
UNIVERSIDAD DE CASTILLA-LA MANCHA
ESCUELA SUPERIOR DE INFORMÁTICA
Dpto. de Tecnologías y Sistemas de Información

Bousi∼Prolog ver. 2.0:
Implementation, User Manual and Applications

Autors: Pascual Julián-Iranzo and Juan Gallardo-Casero
Other contributors: Fernando Sáenz-Pérez (U. Complutense de Madrid)

Bousi∼Prolog ver. 2.0: Implementation, User Manual and Applications
© Pascual Julián-Iranzo & Juan Gallardo-Casero, 2008-2017. Pascual Julián-Iranzo, Juan Gallardo-
Casero & Fernando Sáenz-Pérez, 2017-2019.

Bousi∼Prolog is licensed for research and educational purposes only and it’s distributed with NO
WARRANTY OF ANY KIND. You are freely allowed to use, copy and distribute Bousi Prolog
provided that you make no modifications to any of its files and give credit to its original authors.

This documentation was written and formatted with LATEX. All the figures and diagrams that appear
in it were designed with Gimp, Inkscape or ArgoUML. The shield of the cover is work of D. Villa, I.
Díez, F. Moya, Xavigivax and G. Paula and is distributed under the Creative Commons Attribution
3.0 license.

ii

ABSTRACT

Logic Programming is a programming paradigm based on first order logic that, in recent

decades, has been used in fields such as knowledge representation, artificial intelligence or

deductive databases. However, Logic Programming presents an important limitation when

dealing with real-world problems where precise information is not available, since it does

not have the tools to explicitly handle uncertainty and vagueness.

One of the related frameworks to this paradigm is Fuzzy Logic Programming, which

integrates concepts coming from Fuzzy Logic into Logic Programming to solve the disad-

vantages of traditional logic languages when dealing with uncertainty and ambiguity.

In this work we propose a Fuzzy Logic Programming language based on similarity

relations called Bousi∼Prolog. The language Bousi∼Prolog is an extension of Prolog that

replaces the classic unification algorithm of the operational semantics of Logic Program-

ming with a weak unification algorithm. The use of this algorithm allows easy handling of

imprecise information, while making the query answering process more flexible.

The present work covers both the Bousi∼Prolog language design and specification and

its implementation. The system that implements the Bousi∼Prolog language has been named

BPL system and is composed of a command processor, a compiler and an interpreter.

Finally, in this work we also provide several practical examples in which the usefulness

of Bousi∼Prolog is highlighted to solve certain problems that could not be solved naturally

with non-fuzzy logic languages.

iii

CONTENTS

Contents . v

List of Figures . ix

List of Tables . xi

List of code listings . xiii

1. Introduction, Motivations and Goals . 1

1.1. Motivation . 1

1.2. Main Goal . 2

1.3. Specific Goals . 3

1.4. Structure of this Document . 4

2. Fuzzy Logic Programming . 5

2.1. Fuzzy Logic . 5

2.1.1. Fuzzy sets . 5

2.1.2. Fuzzy Relations . 6

2.1.3. Linguistic variables . 9

2.1.4. Fuzzy relations and linguistic variables 10

2.2. Foundations of Fuzzy Logic Programming 11

2.2.1. Goals of a fuzzy logic programming system 12

2.2.2. Weak unification . 12

2.2.3. WSLD Resolution . 14

2.3. Fuzzy Logic Programming Systems . 15

2.3.1. Bousi∼Prolog (low-level implementation) 15

2.3.2. SiLog . 18

2.3.3. Likelog . 19

2.3.4. Comparative . 21

3. The Bousi∼Prolog language . 23

3.1. Characteristics of the Bousi∼Prolog language 23

v

3.1.1. Weak unification and fuzzy relations 23

3.1.2. Fuzzy sets and linguistic variables 29

3.1.3. Negation in Bousi∼Prolog . 34

3.2. A Simple Example . 35

3.3. Translation to TPL code . 36

3.3.1. Purpose of the translation . 37

3.3.2. Simulating WSLD resolution . 38

4. Development of the BPL system . 43

4.1. Work method . 43

4.2. Requirement specification . 44

4.3. Analysis . 48

4.3.1. Use cases . 49

4.3.2. Sequence diagrams . 55

4.4. Design . 58

4.4.1. System architecture . 58

4.4.2. Module bplHelp . 60

4.4.3. Module flags . 61

4.4.4. Module directives . 64

4.4.5. Module evaluator . 65

4.4.6. Module parser . 69

4.4.7. Module translator . 72

4.4.8. Module bplShell . 78

4.4.9. Module bousi . 81

4.4.10. Module foreign . 81

4.5. Implementation . 84

4.5.1. Patterns and style norms . 84

4.5.2. Weak unification algorithm . 84

4.5.3. Term comparison algorithm . 86

4.5.4. Closures computation . 87

4.5.5. Syntactic analysis of terms . 88

4.5.6. Execution of higher-order predicates 94

4.5.7. Library of foreign predicates . 96

vi

4.5.8. Example sessions . 97

4.6. Testing . 97

4.6.1. Test plan . 97

4.6.2. Coverage report . 103

5. Bousi∼Prolog applications . 105

5.1. Text cataloging . 105

5.2. Flexible deductive databases . 108

5.3. Approximate reasoning . 110

6. Conclusions and Future Work . 113

6.1. Resumen . 113

6.2. Advantages and Limitations . 114

6.3. Final conclusions . 115

6.4. Future work . 116

A. Installation manual of the BPL system . 119

A.1. Linux and Mac OS X . 119

A.2. Windows . 121

B. BPL system user manual . 125

C. Graphic notation for Prolog programs . 133

C.1. Introduction . 133

C.2. External view diagrams . 133

C.3. Internal view diagrams . 135

Bibliography . 139

vii

LIST OF FIGURES

2.1. Graphs and definitions of several characteristic functions 7

2.2. Example of definition of the linguistic variable «temperature» 10

2.3. Structure of the low level implementation of Bousi∼Prolog 16

2.4. Unicorn graphic environment for the Bousi∼Prolog language 17

2.5. SiLog similarity panel . 19

2.6. Main window of SiLog . 20

4.1. Use cases diagram of the BPL system . 49

4.2. Sequence diagram of loading and compiling a program 56

4.3. Sequence diagram of the execution of a query (1 answer, 2 requested) . . . 57

4.4. BPL system architecture . 59

4.5. Functional dependencies of the BPL system 60

4.6. Diagrams of the module bplHelp . 61

4.7. Diagrams of the module flags . 62

4.8. Diagrams of the module directives . 64

4.9. Diagrams of the module evaluator . 66

4.10. Diagrams of the module parser . 70

4.11. Diagrams of the module translator . 73

4.12. Diagrams of the module bplShell . 79

4.13. Diagrams of the module bousi . 81

4.14. External view diagram of the module foreign 82

4.15. Limitations of right recursive analyzers . 91

4.16. Welcome to the BPL system . 98

4.17. Getting help on the BPL system . 99

4.18. Getting help on the lc command in the BPL system 99

4.19. Loading a program in the BPL system . 100

4.20. Loading an ontology in the BPL system 100

4.21. Loading a code file with errors in the BPL system 101

4.22. Execution of queries in the BPL system 101

4.23. Querying and modifying the lambda cut in the BPL system 102

ix

4.24. BPL system command processor autocomplete 102

A.1. Installation Script of the BPL system in a Linux operating system 120

A.2. Batch file of installation of the BPL system in Windows 123

A.3. Shortcuts created by the installer of the BPL system in Windows 123

B.1. Wellcome to the BPL system . 126

B.2. Loading a program and an ontology in the BPL system 127

B.3. Execution of several queries in the BPL system 128

B.4. Querying and modification of the lambda cut in the BPL system 129

C.1. Example of the external view diagram of a simple system 134

C.2. Example of a internal view diagram of a simple system 136

x

LIST OF TABLES

2.1. Properties of some common relations . 8

2.2. Definition of several linguistic modifiers 9

2.3. Transition rules of the weak unification algorithm 13

2.4. A comparison of three similarity-based fuzzy logic programming systems . 22

3.1. Available fuzzy relations in Bousi∼Prolog 25

3.2. Proximity equations automatically generated from an example relation . . . 25

3.3. Options of the transitivity directive . 26

3.4. Application example of the lambda_cut directive 29

4.1. Predicates and comparators of the fuzzy relations available in Bousi∼Prolog 68

4.2. Report of coverage of the BPL systemtests 104

xi

LIST OF CODE LISTINGS

4.1. Example of use of the directive include 71

4.2. Definite clause grammar that recognizes the language a*b*c* 72

4.3. Expansion of the equations in a BPL code fragment 75

4.4. Expansion of the rules in a BPL code fragment 76

4.5. Translation of linguistic variables in a BPL code fragment 77

4.6. Implementation of the weak unification algorithm 85

4.7. Implementation of the term comparison algorithm 87

4.8. Implementation of the algorithm to compute the reflexive, symmetric and/or

transitive closure . 89

5.1. Bousi∼Prolog Program for a flexible search of terms 106

5.2. Ontology used to test the text classifier 107

5.3. A films and theaters deductive database implemented in bpl 109

5.4. An example of approximate reasoning in Bousi∼Prolog 112

xiii

CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS

This chapter introduces the work that will be done in this work, justifies the need to

carry it out and lists the main objectives that are to be achieved. At the end of the chapter,

we explain how this documentation has been structured.

1.1. MOTIVATION

Since the end of the 1960s, Declarative Programming, and specifically Logic Program-

ming, has been used in a wide range of applications, among which knowledge representation,

artificial intelligence, deductive databases and metaprogramming stand out. Logic program-

ming languages like Prolog [14] have reached a high degree of maturity in recent decades,

thanks to which their use has extended beyond research and education.

However, because they are based on first order logic, the traditional logic programming

languages lack mechanisms to deal explicitly with uncertainty or vagueness. This limita-

tion is an obstacle to representing and managing many real-world problems where precise

information is not available.

In this sense, it is widely accepted that fuzzy sets theory and fuzzy logic [44] constitute

one of the mathematical basis for the treatment of vagueness and incomplete information.

For this reason, in order to solve the aforementioned drawbacks, at the beginning of the

1980s Fuzzy Logic Programming arose, in which concepts of fuzzy logic were integrated

within the core of pure logic programming.

Languages of this new paradigm are able to handle uncertainty, ambiguity and approx-

imate reasoning in a natural way, so its use is applicable to fields such as fuzzy control and

natural language processing.

At the present time there are different ways to make this integration between logic pro-

gramming and fuzzy logic, but an approach that is especially useful, if what it is intended

is to make the querying answering process more flexible, is the one presented in [39]. In

the aforementioned article, the concept of similarity between terms is introduced at a syn-

tactic level, and a new fuzzy operational mechanism is defined based on a variant of SLD

1

CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS

resolution1 called weak SLD resolution.

To see the usefulness of this new resolution strategy, consider the following simple

argument inspired by the examples of the articles [39, 22]:

Thrillers are interesting.

«The Treasure Island» is an adventure novel.

For me, it is more or less true that thrillers and adventure novels are similar.

Therefore, it is more or less true that «The Treasure Island» is an interesting novel.

Formalizing the previous example in a traditional logic system is not trivial when in-

tervening a relation and an intermediate truth degree («more or less true») which is charac-

teristic of fuzzy logic. For this reason, it is necessary to implement into logic programming

languages a fuzzy resolution strategy such as the WSLD resolution, which may consider

terms, that are not syntactically equal, as similar and offer the possibility of assigning an

approximation degree to these related terms.

1.2. MAIN GOAL

In this work we propose the design of a fuzzy logic programming language that uses

the Weak SLD resolution strategy as an operational mechanism, and the construction of the

necessary development tools to create, edit and execute programs written in that language .

The main objectives of this new language are to support flexible query answering, to al-

low the manipulation of fuzzy sets and to incorporate other features with which it is possible

to easily handle imprecise information using declarative techniques.

The new language has been proposed as an extension of Prolog, the most commonly

used logic programming language. So that it will maintain most of its syntactical features,

finding the biggest differences in several specific constructions and in their resolution and

unification algorithms.2 For these reasons, the language has been baptized as Bousi∼Pro-

log (abbreviated BPL), with Bousi being the spanish acronym for «Unificación BOrrosa por

SImilitud».

In Bousi∼Prolog the user will be able to declare within their programs relations of

1SLD resolution (acronym of «Linear Deduction with Selection function for defined clauses») is the opera-
tional mechanism on which a representative subset of logic programming is based.

2Unification is a process of great importance in logic programming by which, given two different terms, we
calculate a substitution of variables that, when applied to these terms, makes them syntactically equal.

2

1.3. SPECIFIC GOALS

similarity between symbols using the operator ∼, as well as fuzzy sets using a special syntax.

These relations and fuzzy sets will be taken into account during the answering search process

to offer a wider range of solutions than would be obtained with a standard logic programming

system.

Due to its characteristics, Bousi∼Prolog will be suitable for the construction of flex-

ible deductive databases, knowledge-based systems, information retrieval systems and, in

general, applications that require approximate reasoning.

Finally, it is important to note that this project has marked a turning point in the devel-

opment of Bousi∼Prolog, having served to collect and document all the knowledge acquired

so far, add the features that had been raised in recent months and get a stable version of this

emerging programming language.

1.3. SPECIFIC GOALS

The main objectives that have been considered when designing and implementing the

Bousi∼Prolog language, and that have marked the progress of the present work since its

starting point, are the following:

1. Design a fuzzy logic programming language (Bousi∼Prolog) based on Weak SLD

resolution that makes the search for answers more flexible and includes techniques

for operating with fuzzy sets.

2. Implement the lexical, syntactic and semantic analysis of the programs written in the

Bousi∼Prolog language.

3. Develop a compiler able of translating Bousi∼Prolog programs into intermediate

structures that can be used later by a language interpreter.

4. Implement a Bousi∼Prolog interpreter that can resolve queries using the weak SLD

resolution as the operational mechanism.

5. Build a command processor that allows loading and executing programs written in

Bousi∼Prolog using the compiler and interpreter previously implemented.

6. Develop a user interface that facilitates both the use of the previous tools and the

editing and maintenance of Bousi∼Prolog programs.

7. Apply the built system to various practical cases.

The Bousi∼Prolog command processor, the compiler and the interpreter, which as a

3

CHAPTER 1. INTRODUCTION, MOTIVATIONS AND GOALS

whole from now on will be referred to as the Bousi∼Prolog system or BPL system, will be

implemented in SWI-Prolog and to a lesser extent in C.

1.4. STRUCTURE OF THIS DOCUMENT

The documentation has been structured in 7 chapters whose contents are summarized

below.

In Chapter 2 the antecedents and the state of the art regarding fuzzy logic program-

ming is presented, including both an explanation of the theoretical concepts on which this

paradigm is based and an overview of some of its main languages.

In Chapter 3 the characteristics of the Bousi∼Prolog language are described in detail

and the approach that has been followed to translate the programs written in this language.

Chapters 4 and ?? address the development of the Bousi∼Prolog system and the user inter-

face, respectively, from requirement analysis to testing, through all the stages of Software

Engineering.

