In the general model, the device being controlled has a set of
activators that take the input and use this to affect its settings and a set of sensors that
get information from the device. The fuzzy logic controller takes the ’crisp’ information
from the sensors as input and fuzzifies this into some linguistic variables, propagates
membership values using linguistic rules and, finally, defuzzifies the output and returns
these ’crisp’ values to the activators. The controller we shall implement will use a set of
fuzzy rules to adjust the throttle of a steam turbine according to its current temperature
and pressure to keep it running smoothly. First we need to decide upon the linguistic
variables that are going to be used in the BPL program. We do this by looking at the
descriptors that will be used by the rules, in this case ‘temperature’, ‘pressure’ and
‘throttle’:

:-domain(temperature(0,500,Celsius)).
:-fuzzy_set(temperature,

[cold(0,0,110,165), cool(110,165,220),
normal(165,220,275), warm(220,275,330),
hot(275,330,500,500)]).

:-domain(pressure(0,300,kpa)).
:-fuzzy_set(pressure,

[weak(0,0,10,70), low(10,70,130),
ok(70,130,190), strong(130,190,250),
high(190,250,300,300)]).

:-domain(throttle(-60,60,rpm)).
:-fuzzy_set(throttle,

[neg_large(-60,-60,-45,-30),
neg_medium(-45,-30,-15),
neg_small(-30,-15,0), zero(-15,0,15),
pos_small(0,15,30), pos_medium(15,30,45),
pos_large(30,45,60,60)]).

For the ’throttle’ variable, a negative value indicates that the throttle should be moved
back and a positive value that it should be moved forward. The problem results in mov-
ing the throttle by large, medium or small amounts in the negative and positive direc-
tions. After defining the linguistic variables used by our program, we can proceed to
define the rules. In this example the rules will cover all the possible combinations of
temperature and pressure and give a resultant throttle change for each. An example of
a rule specified by an expert is: If the temperature is cold and the pressure is weak then
increase the throttle by a large amount. This rule has a direct translation to BPL code:

throttle(positive_large):-
temperature(cold), pressure(weak).

In particular, the remainder rules for a situation of cold temperature and for a situation
of cool temperature are:

%% Cold
throttle(positive_medium):-

temperature(cold), pressure(low).
throttle(positive_small):-

temperature(cold), pressure(ok).
throttle(negative_small):-

temperature(cold), pressure(strong).
throttle(negative_medium):-

temperature(cold), pressure(high).
%% Cool
throttle(positive_large):-

temperature(cool), pressure(weak).
throttle(positive_medium):-

temperature(cool), pressure(low).
throttle(zero):-

temperature(cool), pressure(ok).
throttle(negative_medium):-

temperature(cool), pressure(strong).
throttle(negative_medium):-

temperature(cool), pressure(high).

We can define the rest of rules (for normal, warm, and hot temperature), in a similar
linguistic declarative way.

The inputs to the logical system should be taken from the sensors of the real device,
but in this simple example they are modeled by facts:

%% Facts
temperature(temperature#300).
pressure(pressure#150).

Running this BPL program, it is possible to return a ’crisp’ value for the throttle by
means of the BPL built-in predicate defuzzify 10. If we launch the goal “?-defuzzify(throttle(_),Y).”
we obtain the answer “Y = throttle#-14.09”.

It is noteworthy that this BPL program employs very few extensions to the Prolog
syntax, obtaining a natural codification of this problem that can be understood easily by
a Prolog programmer 11.

4.3 Information Retrieval and the Semantic Web.

Bousi∼Prolog allows us to implement declarative approaches to text cataloging us-
ing the ability of Bousi∼Prolog for flexible matching and knowledge representation by
10 As a reasonable starting point we are using the standard method of “average of the maximum”

as defuzzifying method.
11 We suggest to compare our solution with the one appeared in [33], in order to observe how

natural is our codification of this problem.