Next, Chapter 5 shows a series of practical examples in which Bousi∼Prolog can be

applied successfully, while in Chapter 6 the conclusions that have been extracted after the

completion of this work and some proposals for future work are presented.

Finally, in the last part of this document we provide several appendices with the user

and installation manuals of the implemented tools and the description of one of the notations

used in this work.

4

CHAPTER 2. FUZZY LOGIC PROGRAMMING

In this chapter we explain how concepts from fuzzy logic can be integrated into classical

logic programming, what leads to fuzzy logic programming.

The first sections of this chapter are intended to introduce various concepts of fuzzy

logic, such as fuzzy relationships and linguistic variables. Subsequently, the characteris-

tics of the approach to fuzzy logic programming used in the elaboration of this work are

explained and the Weak SLD resolution is defined. Finally, a study of some existing pro-

gramming languages within the fuzzy logic programming framework is carried out.

2.1. FUZZY LOGIC

Fuzzy logic is an extension of bivalent logic that emerged from the theory of fuzzy sets

proposed by L. A. Zadeh in [44]. Its main characteristic is that the expressions will not only

be true or false, but that they will be able to assign a truth value that oscillates between an

absolute certainty and falsehood.

From its origins, the purpose of fuzzy logic has been to represent the uncertain and

imprecise knowledge that is present in many problems of the real world, to make approxi-

mate reasoning about them. Thus, fuzzy logic offers mechanisms to deal with concepts and

quantifiers of natural language that, due to their vagueness, would be difficult to represent

with classical logic, such as «high», «thin», «far» , «cold», «little», «frequently», «more or

less», etc. [46]

2.1.1. Fuzzy sets

Fuzzy set theory is a generalization of the classical set theory in which the limit that

determines whether an element belongs to a set or not is not completely defined, so it is

considered the case that an element belongs partially to a set [36]

Formally, one of the ways to define a classic set A on a domain U is to specify its

membership function or characteristic function µA(x). This function can only take the values

5

CHAPTER 2. FUZZY LOGIC PROGRAMMING

0 or 1 depending on whether the element x belongs to the set or not.

A = {x | x ∈ U ∧ µA(x) = 1}

µA(x) =

1 si x ∈ A

0 si x /∈ A

In fuzzy logic, the characteristic function µ(x) of a fuzzy set can take any value within

the [0, 1] interval. Therefore, fuzzy sets are defined by tuples consisting of an element x and

the value of the characteristic function applied to that element.

A′ = {(x, µA′(x)) | x ∈ U}

µA′(x) ∈ [0, 1]

The characteristic functions of fuzzy sets can have different forms depending on the do-

main considered, the complexity of the fuzzy set and the precision that is necessary. Because

of its easy definition and simplicity when making calculations, the membership functions

most commonly used when dealing with numerical domains are the functions: singleton, tri-

angular, trapezoidal, pseudo-exponential, gaussiana, Γ(gamma) and S [35]. The Figure 2.1

shows the graphs of five of these characteristic functions.

2.1.2. Fuzzy Relations

In general terms, a relation is a set of tuples that allow representing the association or

connection between the elements of two or more sets (not necessarily different). Depending

on the number of sets involved in a relation, it is called binary, ternary, quaternary or, in

general, n-ary relation.

Formally, given a set of sets X1, . . . , Xn, a relation is any subset of the Cartesian

productX1× · · · ×Xn. Therefore, being actually sets, relationships can also be characterized

by membership functions. In particular, a binary relation of a set X can be defined in the

following way:

R = {(u, v) | u, v ∈ X}

µR(u, v) =

1 si (u, v) ∈ R

0 si (u, v) /∈ R

Extending the above definition to the fuzzy logic case, a fuzzy binary relation on a set

X can be expressed as a fuzzy subset on the product X × X , and represents the degree of

6

2.1. FUZZY LOGIC

Domain point (singleton) Triangular function

1

0

0,5

0 100

m
1

0

0,5

0 100

a

b

c

µ(x) =

{
1 if x = m

0 if x 6= m

µ(x) =



0 if x < a

x− a
b− a

if a ≤ x < b

c− x
c− b

if b ≤ x < c

0 if x ≥ c

Trapezoidal function S function

1

0

0,5

0 100

a

b c

d

1

0

0,5

0 100

a

b

m

µ(x) =



0 if x < a

x− a
b− a

if a ≤ x < b

1 if b ≤ x < c

d− x
d− c

if c ≤ x < d

0 if x ≥ d

µ(x) =



0 if x < a

2

(
x− a
b− a

)2

if a ≤ x < m

1− 2

(
x− b
b− a

)2

if m ≤ x < b

1 if x ≥ b

Pseudo-exponential function

1

0

0,5

0 100

m

µ(x) =
1

1 + k(x−m)2

donde k > 1

Figure 2.1: Graphs and definitions of several characteristic functions [35].

7

CHAPTER 2. FUZZY LOGIC PROGRAMMING

Reflexivity Symmetry Transitivity Name
8 8 4 Strict order relation

4 4 n Proximity Relation

4 8 4 Partial order relation

4 4 4 Similarity relation1

Legend: 4 the property must be fulfilled for all r ∈ R.
8 the property must not be fulfilled for any r ∈ R.
n the property can be fulfilled for some r ∈ R.

Table 2.1: Properties of some common relations.

presence or absence of interconnection between the elements of X [36]. As fuzzy subsets,

the characteristic functions of fuzzy relations can take any value between 0 and 1.

R′ = {((u, v), µR′(u, v)) | u, v ∈ X}

µR′(u, v) ∈ [0, 1]

Fuzzy relations, as classical relations, can have a series of properties, among which the

following stand out:

n Reflexivity: R(x, x) = 1 for all x ∈ X .

n Symmetry: R(x, y) = R(y, x) for all x, y ∈ X .

n Transitivity: R(x, z) ≥ R(x, y)4R(y, z) for all x, y, z ∈ X .

The combination of these properties gives rise to different kinds of relations, such as

those shown in Table 2.1.

On the other hand, the 4 operator that appears in the transitivity definition represents

a t-norm, an extension of the boolean operator AND to the fuzzy logic. Some of the most

common t-norms in the literature are [31]:

n Minim / Gödel: x4 y = min(x, y).

n Product: x4 y = xy.

n Łukasiewicz: x4 y = max(0, x+ y − 1).

n Drastic intersection: x4 y =

min(a, b) if a = 1 o b = 1

0 otherwise

n Hamacher’s product: x4 y =

0 if a = b = 0
xy

x+ y − xy
otherwise

1The term «similarity relation» is often used with preference to the term «equivalence relation» when refer-
ring to fuzzy relations.

8

2.1. FUZZY LOGIC

extremely very more or less somewhat

h(x) = x3 h(x) = x2 h(x) =
√
x h(x) = 3

√
x

Table 2.2: Definition of several linguistic modifiers [19].

2.1.3. Linguistic variables

A linguistic variable is a variable whose allowed values are words or sentences of a

certain language instead of quantitative terms [45]. For example, «temperature» would be

a linguistic variable if it were defined through natural language words such as «very cold»,

«cold», «warm», «not hot», «hot» or «very hot», in place with concrete values such as «18 C»

or «–20 F».

According to Zadeh [45] a linguistic variable V is characterized by a tuple of five ele-

ments 〈X,T (X), U,G,M〉, where:

n X is the name of the linguistic variable.

n T (X) is the set of terms or linguistic values that the variable can take.

n U represents the universe of discourse.

n G is a grammar that contains the rules to generate the terms of T (X).

n M is a semantic rule that relates each linguistic value x of T (X) with its meaning,

M(x), expressed by means of a fuzzy subset of U 2. In turn, these fuzzy subsets are

characterized by membership functions µx that assign to each u value of the universe

of discourse their membership in M(x).

As an example, Figure 2.2 shows a possible definition of the linguistic variable «tem-

perature». In this example only three very simple linguistic values have been considered

(«cold», «warm» and «hot»), but other more complex ones could have been specified such

as «very cold», «little hot» or «more or less warm».

In order to facilitate the definition of this type of complex linguistic terms, composed

from other simpler terms, the concept of linguistic modifier is introduced. A linguistic mod-

ifier is a function [0, 1] −→ [0, 1] which is applied to the result of the characteristic function

of a linguistic term in order to alter its meaning. Table 2.2 presents four linguistic modifiers

of the many that can be defined.

2Given a universe of discourse U , F(U) denotes the set of all fuzzy subsets of U . Thus, the semantic rule
M associates an element of F(U) with each linguistic value of T (X).

9

CHAPTER 2. FUZZY LOGIC PROGRAMMING

1

0

0,5

-40 800-10 10 20 40

temperatura

fríoμ templadoμ calienteμ
X = «temperature»

T (X) = {cold, hot, warm}
U = [−40, 80] Celsius degrees

M : T (X) −→ F(U)
cold 7→ µcold
hot 7→ µhot
warm 7→ µwarm

Figure 2.2: Example of definition of the linguistic variable «temperature».

2.1.4. Fuzzy relations and linguistic variables

There are several proposals to integrate fuzzy sets and linguistic variables into fuzzy

logic programming languages, as can be seen in [41, 37]. This section focuses on the pro-

posal of [23, 19], which consists in transforming the information that is represented with a

linguistic variable into a reflexive fuzzy relation.

The main strength of this approach is that it distinguishes between specific and general

knowledge. An example of the importance of this distinction can be seen with the linguistic

terms «young» and «between 17 and 20 years old»: while a person who is between 17 and 20

years old is clearly young, a young person must not necessarily be between 17 and 20 years

old. For this reason, the relationship between the values «between 17 and 20 years old» and

«young» and between the values «young» and «between 17 and 20 years old» should not

be the same, obtaining thus a fuzzy relation that satisfies the reflexive property but not the

symmetric one3.

Given a linguistic variable V = 〈X,T (X), U,G,M〉, you can define a binary fuzzy

relation R on the set T (X) that for each pair of terms of T (X) it assigns a degree of inter-

connection between 0 and 1.

R : T (X)× T (X) −→ [0, 1]

(T1, T2) 7→ α

The method proposed by [23, 19] to calculate the relationship between the different

terms of a linguistic variable distinguishes the following cases:

a) If the second linguistic term is defined by a fuzzy domain point or singleton (see Fig-

ure 2.1), the relationship must be calculated directly using the membership function

3Actually, the obtained relation is symmetric but only at the level of its connections, that is, for any values
âC‹âC‹a and b, if R(a, b) 6= 0 then R(b, a) 6= 0 but it does not have to be fulfilled that R(a, b) = R(b, a).

10

2.2. FOUNDATIONS OF FUZZY LOGIC PROGRAMMING

of the other term. Thus, given two linguistic terms T1 and T2, if the meaning of T2 is

represented with a fuzzy domain point, the relationship between both values would

be:

R(T1, T2) = µT1(t2)

where t2 is the only value for which µT2(t2) = 1

b) Otherwise, a technique known as matching is applied to calculate the similarity

between the fuzzy subsets of both terms. A matching function that has already

been used successfully in systems like FuzzyCLIPS [33] is the following, extracted

from [7]:

R(T1, T2) =

P (T1, T2) if N(T1, T2) > 0.5

(N(T1, T2) + 0.5) ∗ P (T1, T2) otherwise

where P (T1, T2) = max (min (µT1(u), µT2(u))) ∀u ∈ U

and N(T1, T2) = 1− P (T̄1, T2),

being T̄1 the complement of the term T1, whose membership

function is µT̄1
(u) = 1− µT1(u) ∀u ∈ U

2.2. FOUNDATIONS OF FUZZY LOGIC PROGRAMMING

As was mentioned, classical Logic programming languages do not have mechanisms

to handle uncertainty or inaccurate information, which represents a limitation when dealing

with certain real-world problems.

Fuzzy logic programming attempts to mitigate these problems by introducing concepts

from fuzzy logic, such as those studied in section 2.1, into the core of a logic programming

language.

However, as indicated in [38], currently there is no standard way of integrating fuzzy

logic and logic programming, but there are several lines of work in that direction, from those

that replace the classic resolution mechanism by a fuzzy resolution strategy [30, 43, 12]

to those that extend SLD resolution with a fuzzy unification algorithm [10, 26, 39], going

through hybrid approaches like [3, 42]. Other frameworks related to fuzzy logic program-

ming are the qualified logic programming [6] and the generalized annotated logical program-

ming [25].

11

CHAPTER 2. FUZZY LOGIC PROGRAMMING

Of all mentioned proposals, an approach that is especially useful if what is intended

with the language is to make the search for solutions more flexible is the one that M. Sessa in-

troduces in [39], which is based on a variant of the SLD resolution strategy called: similarity-

based SLD resolution. From now on, this strategy will be named as the Weak SLD resolution

or WSLD resolution.

2.2.1. Goals of a fuzzy logic programming system

Roughly speaking, the objective of a logic programming system is to check if a goal

Q is derivable from a program Π and to know for which values of the goal variables this

condition will be fulfilled.

In fuzzy logic programming, since intermediate truth degrees between absolute cer-

tainty and falsehood must be considered, it is also interesting to know to what extent the goal

Q is derivable from Π. To do this, in the way proposed by [39], the concept of approxima-

tion degree is introduced in the processes of unification and resolution, based on a similarity

relation (i.e., a reflexive, symmetric and transitive relation) between the constant symbols,

the function symbols and the relation symbols of the program alphabet.

For example, given the program Π = {p(a)} and the relation R(a, b) = 0.5, for a goal

likeQ=p(b) a fuzzy logic system should answer that p(b) is true with approximation degree

0.5, since p(a) is a fact of the program and a is similar to b with degree 0.5.

2.2.2. Weak unification

The WSLD resolution strategy replaces the classic unification algorithm of Martelli and

Montanari [28] by an extension of it that we name weak unification algorithm.

In this variant of the unification algorithm two expressions E1 =f(t1, . . . , tn) and E2 =

g(s1, . . . , sn) are unifiable if f and g are similar to each other with a degree greater than a

certain cut value λ>0 and each of the arguments ti and si pairwise weakly unify. Note that

now the symbols f and g do not have to be syntactically equal so that the expressions can be

unified, but it is enough that they are considered similar.

The weak unification algorithm uses a state transition system analogous to the classical

algorithm, but adds a new element to the concept of state: the approximation degree. In

this way, the initial state, 〈{E1≈E2}, id, 1〉, is formed by the initial unification problem, the

identity substitution and the maximum approximation degree. The objective is to apply the

12

2.2. FOUNDATIONS OF FUZZY LOGIC PROGRAMMING

Regla 1: Term decomposition

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, α〉, R(f, g) = β ≥ λ

〈{t1 ≈ s1, . . . , tn ≈ sn} ∪ E, θ,min(α, β)〉
where f and g can be either function symbols or relation symbols,

or constants if n = 0; λ is the cut value

Regla 2: Removal of trivial equations.

〈{X ≈ X} ∪ E, θ, α〉
〈E, θ, α〉

where X is any variable

Regla 3: Swap

〈{t ≈ X} ∪ E, θ, α〉
〈{X ≈ t} ∪ E, θ, α〉

if the term t is not a variable
Regla 4: Variable elimination

〈{X ≈ t} ∪ E, θ, α〉
〈{X/t}(E), {X/t} ◦ θ, α〉

if t is a term in which the variable X does not occur
Regla 5: Failure rule

〈{f(t1, . . . , tn) ≈ g(s1, . . . , sn)} ∪ E, θ, α〉, R(f, g) < λ

〈Failure, θ, α〉
where f and g can be either function or relation symbols

Regla 6: Occur check)

〈{X ≈ t} ∪ E, θ, α〉
〈Failure, θ, α〉

if the variable X occurs in the term t

Table 2.3: Transition rules of the weak unification algorithm [39, 17].

rules of Table 2.3 until reaching one of the two final states:

n Success state: 〈∅, θ, α〉. Then, the expressions E1 and E2 are unifiable with approxi-

mation degree α and θ is the weak most general unifier of both expressions (this weak

most general unifier, contrary to what happens in the classical case, is not unique).

n Failure state: 〈Failure, θ, α〉. Then, the expressions E1 and E2 can not be unified.

The only rules of Table 2.3 that have a behavior different from the classical case are

the first and the fifth. Rule 1 is the one that contributes to calculate the final approximation

degree of the initial expressions, always taking the minimum of all the relation values that

13

CHAPTER 2. FUZZY LOGIC PROGRAMMING

are involved in the unification process. On the other hand, Rule 5 has had to be adapted to

take into account the case where the function or relation symbols rooting an expression (term

or atomic formula) are neither syntactically equal to nor similar to each other.

2.2.3. WSLD Resolution

The WSLD resolution inference rule is like the SLD resolution rule in classical logic

programming, except for the use of the weak unification algorithm and the incorporation of

the approximation degrees. During a WSLD resolution process, it is assigned an approxima-

tion degree to each goal clause, that is calculated from the degrees resulting from the weak

unification steps.

Initially, the goal clause to be resolved has associated the top approximation degree (1).

Then, as the WSLD resolution steps are performed, this degree can progressively decrease

if in the unification of the complementary literals of the resolved clauses, the confronted

symbols, related by a similarity relation, have values which are smaller than the previous

degree obtained up to that moment.

When the result of a WSLD resolution step is the empty clause, �, the minimum of the

approximation degrees obtained in that step and the previous steps of the WSLD derivation

will be the approximation degree of the computed answer, that is, the degree in which Π `

θ(Q) is met.

Based on the definition of the classical SLD resolution step, a WSLD resolution step

can be expressed as follows:

G ≡ ← A1 ∧ · · · ∧ Aj−1 ∧ Aj ∧ Aj+1 ∧ · · ·An with degree α

C ≡ H ← B1 ∧ · · · ∧ Bm

G ′ ≡ ← θ(A1 ∧ · · · ∧ Aj−1 ∧ B1 ∧ · · · ∧ Bm ∧ Aj+1 ∧ · · · ∧ An) with degree min(α, β)

where G is the goal clause that you want to solve,

C it is a variant of one of the program clauses,

θ is a weak most general unifier of the literalsH and Aj

y β is the approximation degree resulting from the weak unification ofH and Aj

14

2.3. FUZZY LOGIC PROGRAMMING SYSTEMS

2.3. FUZZY LOGIC PROGRAMMING SYSTEMS

Since the birth of fuzzy logic programming, in the early 70s, several ways of incorpo-

rating the concepts of fuzzy logic into logic programming languages have been proposed and

put into practice.

In this section, several fuzzy logic programming systems are reviewed that use unifi-

cation and resolution mechanisms based on similarity relations, which is the same approach

that it is intended to be followed in this project.

2.3.1. Bousi∼Prolog (low-level implementation)

Within the Dec-tau research group of the University of Castilla-La Mancha, two differ-

ent lines of work are maintained around the language Bousi∼Prolog4.

The first line, which is known as high-level implementation, consists of creating a com-

piler that translates Bousi∼Prolog programs to conventional Prolog programs, and then ex-

ecutes them through an interpreter of that language. This is the approach that has been

followed for the realization of the present work.

On the other hand, the second line of work, usually referred to as low-level implemen-

tation, is based on designing an extension of Warren’s abstract machine (WAM) that is able

of handling fuzzy relations. The goal is to execute the Bousi∼Prolog programs directly on

a WAM without first translating them into the Prolog language. The work of the Dec-tau

group on this line can be found in [17, 19, 18, 38].

As will be explained in more detail later, the syntax of Bousi∼Prolog is essentially

the same as that of Prolog but incorporates a new predefined operator, ∼. This operator

allows you to declare the entries of a similarity or proximity relation between symbols of the

alphabet in the following way:

<symbol_1> ∼ <symbol_2> = <approximation_degree>.

Sentences like the previous one are called similarity equations or, more generally, prox-

imity equations. An equation of the type «p ∼ q = α» should be understood as «p is similar

to q with degree α » but also in the opposite direction, «q is similar to p with degree α».

Therefore, it actually defines two entries in the relation: R(p, q) = α and its symmetric

R(q, p)=α.

4http://dectau.uclm.es/bousi-prolog/

15

http://dectau.uclm.es/bousi-prolog/

CHAPTER 2. FUZZY LOGIC PROGRAMMING

Figure 2.3: Structure of the low level implementation of Bousi∼Prolog [18].

Starting from a Bousi∼Prolog program composed of rules, facts, directives and prox-

imity equations, the compiler of the low level implementation of Bousi∼Prolog generates

machine code for the extended Warren’s abstract machine, that we call Similarity WAM

(SWAM). To do this, it follows the four stages shown in Figure 2.3, which are explained

below [16, 18]:

a) Analyzer. It is responsible for performing the lexical and syntactic analysis of the

input program, while generating an internal representation of the source code.

b) Similarity / proximity Generator. Using the proximity equations declared in the

program, the reflexive, symmetric and, (optionally) transitive closure of the specified

relation is generated. The result is a similarity or proximity relation between the

symbols of the alphabet that is stored in a internal memory (called proximity matrix)

of the Processor Unit in the SWAM to be used later5.

c) Adapter. From the source code of the program and the complete fuzzy relation

generated in the previous step, the system internally constructs a new program in

an extended language where approximation degrees may appear in the body of the

clauses.

In short, each clause of the program is duplicated once for each symbol that is similar

to rooted symbol in its head, replacing it with the similar symbol and adding the

approximation degree between them at the beginning of the new clause. Observe the

following example to understand the process that takes place in this phase:

a ∼ b = 0.5. ⇒ a :- 1.0, true.

a :- true. b :- 0.5, true.

d) Code Generator. Taking as input the transformed program obtained in the previous

5In this phase, the fuzzy sets defined in the program with the help of the special directives domain and
fuzzy_set, are also transformed into a fuzzy relation, following the techniques explained in section 2.1.4.

16

2.3. FUZZY LOGIC PROGRAMMING SYSTEMS

Figure 2.4: Unicorn graphic environment for the Bousi∼Prolog language.

phase, the machine code for the SWAM is generated, and it is stored in a specific

memory area: the code area which is destined to this end.

The SWAM instruction set includes a series of specific machine instructions to manipu-

late the similarity degrees and the fuzzy unification processes that are not found in a standard

WAM as described in [2]. In addition, the SWAM introduces several new records into the

internal structures of the WAM to store the similarity degree computed during the WSLD

resolution.

To interact with the compiler and the SWAM of the Bousi∼Prolog low level implemen-

tation, a graphical user interface implemented in Java, called Unicorn, has been created. The

main panel window is shown in Figure 2.4. The Unicorn environment allows, among others,

the following tasks:

n Edit, load, save and compile programs

n Launch queries to a program to see the answers returned by the system. From each

one of them is shown the computed answer substitution and the approximation de-

gree.

n See a graphical representation of the similarity or proximity relation defined in the

program.

17

CHAPTER 2. FUZZY LOGIC PROGRAMMING

n Examine the SWAM machine code generated by the compiler.

n Analyze step by step what instructions have been executed during the resolution of a

query.

The low-level implementation of Bousi∼Prolog is quite efficient at runtime because

the source programs are compiled into WAM instructions, which is the same thing that most

Prolog-based logic programming systems do. Likewise, it is compatible with several of the

extra logic features of Prolog, as the cut operator or input/output predicates.

Bousi∼Prolog and, in particular, its low-level implementation, can serve to solve var-

ious types of problems in which imprecise or uncertain information needs to be handled.

In [38] several examples of language use applied to the fields of deductive databases,6knowledge

based systems, information retrieval and, in general, approximate reasoning are presented.

2.3.2. SiLog

SiLog [26, 27] is a Prolog interpreter developed in Java that implements weak unifica-

tion and WSLD resolution. It is an extension of an existing logic programming environment

called W-Prolog,7also based on Java.

Unlike other fuzzy logic programming systems, where the definition of the programs

and the similarity relations is carried out at the same time, the interaction with the SiLog

system is divided into two clearly differentiated phases. In the first place, the similarity

relation that will intervene in fuzzy unification is constructed, and in the second place the

Prolog program is loaded and the queries that wish to be solved are introduced.

To facilitate the definition of fuzzy relations, SiLog has a panel as the one seen in

Figure 2.5. From a text file with a list of initially isolated terms, the programmer can group

those terms that he considers similar in sets named λi-cut. Each λi-cut is formed by one

or several equivalence classes in which terms related to each other with the same similarity

degree are grouped. This degree of similarity is calculated as λi = i ∗ 0.1 for each λi-cut.

The construction of the relation begins with the definition of λ0-cut, that is, the creation

of equivalence classes that group similar terms with a degree greater than λ0 = 0. In each

step, the programmer will refine the similarity relation and the equivalence classes until

reaching λ10-cut, at that point the similarity relation is fully defined.

6Deductive databases are information systems in which knowledge is stored explicitly by means of facts
and implicitly through rules [8].

7http://www.winikoff.net/wp/

18

http://www.winikoff.net/wp/

2.3. FUZZY LOGIC PROGRAMMING SYSTEMS

Figure 2.5: SiLog similarity panel [27].

Once the programmer has defined and saved the similarity relation, you can use it in

the SiLog interpreter, whose main window can be seen in Figure 2.6. This window is divided

in three panels, where the user can enter a Prolog program, write a query and see all (exact

and approximate) answers returned by the system. During the handling of the interpreter,

the construction and use of the similarity relation is carried out in a completely transparent

manner to the user.

Due to its characteristics, SiLog is very suitable for the construction of deductive

databases. In fact, in [27] a web architecture called Masir is exposed, related to the fields

of information retrieval and knowledge discovery on the Internet, which makes use of the

techniques developed in the implementation of SiLog.

2.3.3. Likelog

Likelog [9, 10, 11, 8] is a fuzzy logical programming language based on similarity

relations that is distributed with a development environment called PCLikelog8. Both the

language interpreter and the environment are implemented in Prolog.

A Likelog program consists of several files in which the program code, the similarity

relation and the other resources required by the application are entered separately. In partic-

ular, each Likelog program is characterized by four files with the following content [11]:

8Although it is not publicly available.

19

CHAPTER 2. FUZZY LOGIC PROGRAMMING

Figure 2.6: Main window of SiLog [27].

n Source code (*.lkl). In this file, the rules and facts of the Likelog program are stored,

written according to the same syntax as in any standard Prolog implementation. An

important restriction imposed by Likelog is that you can not use function symbols.

n Clause Profiles (*.prf). This type of files are used to declare the program predicates

and specify the type of each of its arguments. From the information in this file, the

system internally constructs a partition of the set of constants with as many classes

as types of arguments have been declared.

n Fuzzy relation (*.rel). In this file the equations defining the similarity relation on the

constant and/or relation symbols of the first order language induced by the Likelog

program must be introduced. To do this, use the predefined predicate eq_p as shown

below:

eq_p(<symbol_1>, <symbol_2>, <similarity_degree>).

n Similarity Configuration (*.swt). Finally, this configuration file is used to establish

the properties of the similarity relation on the predicate symbols and each of the

classes of the set of constants. For example, with this file you could associate a

classical equivalence relation to the constant symbols and a fuzzy similarity relation

to the predicate symbols.

20

2.3. FUZZY LOGIC PROGRAMMING SYSTEMS

It is said that the PCLikelog environment has tools that automate part of the creation of

the previous files. For example, from a list of similarity equations written by the programmer,

the system can automatically generate reflective, symmetric and transitive closure. But this

is a point that could not be verified.

Once a Likelog program is fully defined, it can be loaded into memory for launching

queries using the Likelog interpreter. This interpreter does not implement the WSLD resolu-

tion, but uses another variant of the SLD resolution strategy called extended SLD resolution

(e-SLD) that is based on a unification algorithm in which, after each step where different

syntactic symbols are unified thanks to the similarity relation, a set of symbols is generated

which the authors call cloud.

For a goal clause and a minimum similarity degree, the Likelog interpreter calculates

all the possible solutions and shows for each of them, in addition to the computed answer

substitution and the similarity degree, the list of clouds with the pairs of symbols that have

had to weakly unify to reach the solution.

For example, given the program Π = {p(a)}, the similarity relation R(a, b) = 0.5 and

the goal Q = (∃X)p(X), an answer obtained from the Likelog system would be 〈{X 7→

b} ; {a, b} ; λ= 0.5〉. In this answer, the set {a, b} would be the cloud that indicates that, if

it were not for the relation that exists between the symbols a and b, that solution could not

have been obtained.

The Likelog language, as in the case of SiLog, is specially designed to be used in

the context of deductive databases [9]. For this reason, the authors of the language have

developed a system based on Likelog called Web Information Retrieval through Likelog

(WIRL) [8], with which the user can consult several databases that are set in advance.

2.3.4. Comparative

The Table 2.4 shows a comparison of the three similarity-based fuzzy logic program-

ming systems that have been described in the previous sections: Bousi∼Prolog (low-level

implementation version), SiLog and Likelog.

21

CHAPTER 2. FUZZY LOGIC PROGRAMMING

Fuzzy logic programming systems

Bousi∼Prolog
(low-level) [38] SiLog [27] Likelog [11]

Prolog
features

Partial
implementation

W-Prolog Exten.
Partial

implementation

Partial
implementation

implementation
Language Java Java Prolog

Operational
mechanism

WSLD
Resolution

WSLD
Resolution

e-SLDResolution

Definition of
similarity

With proximity
equations

With equivalence
classes

With similarity
equations

Support for function
symbols Yes Yes No

Support for the
Prolog cut operator Yes No Unknown

Publicly available Yes No No

Applications Approximate
Reasoning

Deductive
Databases

Deductive
Databases

Table 2.4: A comparison of three similarity-based fuzzy logic programming systems.

22

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

Bousi∼Prolog is a fuzzy logic programming language designed to facilitate the han-

dling of uncertainty and inaccurate information and to make the query answering process

more flexible. It is the central component of the present work, from which the BPL system

and its user interface have been developed.

This chapter describes in detail the characteristics and the sentences of the Bousi∼Pro-

log language, shows a small sample program written in that language and, finally, explains

how its translation and compilation process has been designed.

Before the release of this version 2.0, a prototype of the Bousi∼Prolog language had

already been presented in documents and articles such as [16, 21]. With the elaboration of

this work new features have been added to the language and some constructions that were

already present in its first versions have been improved.