means of an ontology of terms modeled by a set of proximity equations. The following
example shows how proximity equations can be used as a fuzzy model for informa-
tion retrieval where textual information is selected or analyzed using an ontology [12],
that is, a structured collection of terms that formally defines the relations among them.
Hence, inside a semantic context instead of a purely syntactic context. This is an ex-
treme useful application in a world dominated by the Semantic Web [3], where people
are exposed to great amounts of (textual) information. A practical textual inference task
is finding concepts which are structurally analogous. Proximity equations can help in
this task. The set of proximity equations shown below has been obtained using Con-
ceptNet [24], a freely available commonsense knowledge-base and natural-language-
processing toolkit12. ConceptNet is structured as a network of semi-structured natural
language fragments. It has a GetAnalogousConcepts() function that returns a
list of structurally analogous concepts given a source concept. In our case the source
concept is “wheat”. The degree of structural analogy between terms is also provided
by ConceptNet. The set of proximity equations is a partial view of the original output,
which was hand-made adapted by ourselves.

We want to extract information on terms structurally analogous to “wheat” on a
given text. The fragment text of our example is one classified with the label (topic)
“wheat” and processed by erasing stop words and the endings of a word stem.

% DIRECTIVE
:- transitivity(yes).

% PROXIMITY EQUATIONS
wheat~bean=0.315. bean~crop=0.315.
wheat~corn=0.315. bean~child=0.33.
wheat~grass=0.315. bean~grass=0.315.
wheat~horse=0.315. bean~flower=0.315.
wheat~human=0.205. bean~horse=0.335.
bean~animal=0.35. bean~potato=0.5.
bean~corn=0.48. bean~table=0.35.

% FACTS and RULES
%% searchTerm(T,L1,L2), true (with approxima-
%% tion degree 1) if T is a (constant) term,
%% L1 is a list of (constant) terms (represen-
%% ting a text) and L2 is a list of triples
%% t(X,N,D); where X is a term similar to T
%% with degree D, which occurs N times in the
%% text L1
searchTerm(T,[],[]).
searchTerm(T,[X|R],L):-

T~X=AD, !, searchTerm(T,R,L1),
insert(t(X,1,AD),L1,L).

searchTerm(T,[X|R],L):- searchTerm(T,R,L).

insert(t(T,N,D),[],[t(T,N,D)]).

12 Available at http://conceptnet.media.mit.edu/.

insert(t(T1,N1,D),
[t(T2,N2,_)|R],[t(T1,N,D)|R]) :-
T1 == T2, N is N1+N2.

insert(t(T1,N1,D),
[t(T2,N2,D2)|R2],[t(T2,N2,D2)|R]) :-
T1 \== T2, insert(t(T1,N1,D), R2, R).

% GOAL
g(T,L):-searchTerm(T,

[agriculture,department,report,farm,
own,reserve,national,average,price,
loan,release,price,reserves,matured,
bean,grain,enter,corn,sorghum,rates,
bean,potato], L).

A simple session with the BPL system, launching the goal “?- g(corn,L).” pro-
vides the answer: “L = [t(potato, 1, 0.48), t(bean, 2, 0.48), t(corn,

1, 1.0)] with 1.0”. The information returned by the goal can be used lately to
analyze the input text or to obtain a degree of preference in a retrieval process.

It is noteworthy, that using similar techniques to the above described here, in [30]
we have presented a declarative approach to text categorization using the ability of
Bousi∼Prolog for flexible matching and knowledge representation by means of an on-
tology of terms modeled by a set of proximity equations.

4.4 Approximate Reasoning

Approximate reasoning is basically the inference of an imprecise conclusion from im-
precise premises. All the examples discussed along this paper concerns with approxi-
mate reasoning in some degree. However, in this section we want to make a reflexion on
fuzzy inference, such as it was formalized by Zadeh [39, 40], and how Bousi∼Prolog
can deal with this kind of reasoning.

In this approach, each granule of knowledge is represented by a fuzzy set or a fuzzy
relation on the appropriate universe. The premises of an argument are expressed as
fuzzy rules and a fuzzy inference is a generalization of modus ponens that can be for-
malized as: “if x is F then y is G” and “x is F ′” then “y is G′”. Roughly
speaking, x and y are variables that takes values on ordinary sets U and W , F and F ′

are fuzzy subsets on U whilst G and G′ are fuzzy subsets on W . Several methods have
been proposed to computeG′, though there is not consensus as to which is the best. The
method proposed by Zadeh consists of identifying a fuzzy relation from F and G, R on
U and W , which has a consequence over G′ on W .