3.1. CHARACTERISTICS OF THE BOUSI∼PROLOG LANGUAGE

The Bousi∼Prolog language is an extension of Prolog that uses the weak SLD resolu-

tion principle (WSLD) as the operational mechanism instead of the classic SLD resolution

strategy.

The main goals that are to be achieved with the incorporation of a fuzzy resolution

strategy to the Prolog language are to make the query answering process more flexible, allow

the manipulation of fuzzy sets and facilitate the handling of vagueness through binary fuzzy

relations.

In the next sections the most outstanding characteristics of the Bousi∼Prolog language

are presented and the meaning of each one of the sentences and syntactic constructions that

it provides.

3.1.1. Weak unification and fuzzy relations

Bousi∼Prolog is based on WSLD resolution which replaces the classical unification

algorithm with a weak unification algorithm that relies on a similarity relation. Therefore,

a Bousi∼Prolog program is not only composed of a set of directives, facts, and rules, but is

23

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

also made up of a similarity (or, exceptionally, a proximity) relation1.

This similarity or proximity relation is (partially) specified through the so called prox-

imity equations, which are placed at the same syntactic level as the directives and clauses.

The proximity equations make use of a new predefined operator, ∼, to represent the similar-

ity between two symbols, and their syntax is as follows:

<symbol_1> ∼ <symbol_2> = <approximation_degree>.

The Bousi∼Prolog language, using different operators, allows the programmer to spec-

ify one or more additional fuzzy relations in a program. These relations do not necessarily

have to be a similarity or proximity relation and they are not taken into account during

the unification process. However, these operators offer a simple way of representing arbi-

trary relations that can be consulted during the execution of the programs. In particular, the

Bousi∼Prolog language has six fuzzy relations whose associated operators (called relation

operators) can be seen in Table 3.1. These fuzzy relations can be classified into three groups:

n A similarity or proximity fuzzy relation that intervenes in the weak unification and

WSLD resolution processes.

n Two partial order fuzzy relations for the construction of hierarchical relationships.

These relations do not participate in the weak unification nor in the resolution WSLD

processes.

n Three fuzzy relations whose properties are configurable by the programmer which

can choice among: reflexivity, symmetry and/or transitivity. As in the previous case,

they do not intervene in the unification and resolution processes.

The Bousi∼Prolog language allows the programmer to partially specify the relations

that you want to define, since the properties of each relation are guaranteed thanks to the

automatic computation of the reflexive, symmetric and/or transitive closure of the partial

relations defined in the code. That is, from the equations introduced by the programmer, the

Bousi∼Prolog translator will take care of adding the missing equations to each relation so

that they fulfill the properties that they were asinged. Thus the programmer can simply focus

on writing the most relevant equations of those fuzzy relations.

As an example, the Table 3.2 shows the real equations that a fuzzy relation would

have with two initial equations, in case it was configured separately with the properties of

1Although the weak unification algorithm used in this implementation of the Bousi∼Prolog system requires
the use of a similarity relation in order to maintain its completeness property, to increase the flexibility of the
language, the use of proximity relations is also allowed.

24

3.1. CHARACTERISTICS OF THE BOUSI∼PROLOG LANGUAGE

Operators WSLD † Characteristics
∼ Yes Similarity or proximity relation

∼> <∼ No Partial order relations

∼1∼ ∼2∼ ∼3∼ No Configurable relations
† This column indicates whether the relations are involved in the weak unification process.

Table 3.1: Available fuzzy relations in Bousi∼Prolog.

Original relation Reflexive relation Symmetric relation Transitive relation

a ∼1∼ b = 0.8. a ∼1∼ b = 0.8. a ∼1∼ b = 0.8. a ∼1∼ b = 0.8.

b ∼1∼ c = 0.5. b ∼1∼ c = 0.5. b ∼1∼ a = 0.8. a ∼1∼ c = 0.5.

X ∼1∼ X = 1.0. b ∼1∼ c = 0.5. b ∼1∼ c = 0.5.

c ∼1∼ b = 0.5.

Table 3.2: Proximity equations automatically generated from an example relation.

reflexivity, symmetry and transitivity.

Next, we present the syntax and meaning of the Bousi∼Prolog constructions for speci-

fying fuzzy relations.

Proximity equations and definition of fuzzy relations

<symbol_1> <operator> <symbol_2> = <aproximation_degree>.

Example: green ∼ blue = 0.4.

phsyics ∼1∼ maths = 0.8.

This is the syntax of the proximity equations and, in general, of the entries of all the

fuzzy relations that can appear in a Bousi∼Prolog program. The sentences of this type must

be outside any directive and clause of the program, but like them, they must be ended by a

point.

The <operator> of an equation can be any of the relation operators shown in the Ta-

ble 3.1, while the value of <aproximation_degree> must be a real number between 0 and

1 (the equations with degree 0 are ignored). On the other hand, the symbols <symbol_1>

and <symbol_2> of the equations can be of two classes: identifiers and linguistic terms

(these are explained later).

The transitivity directive

:- transitivity(<option>).

Example: :- transitivity(yes).

25

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

Option Type of relation T-Norm
yes Similarity Minimum

no Proximity N/A

min Similarity Minimum

luka Similarity Łukasiewicz

product Similarity Product

Table 3.3: Options of the transitivity directive.

The transitivity directive allows activate or deactivate the computation of the tran-

sitive closure of the fuzzy relation that intervenes in the weak unification process. In other

words, this directive determines whether the main fuzzy relation associated with a Bou-

si∼Prolog program is going to be a similarity or proximity relation. In addition, with this

same directive you can also indicate the t-norm that you want to use in the computation of

the transitive closure.

The <option> parameter that the directive receives can take five different values. The

meaning of all of them is explained in Table 3.3. The definition of the three t-norms sup-

ported by the language can be found on Page 9.

If this directive is not present in a program, by default it will work with a proximity

relation.

The fuzzy_rel directive

:- fuzzy_rel(<operator>, [<prop_1>, <prop_2>, ...]).

Examples: :- fuzzy_rel(∼3∼, [symmetric]).

:- fuzzy_rel(∼>, [reflexive, transitive(product)]).

With this directive you can set the desired properties for the three fuzzy relations which

are configurable by the programmer: ∼1∼, ∼2∼ y ∼3∼.

The first argument of the directive, <operator>, can be any of the three previous

operators, while the second parameter must be a list composed of none, one or several of the

following properties:

n reflexive, to generate a reflexive fuzzy relation.

n symmetric, to generate a symmetric fuzzy relation.

n transitive, to ensure that the relation fulfills the transitive property. Optionally,

this property can include an option in parentheses that indicates the t-norm to be used

26

3.1. CHARACTERISTICS OF THE BOUSI∼PROLOG LANGUAGE

to compute the transitive closure. The options allowed are the same as those seen for

the transitivity directive (see Table 3.3).

Exceptionally, the fuzzy_rel directive can also be used to choose the t-norm with

which the transitive closure of the Bousi∼Prolog partial-order fuzzy relations (i.e.: ∼> and

<∼) will be calculated. In this case, it is mandatory that the list of properties contains only

the elements reflexive and transitive to ensure that the relation is a partial order, but

freedom is left in the choice of the t-norm.

By default, unless their properties are overwritten with a directive of that type, the

three configurable fuzzy relations of a program are similarity relations and the t-norm that is

used in the computation of the transitive closure of all those relations, including partial order

relations, is the minimum t-norm.

Unification expressions and term comparison

<term_1> <operator> <term_2> <comparator> <degree>

Examples: blond ∼ brown = X

science_fiction(X) ∼2∼ mystery(X) > 0.5

In a query or the body of a Bousi∼Prolog program clause it is possible to use these

expressions to check if two terms are related to each other, and compare the resulting ap-

proximation degree with a given value.

As in a proximity equation, the <operator> must be one of the Bousi∼Prolog oper-

ators shown in Table 3.1. The terms <term_1> and <term_2> can be identifiers, variables

or linguistic terms as well as any type of compound term.

With regard to the <comparator>, this can be the unification operator, =, or any Pro-

log arithmetic comparison operator: =:=2, =\=3, >=, =<, > o <. Finally, the <degree>

of the expression must be a real number between 0 and 1, that is the value with which the

approximation degree between the two specified terms is compared.

If, instead of comparing, you want to retrieve the value of the existing relation between

the terms <term_1> and <term_2>, you can pass a variable as the <grade> whenever the

<comparator> is the unification operator.

When the ∼ operator is used in an expression of this type, what it is really being done

is to check if two terms weakly unify according to the weak unification algorithm presented

2Prolog equality operator, equivalent to == in other programming languages.
3Prolog inequality operator, equivalent to != in other programming languages.

27

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

in Section 2.2.2. Thus, in that case the symbol ∼ is denoting a weak unification operator, the

equivalent in Bousi∼Prolog to the standard Prolog unification operator, =.

If an operator other than ∼ is used, the weak unification algorithm is no longer ap-

plicable because the user-defined fuzzy relations (∼1∼, ∼2∼ and ∼3∼) can be configured

so that they are not reflexive or symmetric (two indispensable conditions for the unification

algorithm to work). For this reason, when using a relation operator that is not ∼, the expres-

sion must be interpreted as an extension of that fuzzy relation to the domain of terms and the

result of which is calculated according to the following formula:

R̂(t1, t2) =



1
if t1 y t2 are variables, t1 ≡ t2

and the relation R is reflexive

α if t1 y t2 are constants and R(t1, t2) = α

min
(
α, min

i=1..n

(
R̂(t1i , t2i)

)) if t1 ≡ f(t11 , . . . , t1n), t2 ≡ g(t21 , . . . , t2n)

and R(f, g) = α

0 otherwise

On the other hand, it is important to note that term comparison expressions (considered

as a whole) are crisp and deterministic expressions, that is, either they succeed only once with

approximation degree 1 or they fail (if the two terms are not related one to each other). As

a clarification, the following is the behavior that a system implementing the Bousi∼Prolog

language should have in the face of two scenarios:

n Given two symbols a and b which are related with degree 0.5, the expression «a ∼

b > 0» must succeed with degree 1 and not with degree 0.5.

n The expression «a ∼ X =:= 1» should only unify the variable X with the symbol

a and degree 1 (even if a is close to several symbols with degree less than 1).

<term_1> <operator> <term_2>

Examples: dog ∼> animal

small ∼1∼ X

This comparison expression is an abbreviated form of the previous one in which the

comparison operator and the final degree are omitted. It succeeds if the terms <term_1>

and <term_2> are related to each other with any degree greater than 0, based on the fuzzy

relation associated with the <operator>. Therefore, it is equivalent to:

<term_1> <operator> <term_2> > 0

28

3.1. CHARACTERISTICS OF THE BOUSI∼PROLOG LANGUAGE

The lambda_cut directive

:- lambda_cut(<cut_value>).

Example: :- lambda_cut(0.75).

The lambda_cut directive serves to establish the minimum approximation degree that

will be allowed for the weak unification steps of a WSLD resolution process, and for the term

comparisons made with the expressions explained above.

The <cut_value> must be a real number between 0 and 1, which is called «lambda

cut». During a weak unification or a term comparison, all those proximity equations and any

fuzzy relation whose approximation degree is lower than the lambda cut will be ignored.

The Table 3.4 shows, for a simple example program, what would be the result of exe-

cuting two goals with different cut values (0, 0.5 and 1). As can be seen, the value 0 is the

most permissive, while 1 is the most restrictive.

In a Bousi∼Prolog program the main purpose of the lambda cut is to limit the expan-

sion of a WSLD resolution search tree, since its use adds one more condition to the weak

unification algorithm: two symbols f and g will only be unifiable if they are related one

to each other with an approximation degree greater than 0 and equal to or greater than the

lambda cut. Formally, the use of the lambda cut affects rules 1 and 5 of the weak unification

algorithm of Table 2.3.

The default lambda cut value that is applied when a directive of this type does not

appear in a program, is 0.

3.1.2. Fuzzy sets and linguistic variables

The Bousi∼Prolog language allows the handling of linguistic variables according to

the definition of this concept that was introduced in Section 2.1.3. Each linguistic variable is

associated with a universe of discourse (in this case, numerical) and is composed of a series

Program

:- lambda_cut(L).

a ∼ b = 0.3.

p ∼1∼ q = 0.8.

a.

Goal L = 0 L = 0.5 L = 1

b Success Failure Failure

p ∼1∼ q Success Success Failure

Table 3.4: Application example of the lambda_cut directive.

29

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

of terms or linguistic labels to which it is endowed with meaning through the assignment of

fuzzy subsets.

For the definition of linguistic variables the Bousi∼Prolog language provides two di-

rectives: domain and fuzzy_set. The domain directive allows you to specify the name

and range of valid values of the universe of discourse corresponding to a linguistic variable,

while the fuzzy_set directive is used to define fuzzy subsets associated with the terms of

a linguistic variable previously declared with the domain directive4.

The fuzzy_set directive offers the possibility of defining fuzzy subsets characterized

by two types of membership functions: trapezoidal and triangular. However, the Bousi∼Pro-

log language also allows the use of certain linguistic values that do not need to be declared

with a directive as fuzzy_set. These linguistic values are constructed using the operator #

and can be of three types:

n Domain ranges, to represent ranges of values such as «temperature between 40 oC y

75 oC».

n Domain points, which allow to refer to exact values of the universe of discourse, for

example «1.5 m height».

n Composite terms, which use linguistic modifiers to alter the meaning of simple terms,

as in the case of «very fast».

In a Bousi∼Prolog program the information represented with the linguistic variables

is transformed into a reflexive fuzzy relation, in order to facilitate the comparison between

the different linguistic values of each variable. To this end, the process explained in detail in

Section 2.1.4 is followed.

The fuzzy relation obtained from the linguistic variables does not constitute a new

relation by itself, but rather its equations are added to the program main fuzzy relation (that

participates in the weak unification process). For example, if in a Bousi∼Prolog program

the linguistic variable «age» and the linguistic labels «young» and «adult» are defined, the

system must internally generate a proximity equation that relates the terms «young» and

«adult» with a certain approximation degree.

Below, we explain the syntax and meaning of all the directives and expressions of

the Bousi∼Prolog language which are related to the handling of fuzzy sets and linguistic

4So, in practice the Bousi∼Prolog language focuses on the definition of the semantic component of linguis-
tic variables, making no distinction between it and the syntactic component.

30

3.1. CHARACTERISTICS OF THE BOUSI∼PROLOG LANGUAGE

variables.

The domain directive

:- domain(<name>, <minimum>, <maximum>, <measure_unit>).

Example: :- domain(age, 0, 100, years).

The domain directive is used to declare the domain or universe of discourse of a lin-

guistic variable called <name>, on which you can define linguistic terms.

The range of domain values is indicated by the arguments <minimum> and <maximum>

, which must be both positive or negative integers. The parameter <measure_unit> repre-

sents the unit in which the elements of the domain are measured and it is purely informative.

The fuzzy_set directive

:- fuzzy_set(<domain_name>, [<label_1>(<a>, , <c>, <d>),

<label_2>(<a>, , <c>), ...]).

Example: :- fuzzy_set(temperature, [cold(-40, -40, -10, 20),

warm(-10, 20, 40),

hot(10, 40, 80, 80)]).

This directive defines the fuzzy subsets associated with a series of linguistic labels

âC‹âC‹belonging to the variable called <domain>, which must have been previously de-

clared with the domain directive.

Each fuzzy subset is characterized by a unique name, <label_i>, and a trapezoidal

or triangular membership function. The trapezoidal membership functions are defined by

four integers <a>, , <c> and <d>; while triangular functions only need three numbers

<a>, and <c>. In both cases, the numbers must be monotonically increasing and they

represent the key points of the functions as can be seen in Figure 2.1.

The Bousi∼Prolog translator will transform the linguistic variables defined with the

directives domain and fuzzy_set into a reflexive fuzzy relation, adding their equations to

the similarity or proximity relation that takes part in the weak unification process. Therefore,

all the sentences explained up to now referring to the relation ∼ can have as operands a

linguistic term.

With the same directive fuzzy_set you can specify as many fuzzy subsets as you

want, and several fuzzy_set directives can refer to the same domain.

31

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

Domain ranges

<domain_name>#<minimum>#<maximum>

Example: height#80#120

This term represents a linguistic label of the domain called <domain_name> whose

membership function is a rectangular function comprised between the values <minimum>

and <maximum>. In Bousi∼Prolog, these terms are called domain ranges.

A rectangular characteristic function only takes the value 1 for the elements of the

domain located between the minimum and the maximum (both included), being 0 in the rest

of cases. It can be expressed in terms of a trapezoidal function in the following way:

frectangular(a, b) = ftrapezoidal(a, a, b, b)

where a and b are the values of <minimum> and the <maximum> arguments, respectively.

In a Bousi∼Prolog program all the linguistic terms constructed with the operator #,

including also those described below, are considered as identifiers, on an equal basis with

other language identifiers. Therefore, they can be used as symbols of constant, function and

relation or as operands of the equations of any fuzzy relation.

On the other hand, although they do not need to declare themselves with a directive

fuzzy_set, the terms of this class are treated in the same way as the rest of the linguistic

values and also take part in the generation process of the reflexive fuzzy relation (which is a

component of the proximity or similarity relation used by the weak unification algorithm).

The subsets represented by the domain ranges are not fuzzy subsets, since they can

only take the values 0 or 1. To define a fuzzy domain range it is necessary to add a modifier

following the syntax indicated below.

<range_modifier>#<domain_name>#<minimum>#<maximum>

Example: about#speed#100#120

Currently, only the about modifier that can appear in <range_modifier>, which is

used to "soften" the borders of a domain range. Specifically, when the about is applied, the

following characteristic function is used [19]:

frectangular_about(a, b) = ftrapezoidal(max(a− δ, n), a, b,min(b+ δ,m))

where a and b are the values of the <minimum> and <maximum> argument, respectively, n

and m are the minimum and maximum in the range of the domain <domain_name>, and δ

32

3.1. CHARACTERISTICS OF THE BOUSI∼PROLOG LANGUAGE

is a factor defined as δ = (m− n) ∗ 2.5/100.

Domain points

<domain_name>#<value>

Example: temperature#40

This term refers to a value of the linguistic variable called <domain_name> that is

defined through a fuzzy point or singleton. Terms defined in this way are called domain

points in Bousi∼Prolog.

A fuzzy point, as can be seen in Figure 2.1, is a fuzzy subset whose characteristic

function is 1 for a certain element of the domain (in this case, the one indicated by <value>

) and 0 otherwise.

Analogously to domain ranges, domain points can also be preceded by a modifier.

<point_modifier>#<domain_name>#<value>

Example: about#age#36

Currently, the Bousi∼Prolog language only allows you to use the about modifier in

the <point_modifier> of a domain point expression. With this modifier, the singleton

function of the linguistic value becomes a triangular function defined as follows [19]:

fabout_domain_point(x) = ftriangular(max(x− δ, n), x,min(x+ δ,m))

where x is a number passed through the <value> argument, n and m are the minimum and

maximum in the range of the domain <domain_name>, and δ is a factor also defined as

δ = (m− n) ∗ 2.5/100.

Composite linguistic terms

<term_modifier>#<label>

Examples: extremely#fast

somewhat#tall

The fifth and last type of linguistic terms that can be constructed with the operator

serves to represent complex linguistic terms, formed from the concatenation of a term

modifiers and a linguistic label.

In a linguistic term of this class, <label> must be the name of a linguistic label whose

meaning is given by a fuzzy subset previously defined with a fuzzy_set directive, while

<term_modifier> can be any of the four linguistic modifiers supported by the Bousi∼Pro-

33

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

log language: extremely, very, more_or_less and somewhat. The definition of these

four modifiers can be found in Table 2.2.

3.1.3. Negation in Bousi∼Prolog

In a logic programming language such as Prolog, the negation of a goal is considered

to be successful when the goal is not derivable from the program that is being executed. In

other words, not(G) succeeds if G fails. This principle is known as Negation As Failure

(NAF).

In Bousi∼Prolog, it is necessary to redefine the concept of negation to take into account

the degrees of approximation of the goals. For this reason, two classes of negation are defined

(both based on the NAF rule): the crisp negation, which can only succeed with degree 1; and

weak negation, which can succeed with intermediate degrees between 0 and 1.

Crisp negation as failure

\+(<goal>)

Examples: \+(white ∼ black)

\+(young(Person) ; old(Person))

Bousi∼Prolog uses the operator \+ for the classical Prolog negation. A negative goal

\+(G) fails only if the goal <G> succeeds with approximation degree 1. Otherwise, the

negative goal \+(G) succeeds with approximation degree 1.

The <goal> of a crsip negation can be either an atomic formula or a formula formed

by connectives and control predicates. It is also possible the use of specific Bousi∼Prolog

sentences, such as expressions of comparison between terms.

Weak negation as failure

not(<goal>)

Examples: not(hot(winter))

not(a ∼2∼ b < 0.2)

The operator not represents a type of fuzzy negation that, in the Bousi∼Prolog lan-

guage, is called weak negation. As with \+, a negative goal not(G) fails only when the

argument <G> succeeds with approximation degree 1.

However, if the argument <G> is successful with degree D < 1, the negative goal,

not(G), is also successful but with an approximation of 1 − D. In case the argument <G>

34

3.2. A SIMPLE EXAMPLE

fails, the negation would succeed with degree 1, maintaining consistency with the classical

negation.

3.2. A SIMPLE EXAMPLE

In order to see the flexibility introduced by the WSLD resolution procedure in a logic

programming language like Prolog, this section will show a simple example program written

in the language Bousi∼Prolog just described.

Consider again the argument that was raised in the introductory chapter of this manual:

Thrillers are interesting.

«The Treasure Island» is an adventure novel.

For me, it is more or less true that thrillers and adventure novels are similar.

Therefore, it is more or less true that «The Treasure Island» is an interesting novel.

Using the Bousi∼Prolog language, the premises of this argument could be formalized

as follows:

interesting(Novel) :- thriller(Novel).

adventure(’The Treasure Island’)

thriller ∼ adventure = 0.5.

Note that the third premise has been formalized as a proximity equation that relates the

symbols thriller and adventure with a certain approximation degree. In this case, it

has been considered that the expression «more or less» corresponds to a 0.5 approximation

degree, although this degree would depend on the appreciation of the programmer.

Once the previous program is loaded into memory, the Bousi∼Prolog interpreter should

be able to give the following answer to the query of whether «The treasure Island» is an

interesting novel:

?- interesting(’The Treasure Island’).

Yes, with degree 0.5.

To reach this conclusion it would be necessary to take two WSLD resolution steps. In

the first of them the first clause of the program would be applied, unifying the variable Novel

with ’The Treasure Island’ to obtain the objective thriller(’The Treasure Island’)

. The second step would be to unify this goal with the only fact that exists in the pro-

35

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

gram, adventure(’The Treasure Island’), which is possible thanks to the literal

thriller and adventure weakly unify with degree 0.5.

If the state of a WSLD resolution is represented by a tuple consisting of the goal clause

to be resolved, the substitution computed so far and the resulting approximation degree, the

two steps that should be followed to reach the empty clause, in order to validate the last

argument, would be the following :

〈← interesting(’The Treasure Island’), id, 1〉
WSLD−−−−→ 〈← thriller(’The Treasure Island’), {Novel/’The Treasure Island’}, 1〉
WSLD−−−−→ 〈�, {Novela/’The Treasure Island’}, 0.5〉

In the Chapter 5 you can find several more examples of Bousi∼Prolog programs, in

which all the characteristics of the language are used and its potential is shown.

3.3. TRANSLATION TO TPL CODE

The translation, compilation and subsequent execution of the BPL code, that is, of

the programs written in the Bousi∼Prolog language, can be done in various ways. In Sec-

tion 2.3.1, for example, the, so called, BPL low-level implementation was explained, in which

the Bousi∼Prolog programs are translated into machine code of an extension of the abstract

machine of Warren specially designed to handle fuzzy relations.

In the present work we have opted for a completely different approach, which has been

called high-level implementation. This approach is based on building a compiler written

in Prolog that takes a Bousi∼Prolog program and translates it generating an intermediate

representation of the program in standard Prolog that is named TPL code (acronym for «BPL

Translated» code).

Subsequently, with the help of a standard Prolog interpreter and auxiliary predicate

modules, the TPL code can be loaded in memory like any other program written in Prolog

to ask questions, which will be solved by simulating the WSLD resolution mechanism on

which the Bousi∼Prolog language is based.

36

3.3. TRANSLATION TO TPL CODE

3.3.1. Purpose of the translation

One of the advantages offered by the Bousi∼Prolog language in the implementation of

applications where fuzzy information intervenes is that it frees the programmer from having

to write additional code to handle the uncertainty present in the problem we want to solve.

Following the example proposed in [29], suppose you want to define a predicate warm_

and_sunny(C) that it is true if the city C has a sufficiently high average temperature

(«warm») and a high average number of sunshine daily hours (« sunny »). Clearly, the

predicates that determine if a city is warm and sunny are fuzzy and can be satisfied with

different degrees. With this in mind, the predicate could be written in standard Prolog in the

following way:

warm_and_sunny(C, DWS) :- average_temp(C, T), warm(T, DWT1),

sun_hours(C, H), sunny(H, DSH2),

combine_degrees(DWT1, DSH2, DWS).

Where DWT1 is the approximation degree to which the average temperature of C is

considered warm; DSH2 the approximation degree to which it can be stated that C is a sunny

city; and DWS the approximation degree5of the answer, which is calculated by combining the

degrees symbol DWT1 and symbol DSH2 (usually keeping the lesser of both).

Although the previous program is completely valid, it can be difficult to understand

its expected behavior, since the logic of the problem to be solved is interleaved with the

computation of the approximate degrees in the fuzzy predicates.

In the Bousi∼Prolog language, where the handling of uncertainty is integrated into

the language and the approximation degrees are treated transparently to the user, the same

predicate could be written like this:

warm_and_sunny(C) :- average_temp(C, T), warm(T),

sun_hours(C, H), sunny(H).

Considering this example with regard to the operation of the Bousi∼Prolog compiler,

the last piece of code would correspond to the BPL program (the source program) that the

programmer writes, while the first could be understood as the TPL code that the compiler

generates automatically.6.

Therefore, the purpose of the translating process (from BPL code to TPL code) is to

5Note that, in this context, an approximation degree can be thought of as a truth degree, a confidence factor
or a degree of belief in the delivered answer.

6In this example, certain technical details have been set aside in order to facilitate understanding.

37

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

make all the modifications that are necessary to the original Bousi∼Prolog program so that,

keeping its fuzzy properties, it can be executed directly by a Prolog interpreter. In other

words, the compiler must generate a Prolog program whose execution under the SLD resolu-

tion mechanism be equivalent to the execution of the original Bousi∼Prolog program under

the WSLD resolution strategy.

To this end, among other tasks, it will be necessary to add new arguments to the user-

defined predicates (DWS in the example) or to make calls to predicates that do not appear in

the original code (combine_degrees in the example).

3.3.2. Simulating WSLD resolution

As seen in the Chapter 2 (on fuzzy logic programming), the WSLD resolution strat-

egy is essentially the same as the SLD resolution strategy, except for the use of the weak

unification algorithm and the introduction of approximation degrees.

Focusing on the weak unification algorithm, the analysis performed in [16] allows us to

understand this algorithm as a process consisting of two separate stages when trying to unify

the atom of a goal with the head of a clause: firstly, they unify the root symbols in atom and

the head and later their arguments are unified.

Therefore, in total it is possible to identify three points of the resolution process in

which the WSLD and SLD resolution strategies behave differently:

a) The computation and storage of the approximation degree associated to the goals

(which is a specific feature of the WSLD resolution strategy).

b) The unification of the relation symbol in the root of the selected subgoal7 with the

relation symbols rooting the heads of the program clauses.

c) The unification of the arguments of the selected subgoal with the respective argu-

ments of the heads of the program clauses.

In order for the TPL code to correctly simulate the WSLD resolution mechanism, it is

essential to modify the way in which these three phases are carried out. The techniques that

have been used to adapt each one of the aforementioned phases are described below.

a) To maintain and propagate the approximation degree in which fuzzy predicates are

fulfilled, we will follow proposal of [29], according to which these predicates will

7Remember that, in Prolog, the computation rule always selects the leftmost atom in the goal that is being
solved.

38

3.3. TRANSLATION TO TPL CODE

include an additional output parameter where that degree to which they are satisfied

will be saved.

These extra parameters will be calculated at the end of the execution of their corre-

sponding predicates, combining all the approximation degrees that may have inter-

vened in their resolution. Specifically, the degree resulting from the execution of a

clause will be the minimum of the degrees obtained when evaluating the literals that

appear in the body of the clause.

To calculate the minimum approximation degree, a call will be made to an auxil-

iary predicate that has been named min_degree. This predicate receives as a first

parameter a list of approximation degrees, and returns in the second parameter the

minimum of all of them.

For example, from the following rule, which defines a predicate in a Bousi∼Pro-

logprogram:

p :- q, r.

The following predicate would be generated in the TPL code:

p(Degree) :-

q(Degree1), r(Degree2),

min_degree([Degree1, Degree2], Degree).

b) How to apply the weak unification algorithm to unify the selected subgoal and the

heads of the program clauses is not a trivial task. Although it would be enough to

execute the weak unification algorithm with both atoms (verifying if the symbols at

the root are close and, in case of success, continuing with the unification of its ar-

guments) it is advisable to delegate a part of this process to the internal resolution

mechanism of the Prolog language for efficiency reasons8.

Thus, once the closures of the fuzzy relation have been computed, in order to con-

struct the similarity relation that will participate in the weak unification process, to

force Prolog to perform the unification of the predicate symbols (i.e., the symbols

rooting the subgoal and the head of the rule), each rule of the BPL program is going

to be replicated in the TPL code once for each symbol that is similar to the predicate

symbol of its head. This way we are able to simulate this part of the weak unification

8Many implementations of Prolog use hash tables and indexed tables to search or, at least, delimit the set
of clauses that are applicable in a resolution step [15]. In this way, they unify the selected atom of a goal with
the head of a clause making a very small number of checks.