Bousi∼Prolog proceeds in a different way. It constructs a fuzzy relation over the
fuzzy domains (more accurately, the set of linguistic labels in a linguistic variable)
involved in a BPL program. This fuzzy relation is built at compile time. Afterwards,
at run time, it is used by the weak SLD resolution procedure to infer an answer to
a query. For instance, Bousi∼Prolog models the following fuzzy inference in a very
natural way: “if x is young then x is fast” and “Robert is middle” then
“Robert is somewhat fast”.

:-domain(age(0,100,years)).
:-fuzzy_set(age,[young(0,0,30,50),

middle(20,40,60,80), old(50,80,100,100)]).

:-domain(speed(0,40,km/h)).
:-fuzzy_set(speed,[slow(0,0,15,20),

normal(15,20,25,40), fast(25,30,40,40)]).

speed(X, fast) :- age(X, young).
age(robert, middle).

Now, if we launch the goal:

?- speed(robert,somewhat#fast)

the BPL system answers “Yes with 0.375”.

5 Related Work

At the best of our knowledge, the inclusion of linguistic terms into the field of logic pro-
gramming was first suggested in [6], where some techniques for solving the problem of
matching fuzzy constants were introduced. Lately, in [2] a fuzzy pattern matching algo-
rithm based on Baldwin’s mass assignment theory was named “semantic unification”.
Also in [7] a fuzzy pattern matching method was developed which is based on necessity
and possibility measures. This method has been successfully used in the system Fuzzy-
Clips [8] and we adopted it for computing some relationship degrees when generating
fuzzy relations in Algorithm 1.

More recently, Virtanen [36, 37] presented a fuzzy unification algorithm based on
fuzzy equality relations (i.e., similarity relations) indicating the degree of resemblance
of two linguistic terms (how to compute these degrees are let unspecified). The proposed
algorithm propagates similarity degrees to the bindings of variables and fuzzy equality
entries to an auxiliary structure called “Fuzzy Equality Reference”. Variables are bound
to a set of candidate terms and a set of similarity degrees forming what is called a
“pre-substitution”. Lately the most suitable fuzzy set is selected and a fuzzy unification
degree is obtained. Some of these features were inherited by other semantic unification
methods lately.

Rios-Filho and Sandri [31] first introduce the distinction between general and spe-
cific knowledge, giving raise to what they call a contextual fuzzy unification algorithm.
Contrary to [4], [36] or [1] it does not propagate partial matching measures. It uses
different classes of measures to verify the matching between two fuzzy constants. De-
pending on their origin it uses: inclusion measures for comparing a general information
constant with regard to a specific information constant; resemblance measures other-
wise. These measures are ordinary relations by definition. They are employed during
the so called decision phase which returns a condition failure if the expressions do not
match. Therefore, the behavior of this algorithm is more rigid than ours and it does not
deliver a unification degree.

The work [1] can be seen as a refinement in the line of contextual fuzzy unifica-
tion. Alsinet and Godo make a clear separation between the syntactic and the semantic

component of a linguistic variable from which we take inspiration. This separation is
inherited by their fuzzy unification algorithm. Also they established a similarity mea-
sure for quantifying the inclusion degree between two fuzzy constants. The so called
similarity degree is used in the computation of a unification degree associated to a most
general unifier of two expressions.

All these proposals share some features in common: (i) In general, they are com-
plex algorithms with a proliferation of cases and sophisticated data structures taken into
account sets of linguistic term candidates and propagating partial matching measures.
In contrast, our proposal appears to be more simple and structured; (ii) the whole fuzzy
unification process is developed at run time managing a considerable amount of inter-
mediate information. We think this may be harmful for efficiency. However, our algo-
rithm can be seen as a two phase procedure where the semantic component of linguistic
terms is preprocessed at compile time. The fact that the relationship between linguistic
terms is compiled, jointly with the simplicity of the weak unification algorithm, which
uses these fuzzy relations, make our proposal more efficient; (iii) they do not work with
function symbols and variables only can be bound to (constant) linguistic terms (not
general terms). Neither a linguistic term can play the role of a predicate. In general,
all these proposals impose severe syntactical limitations. For instance, in Virtanen [37]
only the so called linguistic predicates are considered. That is, atomic formulas such as
p(y) or p(x, y) where p is the name of a linguistic variable an exactly one argument y is
a linguistic term in T (p). However, in our case, it is possible to treat linguistic terms as
function or predicate symbols and no limitations are imposed to the first order syntax
of the language. This feature may produce big benefices with little effort. For example,
Bousi∼Prolog has greater expressivity and can deal with approximate reasoning easily.
Think in the following BPL program:

wise(X) :- old(X).
very#old(john).