39

CHAPTER 3. THE BOUSI∼PROLOG LANGUAGE

process by means of the syntactic unification mechanism of the Prolog language9.

That is, if in a Bousi∼Prolog program p is similar to q with degree 0.5 and p is a

fact, the TPL code will have two facts: p and p. This way, when the atom q appears

in a gaol and Prolog tries to solve it, you will find a clause in the TPL code rooted

with that same symbol and Prolog will use it to continue with the resolution process.

However, this step will not be able to be carried out in all cases, but it will depend on

the value of the lambda cut. If it were set to 0.75, p and q would no longer be con-

sidered similar one to each other, so when Prolog tried to solve the atom q a failure

should occur.

To achieve this behavior, at the beginning of all the replicated rules will execute an

auxiliary predicate called over_lambdacut, which receives as a parameter an ap-

proximation degree and it is successful if and only if that parameter is equal or higher

than the current value of the lambda cut.

On the other hand, the unification of the predicate symbols must also be taken into ac-

count in the computation of the final approximation degree of the clauses. Therefore,

each replicated clause will have as an extra component in the call to min_degree,

the approximation degree coming from the proximity equation used to replicare the

original rule.

In summary, from the following BPL code fragment:

spring ∼ summer = 0.6.

summer.

You would get this TPL code associated with the predicate summer:

summer(Degree) :- min_degree([], Degree).

spring(Degree) :-

over_lambdacut(0.6), min_degree([0.6], Degree).

c) Finally, the weak unification of the arguments of the selected subobjective and the

heads of the clauses will be done by replacing all the parameters of the heads of the

clauses with variables, to later apply the weak unification algorithm to these variables

and the actual arguments.

This set of unifications will be carried out by a third auxiliary predicate named

unify_arguments. That predicate receives as a single parameter a list of unifi-

cation problems, each problem being a list composed of three elements: the two

9Note at this point that we can, therefore, take advantage of the indexing mechanism of the Prolog language.

40

3.3. TRANSLATION TO TPL CODE

expressions to be unified and and a variable to store the resulting approximation de-

gree. The predicate will fail when any pair of expressions is not unifiable or it is less

than the current lambda cut.

As in the previous case, the approximation degrees resulting from each unification

must be taken into consideration for the computation of the final degree associated to

the clause which is being processed.

For instance, given the predicate:

age(manuel, adult).

The TPL code that is generated from it would be the following:

age(Arg1, Arg2, Degree) :-

unify_arguments([[Arg1, manuel, DegreeA1],

[Arg2, adulto, DegreeA2]]),

min_degree([DegreeA1, DegreeA2], Degree).

The combination of the three techniques explained in this section allows to translate

Bousi∼Prolog programs into Prolog code that simulate the WSLD resolution strategy. The

only additional requirement is that we must provide the Prolog system with the implemen-

tation of the three necessary auxiliary predicates: min_degree, over_lambdacut and

unify_arguments.

Note, however, that in order to support all the specific sentences of the Bousi∼Prolog

language, such as the comparison expressions between terms or the directives for defining

linguistic variables, a translation process substantially more complex than the one presented

in this section will be necessary.

41

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

The BPL system is the materialization of the Bousi∼Prolog language that has been

designed in this work. It is a command line application, similar to a Prolog interpreter,

through which the user can load Bousi∼Prologprograms and launch and execute Bousi∼Pro-

logqueries.

This chapter covers the whole process of the BPL systemdevelopment, from the initial

phase of requirement analysis to the final testing phase, through the analysis, design and

implementation stages. Previously, in the section 4.1 it is explained which is the work method

that has been followed for the elaboration of the system and the reasons of its election.

Prior to the completion of this work, the DEC-tau research group had a prototype of

the BPL system [22] which partially implemented the Bousi∼Prolog language described in

the Chapter 3. This prototype has served as the support to capture the requirements and the

first phase of the design, but it should be noted that the BPL system presented in this project

is a completely new application that implements all the characteristics of the Bousi∼Prolog

language and follows a different approach both in the compilation and interpretation of the

BPL code.

In particular, the original prototype of the BPL system relegated most of the parsing

tasks of the BPL code to Prolog, instead of performing a real lexical, syntactic and seman-

tic analysis as proposed in this project. On the other hand, to execute the TPL code, a

meta-interpretation process was carried out, which was very expensive in terms of time and

memory, since the guidelines of the section 3.3.2 were not followed to perform the transla-

tion [22].

4.1. WORK METHOD

Since Bousi∼Prolog is an extension of Prolog, from the beginning of the project it was

decided to implement the BPL system in this last language, the best known and used within

the logic programming paradigm.

Currently, declarative programming languages are used more frequently for research

and academia than for the construction of commercial applications [15]. As a consequence,

there are no specific methodologies for the development of applications in these languages,

43

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

contrary to what happens, for example, with imperative or object-oriented programming

languages.

However, although in the logic programming paradigm there is no commonly accepted

methodology that covers the whole software life cycle, several techniques have been pro-

posed that are suitable for designing and implementing programs using logical languages

such as Prolog [40]. Many of them are based on a top-down programming style with step-

wise enhancement, the natural way to build programs in these languages given their charac-

teristics.

The main drawback of these techniques is that they are oriented to small scale programs,

being difficult to apply to larger systems composed of several modules. In fact, the concept

of module itself and the notion of modularity are not yet present in some Prolog interpreters.

Based on all the above, to develop the BPL system it has been decided to follow an

incremental life cycle and to use our own development methodology composed of the five

classical stages used in Software Engineering: requirement specification, analysis, design,

implementation and tests.

4.2. REQUIREMENT SPECIFICATION

In this phase, a natural language description of the requirements and functionalities that

the system to be built should have is made.

General requirements

It is desired to develop the so called BPL system, that allows the compilation of pro-

grams written in the Bousi∼Prolog language, to launch queries to such programs and the

visualization of their answers.

The system must implement the weak unification algorithm and the WSLD resolution

strategy explained in Section 2.2. In addition, it has to support all the sentences and specific

constructions of the Bousi∼Prolog language collected in the previous chapter.

To facilitate the analysis of requirements and the subsequent stages of development,

from the beginning the BPL system has been decomposed into three subsystems: a com-

mand processor or command shell, in charge of processing the user’s commands; a compiler,

44

4.2. REQUIREMENT SPECIFICATION

whose function is to translate the code of the Bousi∼Prolog programs; and an interpreter1,

responsible for executing the queries and computing the answers.

Requirements for loading and compiling files

The Bousi∼Prolog compiler will be responsible for translating the BPL code files, gen-

erating TPL code (which may only contain Prolog statements) into TPL files. The compila-

tion and translation of the BPL code should be carried out according to the process described

in the section 3.3.

The TPL files generated by the compiler should be stored in the same directory in which

their corresponding BPL code files are located, and will have the same name but with the

extension ‘.tpl’ for easy identification.

The main reason we want to store the TPL files is because we can avoid unnecessary

recompilation of BPL files. When you want to load a BPL file, which has not been modified

since its last compilation, the associated TPL file will be loaded without having to go through

the translation process again. However, even if this is the default behavior for loading the

file, if the user wants it, he must be able to force the recompilation of a BPL code file.

To facilitate the use of the Bousi∼Prologlanguage, BPL code files will be classified

into two groups:

n Programs. Bousi∼Prolog programs are a superset of the Prolog programs and may

contain any type of Prolog or Bousi∼Prolog statement, including rules, facts, direc-

tives and equations.

n Ontologies. Ontologies serve to define relations between terms and, as such, they

can only be formed by proximity equations of fuzzy relations and directives that

affect their handling or generate new equations by defining linguistic variables. An

ontology can never have rules or facts.

The BPL system should allow the joint loading of a program and an ontology, so that

you can use the same program with several ontologies without having to mix the program

and each ontology in different code files. When the user loads a program and an ontology,

the BPL system will have to combine the equations that appear in both code files to obtain

the complete set of proximity equations. At any time you should be able to know what the

1The name “interpreter” is inherited from the times where the BPL system was a meta-interpreter. Currently,
the so called “interpreter” is a module composed by a series of predicates that, essentially, give support to the
implementation of the weak unification algorithm (which is the main part of the module).

45

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

program is and, if applicable, the ontology loaded in memory.

In addition to the above requirements, the system must provide a mechanism that fa-

cilitates the distribution of programs and ontologies between several files, so that the user is

not forced to write all the code in a single file. Thus, although when loading a program or

ontology the user will continue to enter the path of a single file, called «main file», this may

contain references to other code files, called «secondary files». In any case, the compilation

of all these files should continue producing a single TPL file.

Requirements for the execution of queries

The interpreter of the BPL system will be in charge of executing the queries launched to

the system about the program loaded in memory. It will also be possible to execute queries

even if no program has been loaded yet, in this case only the predefined predicates of the

system can be used.

According to the translation process and execution of the BPL code that was described

in section 3.3, in this project we will not create a complete/real interpreter for the Bou-

si∼Prolog language, rather, we want the BPL system to delegate most of the responsibility

for executing the queries to the SWI-Prolog interpreter.

The queries made by the user must be able to include specific Bousi∼Prolog expres-

sions, such as negative goals or term comparisons. In general, any expression that is valid

within the body of a clause must be able to appear in a query.

When the interpreter executes a query, it must show the user if answers have been found

or not for the question posed. In the affirmative case, it will have to show the approximation

degree and the computed substitution answer (that is, the terms to which the free variables

that appeared in the initial query have been bound). Next, in the same way as for a conven-

tional Prolog interpreter, the user should have the possibility to request more answers.

Requirements for the command shell

The command shell is a command processor, that is, a command line application similar

in structure to the shell of an operating system, through which the user can enter, one by one,

the orders that he wants to send to the system.

The command processor must act as the public interface of BPL system and be the only

one of its components that the user can see and manipulate directly. Therefore, it is essential

46

4.2. REQUIREMENT SPECIFICATION

that it has commands to access the compiler and the Bousi∼Prolog interpreter. In particular,

a command will be necessary to compile and load a program or an ontology in memory; and

another command to send a query to the interpreter.

To delimit the results of the queries, the value of the lambda cut associated to the

program loaded in memory must be alowed to be modified. When the user establishes a new

lambda cut through the command processor, this will take precedence over what could have

been indicated in the program with the directive lambda_cut (see Section 3.1.1, page29).

The user also needs to be able to see the lambda cut currently in use.

In order to be able to search and load files located in any folder, the command processor

also has to offer the user commands to navigate through the directory structure of the com-

puter. At a minimum, it is necessary for the user to see the name and content of the working

directory and change that directory.

In addition to all the above, the command processor must implement a basic mechanism

for obtaining help, through which you can consult the complete list of available commands

and see the detailed description and syntax of any of them.

On the other hand, the command processor must include a series of features that make

it easier for the user to work with the system, and at the same time, make it similar to other

existing command interpreters with which he may have previously worked. At least the

processor is required to have the following characteristics:

n Free edition of the command that is being written, which includes displacement and

deletion of both characters and complete words.

n Access to a history of recent commands, containing both the commands entered in

the current session and in the previous ones, up to a maximum of 100 entries.

n Intelligent autocompletion (by pressing the key Tab) depending on the command

written so far:

o If a command has not yet been written, the autocompletion should display a list

of available commands.

o If the load command or the change of working directory command has been

typed, the autocompletion should show the names of the files and folders that

are in the current working directory.

o If a query is being written, the autocompletion has to show the names of the

predicates to which it can be invoked, which includes the public predicates of

47

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

the system and those defined in the program loaded in memory.

Compatibility and support requirements

In order to Bousi∼Prolog be a useful and flexible programming language, the BPL

system must be compatible with as many of Prolog predefined predicates as possible. Given

that the Prolog set of predefined predicates is very broad and each implementation has its

own predicate libraries, at least we have to ensure the correct functioning of the following

predicates:

n Flow control (true, fail, ,, ;, ->, !).

n List management (member, append, length and reverse).

n Analysis, construction and decomposition of terms (functor, arg and =..).

n Term classification (var, nonvar, atom, atomic, compound, integer, float

and number).

n Integer and floating point arithmetic (is y al menos >, <, =:=, =\=, +, -, *, /, mod,

sqrt, floor and ceiling).

n Declaration and definition of user operators (op and current_op).

n Search for all the solutions of a goal (findall, bagof, setof).

n Metaprogramming – dynamic modification of programs – (dynamic, assert and

retract).

n I/O management (open, close, read, write, nl, get_char and put_char).

n Exception handling (catch and throw).

On the other hand, to facilitate its expansion and use, the BPL system must be able to

compile and run under Windows, Linux and Mac OS X. For its implementation only the use

of free tools and libraries will be allowed, not being acceptable in any case the use of not

publicly available software.

4.3. ANALYSIS

This stage of development aims to organize, structure and go deeper into the require-

ments collected in the previous stage.

To facilitate the description of the requirements, use cases and sequence diagrams have

been used. These two techniques are very common in object-oriented development method-

48

4.3. ANALYSIS

Usuario

Gestionar lambda cut

Cargar ontología

Cargar programa

Compilación requerida

Consultar ayuda

Gestionar directorio de trabajo

Ejecutar consulta

Respuestas adicionales solicitadas

Traducir código BPL
<<include>>

Buscar más respuestas

<<extend>>

Compilar archivo/s BPL

<<extend>>

<<sistema>>
Sistema BPL

Respuestas adicionales solicitadas

Compilación requerida

<<include>>

Ver nombre del programa y/o ontología cargada

Figure 4.1: Use cases diagram of the BPL system.

ologies, but they are also applicable to this project because of their high level of abstraction

and their independence from any programming language.

4.3.1. Use cases

From the requirements specification of the BPL system, ten use cases have been iden-

tified. These are represented in the use case diagram of Figure 4.1 following the standard

Unified Modeling Language (UML) notation [4].

The use case diagram shows an overview of the system and the functionalities that it

must implement, but it does not explain what each of them consists of. For this reason,

49

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

the diagram has been complemented with a detailed specification of the six most complex

use cases extracted from the requirements analysis. The behavior of the four use cases not

considered, such as Manage lambda cut or Consult help, is trivial.

The specifications of the use cases indicate the actors that intervene or participate in the

use case, the preconditions that must be fulfilled in order to carry it out, the postconditions

or success criteria that represent the state of the system after its execution, the relationships

with other use cases and a textual description of the most relevant among the main scenarios

or success scenarios (error scenarios, such as when trying to load a file that does not exist or

resolve a query with syntax errors, are not included).

USE CASE CU1: LOAD PROGRAM

ACTORS: User.

PRECONDITIONS: None.

POSTCONDITIONS: The program loaded in memory and the current system lambda cut

are modified.

RELATIONSHIPS: It has an inherited use case, «load ontology» («Cargar ontología»),

and an extension point that is related to the use case «Compile BPL

file/s» («Compilar archivo/s BPL»).

CORRECT SCENARIO 1 (compilation not required):

1. The user enters the name of the file where the program that he wants to load is

stored.