If we ask about whether john is a wise person, “?-wise(john)”, the BPL system an-
swers “Yes with 1.0” (because, the term very#old is included into the term old).

6 Conclusions and Future Work

Bousi∼Prolog is an extension of the standard Prolog language with a fuzzy unifica-
tion algorithm based on proximity relations which allows us to work with both fuzzy
linguistic and linguistic tools. In this paper, its design and implementation have been
detailed and through a number of (small but meaningful) examples extracted from dif-
ferent application areas (such as deductive databases, knowledge-based systems, data
retrieval or approximate reasoning), we have shown the potential power of it for these
areas and how it is an useful tool for dealing with vagueness and/or imprecision. It is
noteworthy that Bousi∼Prolog employs very few extensions to the Prolog syntax, ob-
taining a natural codification for vague problems that can be understood easily by a
Prolog programmer. This is to remark that, the main difference between the BPL sys-
tem and a standard Prolog system is in the inside, not in the surface. This feature should
be essential in any fuzzy logic programming language.

As a mater of future work, we have to investigate how to extend the weak SLD res-
olution rule with the ability of reasoning with antonyms in order to gear Bousi∼Prolog

towards a more natural fuzzy linguistic framework. We envision that this problem is
closely related with negation treatement. On the other hand, we should incorporate:
(graphical) tools for helping the programmer to define fuzzy sets; other fuzzy matching
options; and better techniques to defuzzify the output of a computation involving lin-
guistic variables. Also, the BPL system should allow the programmer to define its own
linguistic modifiers. Finally, we want to continue enhancing the BPL system in order to
make it a suitable tool for Soft Computing.

References

1. T. Alsinet and L. Godo. Fuzzy Unification Degree. In Proc. 2nd Int Workshop on Logic
Programming and Soft Computing’98, Manchester (UK), page 18 (1998).

2. J.F. Baldwin Evidential support logic programming Fuzzy Sets and Systems, 24, pp 1–26
(1987).

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May
(2001).

4. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. The implementation of FProlog – a fuzzy
prolog interpreter. Fuzzy Sets and Systems, 23, pp 119–129 (1987).

5. B. Buckles and F. Petry. A fuzzy model for relational databases. Fuzzy Sets and Systems,
7:213–226 (1985).

6. M. Cayrol, H. Farency, and H. Prade. Fuzzy pattern matching. Kybernetes, 11:103-106
(1982).

7. D. Dubois, H. Prade, and C. Testemale. Weighted fuzzy pattern matching. Fuzzy Sets and
Systems, 28:313-331 (1988).

8. R.A. Orchard. FuzzyClips Version 6.04A. User’s Guide Integrated Reasoning. Institute for
Information Technology. Canada (1998).

9. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press (1998).
10. Fontana, F., Formato, F.: Likelog: A logic programming language for flexible data retrieval.

In: Proc. of the ACM SAC, pp. 260–267 (1999).
11. S. Guadarrama, Muñoz and C. Vaucheret. Fuzzy Prolog: A New Approach Using Soft

Constraints Propagation. Fuzzy Sets and Systems, Elsevier, 144(1):127–150 (2004).
12. T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing.

International Journal Human-Computer Studies, 43(5-6):907–928 (1995).
13. C.J. Hinde. Fuzzy Prolog. International Journal of Man-Machine Studies, Volumen 24,

Issue 6, pp.569–595 (1986).
14. M. Ishizuka and N. Kanai. Prolog-ELF Incorporating Fuzzy Logic. In Proceedings IJ-

CAI’85. Los Angeles, CA, August 1985., pp. 701–703. Morgan Kaufmann (1985).
15. P. Julián-Iranzo. A procedure for the construction of a similarity relation. In Proc. of the

12th IPMU, pages 489–496. Univ. Málaga (2008).
16. P. Julián and C. Rubio. A similarity-based WAM for Bousi∼Prolog. In: LNCS, vol 5517,

pp. 245–252. Springer, Heidelberg (2009).
17. P. Julián and C. Rubio. A Declarative Semantics for Bousi∼Prolog. In: Proc. of 11th Intl.