2. The system verifies that the main file of the program entered by the user exists.

3. The system verifies that the TPL file associated with the program exists.

4. The system detects that the program has not been modified since the TPL file

was last generated, so the TPL file is updated.

5. The system loads in memory the TPL file associated with the program. If there

was already a TPL file loaded in memory, it is downloaded before loading the

new file.

CORRECT SCENARIO 2 (compilation required):

1. The user enters the name of the file where the program that he wants to load is

stored.

2. The system verifies that the main file of the program entered by the user exists.

50

4.3. ANALYSIS

3. The system verifies that the TPL file associated with the program exists.

4. The system detects that the program has been modified since the TPL file was

last generated, or the user has requested the forced recompilation of the program.

This step represents the activation condition of the extension point «Required

Compilation» («CompilaciÃ³n requerida»).

5. The system compiles the file/s that compose the program entered by the user to

generate the corresponding TPL file. This step includes the functionality of the

use case «Compile BPL file/s» («Compilar archivo/s BPL»).

6. The system checks that no serious error has occurred during the compilation, and

shows the possible warnings generated in this process.

7. The system loads in memory the TPL file associated with the program. If there

was already a TPL file loaded in memory, it is downloaded before loading the

new file.

USE CASE CU2: LOAD ONTOLOGY

ACTORS: User.

PRECONDITIONS: There must be a program loaded in memory.

POSTCONDITIONS: The program loaded in memory and the current system lambda cut

are modified.

RELATIONSHIPS: It is a specialization of the use case « Load program ». Inherits from

it an extension point that is related to the use case «Compile file/s»

(«Compilar archivo/s BPL»).

CORRECT SCENARIO 1 (compilation not required):

1. The user enters the name of the ontology that he want to load.

2. The system verifies that the main file of the ontology entered by the user exists.

3. The system verifies that the main file of the program currently loaded in memory

exists.

4. The system verifies that the TPL file associated with the union of the loaded

program and the specified ontology exists

5. The system detects that the program and the ontology have not been modified

since the TPL file was last generated, so it is updated.

51

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

6. The system loads in memory the TPL file associated with the union of the pro-

gram and the ontology. If there was already a TPL file loaded in memory, it is

downloaded before loading the new file.

CORRECT SCENARIO 2 (compilation required):

1. The user enters the name of the ontology that he want to load.

2. The system verifies that the main file of the ontology entered by the user exists.

3. The system verifies that the main file of the program currently loaded in memory

exists.

4. The system verifies that the TPL file associated with the union of the loaded

program and the specified ontology exists

5. The system detects that the program and/or the ontology have been modified

since the TPL file was last generated, or the user has requested the forced re-

compilation of the ontology. This step represents the activation condition of the

extension point «Required Compilation» («Compilación requerida»).

6. The system compiles the file/s that compose both the current program and the

ontology entered by the user to generate the corresponding TPL file. This step

includes the functionality of the use case «Compile BPL file/s» («Compilar

archivo/s BPL»).

7. The system checks that no serious error has occurred during the compilation, and

shows the possible warnings generated in this process.

8. The system loads in memory the TPL file associated with the union of the pro-

gram and the ontology. If there was already a TPL file loaded in memory, it is

downloaded before loading the new file.

USE CASE CU3: RUN QUERY

ACTORS: User.

PRECONDITIONS: None.

POSTCONDITIONS: None2.

RELATIONSHIPS: It has an extension point that is related to the use case «Search more

answers» («Buscar más respuestas»). Includes the use case function-

ality «Translate BPL code» («Traducir código BPL»).
2The execution of queries can cause side effects in the program loaded in memory if predicates are invoked

as assert or retract, which are used to add and remove clauses respectively.

52

4.3. ANALYSIS

CORRECT SCENARIO 1 (one answer request for a one answer query):

1. The user enters the query that he wants to solve.

2. The system translates the BPL code of the query into TPL code. This step in-

cludes the functionality of the use case «Translate BPL code» («Traducir código

BPL»).

3. The system executes the translated query on the program loaded in memory (if

any) using the WSLD resolution mechanism.

4. The system notifies the user that an answer has been found, and indicates its

approximation degree along with the computed substitution.

CORRECT SCENARIO 2 (two answer requests for a one answer query):

1. The user enters the query that he wants to solve.

2. The system translates the BPL code of the query into TPL code. This step in-

cludes the functionality of the use case «Translate BPL code» («Traducir código

BPL»).

3. The system executes the translated query on the program loaded in memory (if

any) using the WSLD resolution mechanism.

4. The system notifies the user that an answer has been found, and indicates its

approximation degree along with the computed substitution.

5. The user requests a second response, that is, an additional answer. This step

represents the activation condition of the extension point «Additional requested

answers» («Respuestas adicionales solicitadas»).

6. The system continues the execution of the previous query. This step includes the

functionality of the use case «Search more answers» («Buscar más respuestas»).

7. The system informs the user that no more answers have been found.

USE CASE CU4: SEARCH MORE ANSWERS

ACTORS: User (indirectly).

PRECONDITIONS: There must be a query running.

POSTCONDITIONS: None.

RELATIONSHIPS: Expand the functionality of the use case «Run query».

CORRECT SCENARIO 1:

53

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

1. Through the use case «Run query» («Ejecutar consulta»), the user will have

requested an additional response to a query.

2. The system continues the execution of the last query.

3. The system notifies the user that an additional answer has been found, and indi-

cates its approximation degree along with the computed substitution.

4. The user can ask again for an additional answer, in which case the functionality

of this use case would be repeated.

USE CASE CU5: COMPILE BPL FILE/S

ACTORS: User (indirectly).

PRECONDITIONS: None.

POSTCONDITIONS: A TPL code file has been generated (Prolog).

RELATIONSHIPS: Expands the functionality of the use cases «Load program» («Cargar

programa») and «Load ontology» («Cargar ontología») (by inheri-

tance). It includes the functionality of the use case «Translate BPL

code» («Traducir código BPL»).

CORRECT SCENARIO 1:

1. Through the use case «Load program» («Cargar programa») or «Load ontology»

(«Cargar ontología»), the user will have asked to load an isolated program or a

program together with an ontology.

2. The system reads the source code files that compose the program and, optionally,

the ontology.

3. The system performs the joint translation of the BPL source code of all read

files. This step includes the functionality of the use case «Translate BPL code»

(«Traducir código BPL»).

4. The system generates a TPL code file with the result of the compilation.

USE CASE CU6: TRANSLATE BPL CODE

ACTORS: User (indirectly).

PRECONDITIONS: None.

POSTCONDITIONS: None.

54

4.3. ANALYSIS

RELATIONSHIPS: Es utilizado por los casos de uso «Compilar archivo/s BPL» y «Ejecu-

tar consulta»It is used by the use cases «Compile BPL file/s» («Com-

pilar archivo/s BPL») and «Execute query» «Ejecutar consulta».

CORRECT SCENARIO 1:

1. Through the use case «Compile BPL file/s» («Compilar archivo/s BPL») or «Ex-

ecute query» («Ejecutar consulta»), the user will have performed an action that

implies the translation of the BPL code to TPL.

2. The system translates the BPL source code of the program, the ontology or the

query to TPL code (i.e., Prolog code) following, among others, the rules de-

scribed in the section 3.3.2.

3. The system verifies that no serious error has occurred during the translation pro-

cess (syntax error, incorrect use of a directive, etc.).

4.3.2. Sequence diagrams

To show in detail the flow of the events that occur in some use cases, and at the same

time facilitate the subsequent design of the BPL system, several scenarios of the most rele-

vant use cases of the system have been represented using the UML sequence diagrams.

Specifically, the following pages show the sequence diagrams corresponding to two

success scenarios previously considered for the use cases CU1 (Load program) and CU3

(Run query).

In the sequence diagrams that have been elaborated, it is clearly indicated which part

of the BPL system (command processor, compiler or interpreter) must perform each activity

proposed in the use cases, which constitutes the first step in the design of the architecture of

the system. From this division of tasks between the subsystems it is necessary to emphasize

that the interpreter will be the one that occupies to load the programs in memory, reason for

which from now on this subsystem will receive the name of «loader/interpreter».

In addition, according to the requirement specification, the diagrams clearly reflect

that the command processor is the only part of the application that the user can manipulate

directly.

55

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM
:P

ro
ce

sa
do

r
C

om
an

do
s

:C
om

pi
la

do
r

B
P

L

1
: I

nt
ro

du
ci

r
no

m
br

e
d

el
 p

ro
gr

am
a

a
ca

rg
ar

1.
1

: C
om

pr
ob

ar
 s

i e
xi

st
e

el
 a

rc
hi

vo
pr

in
ci

pa
l d

el
 p

ro
gr

am
a

1.
3

: C
om

pr
ob

ar
 s

i e
l p

ro
gr

am
a

ha
 s

id
o

m
od

ifi
ca

do
de

sd
e

qu
e

se
 c

re
ó

el
 a

rc
hi

vo
 T

P
L

po
r

úl
tim

a
ve

z

1.
2

: C
om

pr
ob

ar
 s

i e
xi

st
e

el
 a

rc
hi

vo
 T

P
L

as
oc

ia
do

 a
l p

ro
gr

am
a

1.
4

: C
om

pi
la

r
pr

og
ra

m
a

1.
4.

1
: A

br
ir

y
le

er
 lo

s
a

rc
hi

vo
s

qu
e

co
m

po
ne

n
el

 p
ro

gr
am

a

1.
4.

4
: C

re
ar

 a
rc

hi
vo

 T
P

L

1.
6.

1
: B

or
ra

r
el

 p
ro

gr
a

m
a

ca
rg

ad
o

ac
tu

al
m

en
te

 e
n

m
em

or
ia

C
om

pi
la

ci
ón

 c
or

re
ct

a

C
ar

ga
 c

or
re

ct
a

1.
5

: M
os

tr
ar

 a
vi

so
s

en
co

nt
ra

do
s

--
 E

sc
en

ar
io

 d
el

 c
as

o
d

e
us

o
'C

ar
ga

r
pr

og
ra

m
a

' -
-

C
on

si
de

ra
ci

on
es

:
*

E
l p

ro
gr

am
a

in
tr

od
uc

id
o

po
r

el
 u

su
ar

io
 e

xi
st

e
.

*
E

l a
rc

hi
vo

 T
P

L
as

oc
ia

do
 a

l p
ro

gr
am

a
ex

is
te

.
*

E
l p

ro
gr

am
a

ha
 s

id
o

m
od

ifi
ca

do
 d

es
de

 q
ue

se
 c

om
pi

ló
 p

or
 ú

lti
m

a
ve

z.
*

E
l p

ro
gr

am
a

no
 ti

en
e

er
ro

re
s

de
 s

in
ta

xi
s

o,
 e

n
ge

ne
ra

l,
er

ro
re

s
gr

av
es

 d
e

co
m

pi
la

ci
ón

.
*

H
ay

 u
n

pr
og

ra
m

a
ca

rg
ad

o
en

 m
em

or
ia

.

1.
6.

2
: C

ar
ga

r
ar

ch
iv

o
T

P
L

as
oc

ia
do

 a
l p

ro
gr

am
a

1.
4.

2
: T

ra
du

ci
r

el
 c

ód
ig

o
B

P
L

de
l p

ro
gr

am
a

:C
ar

ga
do

r/
In

té
rp

re
te

 B
P

L

1.
6

: C
ar

ga
r

pr
og

ra
m

a
en

 m
em

or
ia

C
ar

ga
 c

or
re

ct
a

1.
4.

3
: C

om
pr

ob
ar

 q
ue

 n
o

se
 h

a
pr

od
uc

id
o

ni
ng

ún
 e

rr
or

 g
ra

ve
 d

ur
a

nt
e

la
 tr

ad
uc

ci
ón

U
su

ar
io

Figure 4.2: Sequence diagram of loading and compiling a program.

56

4.3. ANALYSIS

:P
ro

ce
sa

do
r

C
om

an
do

s
:C

om
pi

la
do

r
B

P
L

:C
ar

ga
do

r/
In

té
rp

re
te

 B
P

L

1
: I

nt
ro

du
ci

r
co

ns
ul

ta

1.
2

: E
je

cu
ta

r
co

ns
ul

ta

1.
1

: T
ra

du
ci

r
co

ns
ul

ta
 B

P
L

1.
1.

1
: T

ra
du

ci
r

el
 c

ód
ig

o
B

P
L

de
 la

 c
on

su
lta

C
on

su
lta

 P
ro

lo
g

(T
P

L)

1.
2.

1
: R

es
ol

ve
r

co
ns

ul
ta

 u
sa

nd
o

la
 r

es
ol

uc
ió

n
W

S
LD

R
es

pu
es

ta
 e

nc
on

tr
ad

a

R
es

pu
es

ta
 e

nc
on

tr
ad

a

1.
3

: M
os

tr
ar

 s
us

tit
uc

ió
n

co
m

pu
ta

da
 y

gr
ad

o
de

 a
pr

ox
im

ac
ió

n
 d

e
la

 r
es

pu
es

ta

2
: B

us
ca

r
m

ás
 r

es
pu

e
st

as

2.
1

: C
on

tin
ua

r
ej

ec
uc

ió
n

de
 la

 c
on

su
lta

2.
1.

1
: C

on
tin

ua
r

re
so

lu
ci

ón
 d

e
la

 c
on

su
lta

--
 E

sc
en

ar
io

 d
el

 c
as

o
d

e
us

o
'E

je
cu

ta
r

co
ns

ul
ta

' -
-

C
on

si
de

ra
ci

on
es

:
*

La
 c

on
su

lta
 in

tr
od

uc
id

a
no

 ti
en

e
er

ro
re

s
de

 s
in

ta
xi

s.
*

La
 c

on
su

lta
 ti

en
e

un
a

 ú
ni

ca
 s

ol
uc

ió
n.

*
E

l u
su

ar
io

 p
id

e
un

a
re

sp
ue

st
a

ad
ic

io
na

l (
en

 t
ot

al
se

 s
ol

ic
ita

n
do

s
re

sp
ue

st
as

).

N
o

se
 h

an
 e

nc
on

tr
ad

o
re

sp
ue

st
as

N
o

se
 h

an
 e

nc
on

tr
ad

o
re

sp
ue

st
as

1.
1.

2
: C

om
pr

ob
ar

 q
ue

 n
o

se
 h

a
pr

od
uc

id
o

ni
ng

ún
 e

rr
or

 g
ra

ve
 d

ur
a

nt
e

la
 tr

ad
uc

ci
ón

U
su

ar
io

Figure 4.3: Sequence diagram of the execution of a query (1 answer, 2 requested).

57

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

4.4. DESIGN

In the design phase, the architecture of the system that is intended to be built is estab-

lished, and both the initial structure of its components and the relationships between them

are considered.

In the logic programming paradigm, which is being followed to develop the BPL sys-

tem, the higher level structural components are the modules, so that to carry out the design

of the system a modular approach has been followed.

On the other hand, at this stage of the development, the design method proposed by G.

Karam in [24] has been used. The choice of this method is due to the fact that it has a graphic

notation created specifically to show the structure of logic programs. In the Appendix C there

is a description of the essential elements of the aforementioned notation.