Symposium on PPDP’09. ACM SIGPLAN (2009).
18. P. Julián, C. Rubio and J. Gallardo. Bousi∼Prolog: a Prolog extension language for flexible

query answering. In: ENTCS, vol 248, pp. 131-147. Elsevier, Amsterdam (2009).
19. P. Julián and C. Rubio. An Efficient Fuzzy Unification Method and its Implementation into

the Bousi∼Prolog System. In: Proc. of FUZZ-IEEE, (2010).
20. R.A. Kowalski. Algorithm = Logic + Control. Communications of the ACM, 22(7):424–436

(1979).

21. R.C.T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the ACM, 19(1):119–129
(1972).

22. D. Li and D. Liu. A fuzzy Prolog database system. John Wiley & Sons, Inc. (1990).
23. V. Loia, S. Senatore, M. I.Sessa, Similarity-based SLD Resolution and its role for web

knowledge discovery. Fuzzy Sets and Systems, 144(1):151–171 (2004).
24. H.Liu and P. Singh. Conceptnet – a practical commonsense reasoning tool-kit. BT Tech-

nology Journal, 22(4):211–226 (2004).
25. K. K. Majumdar and D.D. Majumde. Fuzzy knowledge-based and model-based systems.

Journal of Intelligent and Fuzzy Systems, 18(4):391–403 (2007).
26. A. Motro. VAGUE: A user interface to relational databases that permits vague queries.

ACM Transactions on Office Information Systems, 6(3):187–214 (1988).
27. E.T. Mueller. Commonsense Reasoning. Morgan Kaufmann (2006).
28. T. Pedersen, S. Patwardhan and Jason Michelizzi. WordNet::Similarity - Measuring the

Relatedness of Concepts. In: Proc. AAAI-04, pp. 1024-1025 (2004).
29. H. Prade and C. Testemale. Generalizing database relational algebra for the treatment

of incomplete/uncertain information and vague queries. Information Science, 34:115–143
(1984).

30. F. P. Romero, P. Julián-Iranzo, M. Ferreira-Satler, and J. Gallardo-Casero. Classifying unla-
beled short texts using a fuzzy declarative approach. Language Resources and Evaluation,
47(1):151-178 (2013).

31. L.G. Rios-Filho and S.A. Sandri. Contextual Fuzzy Unification. In: Proc. of IFSA’95,pp.
81–84 (1995).

32. M.I. Sessa. Approximate reasoning by similarity-based sld resolution. Theoretical Com-
puter Science, 275(1-2):389–426, 2002.

33. R. Shalfield. LPA-PROLOG: Flint reference. Technical report, Logic Programming Asso-
ciates ltd (2005).

34. S. Shenoi and A. Melton. Proximity relations in the fuzzy relational database model. Fuzzy
Sets and Systems, 100:51–62 (1999).

35. A. Sobrino. The Role of Synonymy and Antonymy in ’Natural’ Fuzzy Prolog. In Studies
in Fuzziness and Soft Computing vol. 273, pp. 209–236 (2012).

36. H.E. Virtanen. Fuzzy Unification. In: Proceedings IPMU’94, Paris (France), pp. 1147–
1152 (1994).

37. H.E. Virtanen. Linguistic Logic Programming. Logic Programming and Soft Computing,
p.p: 91–128 (1998).

38. L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353 (1965).
39. L.A. Zadeh. The Concept of a Linguistic Variable and its Applications to Approximate

Reasoning I, II and III. J. of Information Sciences 8 and 9, Elsevier (1975).
40. L.A. Zadeh. Fuzzy Logic and Approximate Reasoning. Synthese, 30(3–4):407–428,

Springer Netherlands (1975).

View publication statsView publication stats

https://www.researchgate.net/publication/262358878