4.4.1. System architecture

In accordance with the incremental life cycle that was adopted for the development of

the BPL system, after carrying out the analysis of the requirements, the initial architecture

of the system was outlined, after which it was analyzed, designed and implemented each of

its modules.

The architecture of the BPL system was designed around its three main components

extracted from the analysis phase: the BPL shell command processor, the compiler and the

loader/interpreter. The architecture that was planned at the beginning of the design, suffered

several changes throughout the project, and some modules had to be split in order to maintain

a balance in the size and functionality of all of them.

Finally, the BPL system has been composed of a total of nine modules. The Figure 4.4

shows the final structure of BPL system and which are, broadly speaking, the modules that

make up each of its components. The functional dependencies between the different modules

of the system are represented in the diagram of the Figure 4.5.

The functionality of the modules that make up the BPL systemis briefly described be-

low:

n bousi. The module bousi initializes the system and launches the BPL shell command

processor so that the user can start using the BPL system.

n bplShell. This module implements all the functionalities related to the command

58

4.4. DESIGN

Figure 4.4: BPL system architecture.

processor, such as reading the commands entered by the user and the management of

the other two subsystems (compiler and loader/interpreter).

n bplHelp. This auxiliary module groups all the help messages that the system can

display during its execution.

n parser. The module parser implements the lexical, syntactic and semantic analysis

of both programs and queries written in the Bousi∼Prolog language.

n translator. Based on the module parser, this module deals with the translation of

the BPL code files and the queries and the subsequent generation of the TPL code

(following the guidelines of the section 3.3.2).

n directives. This module is responsible for validating and executing the specific direc-

tives of the Bousi∼Prologlanguage, such as transitivity, domain or fuzzy_set

, among others.

n evaluator. The module evaluator implements the loader/interpreter of the BPL sys-

tem. It hostes the program loaded in memory and contains the auxiliary predicates

necessary to execute the TPL code of the programs with a Prolog interpreter in such a

way that the WSLD resolution strategy is simulated. Among these support predicates

is the weak unification predicate.

59

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

bousi

bplHelp bplShell

directives

evaluator

parser

translator

flags foreign

Figure 4.5: Functional dependencies of the BPL system.

n flags. This module stores and manages all those global parameters or flags that can

be modified or consulted by the rest of the modules of the system (for example, the

lambda cut value).

n foreign. The module foreign is the interface to the external library of the BPL sys-

tem. This library contains various predicates used by the compiler and the command

processor that, for efficiency reasons, have been implemented in the C programming

language. The external library contains, among others, the procedures for generating

the reflexive, symmetric and transitive closures of fuzzy relations.

In addition to the previous modules, the BPL system also makes use of a module called

utilities, which contains various predicates for managing lists, analyzing terms, manipulating

strings, etc. This module has not been included in the diagrams of the Figures 4.4 and 4.5

because it does not implement any specific requirement of the BPL system. However, it is

used by most other modules to perform auxiliary tasks.

In the following sections, the functionality of each module is explained in more detail,

with the help of the internal and external view design diagrams.

4.4.2. Module bplHelp

The module bplHelp shows the user all the help texts of the BPL system. As you can

see in the diagram in Figure 4.6, this module has no dependencies with any other module of

the system and is only used by the command processor.

60

4.4. DESIGN

bplHelp

bpl_help/0

bplShell

...

command_help/1

bpl_help/0

command_help/1...

Topic

(a) External view

bplHelp

bpl_help/0

command_help/1

(b) Internal view

Figure 4.6: Diagrams of the module bplHelp.

The two public predicates that the module modulebplHelp has are the following:

n bpl_help. Displays the complete list of commands available in the BPL system.

n command_help(+Topic). Shows the syntax and description of the command passed

as parameter.

4.4.3. Module flags

In the BPL system there are certain configuration values and parameters that can be

queried and modified by more than one module. These parameters are called flags and the

most representative of them is the lambda cut, which is set when loading a program, can be

modified through the command processor and is used when executing a query.

The module flags has been created to manage access to these global parameters in a

centralized way. The module encapsulates the dynamic predicate that actually stores the

flags and offers six public predicates to add, view, delete and restore them.

The five flags used by the BPL system are shown below. Most of them store the infor-

mation from the specific Bousi∼Prologdirectives found in the BPL code files.

n lambda_cut(Lambda). Defines the lambda cut, that is, the minimum approxima-

61

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

flags

remove_bpl_flag/1

get_bpl_flag/1

bplShell

...

get_bpl_flag/1

remove_bpl_flag/1

Flag

add_bpl_flag/1

reset_bpl_flags/0

add_bpl_flag/1

backup_bpl_flags/0

directives

...
get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1

translator

...
get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1

evaluator
...

get_bpl_flag/1

Flag

Flag

...

...

...

...

backup_bpl_flags/0

restore_bpl_flags/0

restore_bpl_flags/0

reset_bpl_flags/0

(a) External view

flags

get_bpl_flag/1

add_bpl_flag/1

remove_bpl_flag/1

reset_bpl_flags/0

bpl_flags/1

{assert}

Flag

Flag

Flag

{retract}

{assert/retract} saved_bpl_flags/1

backup_bpl_flags/0

restore_bpl_flags/0

Flag

{assert/retract}

{assert/retract}

SavedFlag

(b) Internal view

Figure 4.7: Diagrams of the module flags.

62

4.4. DESIGN

tion degree allowed for weak unifications.

n relation_properties(Name, Properties). It contains the properties of the

six fuzzy relations that are allowed to be defined in the Bousi∼Prolog language.

Name indicates the name of the relation and Properties is a list with the same

syntax as the property list of the directive fuzzy_rel.

n fuzzy_domain(DomainName, Definition). It stores the definition of the do-

mains or universes of discourse declared in the current program with the directive

domain and which, as already mentioned, are associated with linguistic variables.

n fuzzy_subsets(DomainName, Subsets). Contains the complete list of fuzzy

subsets of each domain available in the current program. This flag includes both

subsets defined with the fuzzy_set directive and subsets associated with linguistic

terms built with the operator #.

n program_prefix(Prefix). Saves the prefix associated with the program loaded

in memory, which is obtained by eliminating the spaces and the extension to the

program name. As will be explained later, this prefix is used to name the predicates

defined by the user in the BPL code.

According to the diagrams in Figure 4.7 there are four modules that need access to the

flags: bplShell, directives, translator and evaluator. The module itself does not depend on

any other module in the system.

The following is a list of the six predicates that compose the public interface of this

module:

n get_bpl_flag(?Flag). Unifies the Flag with the current flags of the system.

This predicate can be used both to retrieve the value of a flag and to check if a given

flag is defined.

n add_bpl_flag(+Flag). Adds the flag passed as a parameter to the system, first

checking that it is not already defined so as not to create duplicate flags that may alter

the consistency of the system.

n remove_bpl_flag(+Flag). Removes the flag passed as a parameter from the sys-

tem.

n reset_bpl_flags. Sets the default values for all the system flags.

n backup_bpl_flags. Stores a copy of all the current system flags in an auxiliary

dynamic predicate.

63

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

directives

parser
... is_directive_valid/2

Flag

directive/2

flags...

get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1

evaluator
...

directive/2

Flag

...

...

Flag

Name
Arguments

Name
Arguments

is_directive_valid/2

directive/2

add_bpl_flag/1

get_bpl_flag/1

remove_bpl_flag/1

(a) External view

directives

Flag

get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1

check_fuzzy_subsets/2

Flag

Subsets
DefinedSubsets

is_directive_valid/2

directive/2

Flag

(b) Internal view

Figure 4.8: Diagrams of the module directives.

n restore_bpl_flags. It replaces the current system flags with those that were

saved in the last call to the backup_bpl_flags predicate.

4.4.4. Module directives

The module directives encapsulates the handling of the directives of the Bousi∼Pro-

log language. Its function is twofold: during the compilation of a program or an ontology,

it checks the syntax and semantic aspects of the directives found in the source code files;

64

4.4. DESIGN

During the loading of a TPL file, it is responsible for executing the previously compiled

directives.

All the information contained in the Bousi∼Prolog directives is moved to the system

flags so that later it can be used by the command processor or the interpreter. For this reason,

it is necessary to import the three predicates of the module flags that allow consulting, adding

and deleting flags.

In the module directives, to simplify the validation and execution of the directives, these

are represented by their name and a list with their arguments. For example, the directive

domain(age, 0, 100, years) would be represented by the literal domain and the list

[age, 0, 100, years].

In the diagrams of Figure 4.8 can be seen that the module directives is used by two

other modules of the BPL system: parser and evaluator. As already mentioned, its only

dependency is the module flags.

Being consistent of its double function, the module directives has two public predicates:

n is_directive_valid(+Name, +Arguments). Checks that the directive name

Name and the parameter list Arguments is correct. This predicate does not validate

only that the arguments are of the expected type and are within the established range

(for example, that the lambda cut is a number between 0 and 1), but it also ensures

that it does not generate conflicts with previously declared directives (for example,

that a domain with the same name is not defined twice).

n directive(+Name, +Arguments). Executes the directive represented by the name

Name and the parameter list Arguments. Basically, this predicate modifies the sys-

tem flags to store in them the information contained in the directive.

The predicate is_directive_valid/2 makes use of the internal predicate check_fu-

zzy_subsets to check if a list of fuzzy subsets passed to the fuzzy_set directive is cor-

rect, based on the list of existing fuzzy subsets. This verification has been extracted from the

tasks of the public predicate in order to not overload it, since the validation of the directive

fuzzy_set is quite complex compared to the others.

4.4.5. Module evaluator

The module evaluator implements the loader/interpreter of the Bousi∼Prolog language.

Therefore, its main function is to solve the queries that the user launhes through the com-

65

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

evaluator

get_sim_equations/1

bplShell
...

solve_goal/1

add_sim_equations/1

solve_goal/1

load_tpl/1

translator
... get_sim_equations/1

add_sim_equations/1

Flag

...

...

load_tpl/1

get_bpl_flag/1

directive/2

flags... get_bpl_flag/1

directives
...

directive/2

...

Name
Arguments

File

Goal

Equations

Equations

(a) External view

evaluator get_bpl_flag/1

directive/2

Sym1 Sym2
Degree

load_tpl/1

solve_goal/1

get_sim_equations/1

add_sim_equations/1

e_frel1/4
e_frel2/4
e_frel3/4

e_lEqThan/4
e_gEqThan/4

compare_terms/5

frel1/3
frel2/3
frel3/3

lEqThan/3
gEqThan/3

sim/3

{clause}/2

Term1 Term2
Value

unify_arguments/1

Comparer

Term1 Term2
Degree

Relation
Lambda

weak_unify/4
unify/4

Flag

Term1 Term2
Degree

Lambda

Sym1 Sym2
DegreeTerm1 Term2

Value

Comparer

Problems

over_lambdacut/1

Degree

min_degree/2
List

Degree

Goal

Sym1 Sym2
Degree

Sym1 Sym2
Degree

{assert/retract}

{assert/retract}

{assert/
retract}

{assert}

Name
Arguments

(b) Internal view

Figure 4.9: Diagrams of the module evaluator.

66

4.4. DESIGN

mand processor.

When the user loads a program or an ontology using the command processor, the TPL

code file generated as a result of the compilation of the BPL file (or files) is loaded into this

module. This ensures that, during the execution of the queries, the interpreter can access all

the rules and proximity equations defined in the TPL file.

According to the diagrams of Figure 4.9 the module evaluator depends on two other

modules of the system for its correct operation: directives, which executes the compiled

directives that appear in the TPL code files; and flags, which is used to retrieve the current

value of lambda cut.

The four predicates that compose the public interface of the module evaluator are the

following:

n load_tpl(+File). It deletes all the rules and equations of the program loaded in

memory and replaces them with those containing the TPL code file passed as a pa-

rameter. If the TPL file has compiled Bousi∼Prolog directives, the module directives

is used to execute them.

n solve_goal(:Goal). Executes the specified query Goal against the program

loaded in memory.

n get_sim_equations(-Equations). Returns in Equations a list with all the

proximity or similarity equations defined in the module evaluator. Each equation

returned will be a term composed of the form sim(Term1, Term2, Degree), for

the reasons explained on the next page.

n add_sim_equations(+Equations). Add to this module the list of proximity

equations or similarity passed as a parameter. Each equation in the list must be a

term composed of the form sim(Term1, Term2, Degree).

The clauses of the TPL file loaded in the module evaluator (through the public predi-

cate load_tpl) are represented in the internal view diagram of Figure 4.9 with a dynamic

predicate of arity 2 called {clause}3.

Since the BPL system translates the BPL code into TPL code following the rules seen in

Section 3.3.2, these dynamically loaded clauses will contain references to the three auxiliary

3Each clause of the TPL file loaded into memory will have as its head a different predicate identifier, which
will depend on the original definition of the clause in the BPL file that gave rise to the TPL. However, in
order to facilitate the reading of the diagram, all those clauses have been grouped into a single name predicate
{clause}.

67

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

Relation Predicate Comparator

∼ sim unify

∼1∼ frel1 e_frel1

∼2∼ frel2 e_frel2

∼3∼ frel3 e_frel3

<∼ lEqThan e_lEqThan

∼> gEqThan e_gEqThan

Table 4.1: Predicates and comparators of the fuzzy relations available in Bousi∼Prolog.

predicates that were explained in the previous chapter:over_lambdacut, min_degree and

unify_arguments. The module evaluator implements the aforementioned support predi-

cates so that the TPL code can be executed properly.

On the other hand, to internally represent the equations of the fuzzy relations of BPL

programs, the module evaluator uses six dynamic predicates, one for each relation available

in the Bousi∼Prolog language. All these predicates have arity 3, since each equation is

defined through two symbols and their degree of approximation.

Analogously, so that during the resolution of a goal it can be verified whether two

terms are unifiable or comparable according to one of the fuzzy relations of the language,

the module has six other static predicates, which extend the original relations on the domain

of symbols to the domain of the terms. In this case, these predicates have arity 4, since Bou-

si∼Prolog term comparison expressions are formed by two terms, an arithmetic operator and

the comparison degree (see page 27).

The names that have been chosen for the dynamic and comparison predicates of each

of the six fuzzy relations of the language Bousi∼Prolog are indicated in the Table 4.1. It

should be noted that all these predicates are used internally by the BPL system and are not

part of the Bousi∼Prolog language.

Since the term comparison algorithm is identical for all fuzzy relations, in Figure 4.9 it

can be seen that the predicates e_frel1, e_frel2, e_frel3, e_lEqThan and e_gEqThan

delegate the comparison of the terms to the predicate compare_terms, which receives

among others parameters the relations you want to use. The predicate unify, instead, makes

a call to weak_unify, which implements the weak unification algorithm.

68

4.4. DESIGN

4.4.6. Module parser

Of the three subsystems in which the BPL system can be decomposed (command pro-

cessor, compiler, and loader/interpreter), the compiler is the most complex of them because

of the difficulty involved in performing a complete analysis of BPL source code files, and

secondly, because of translating the BPL code into TPL code.

For this reason, although in the architecture of the system planned in the early stages

of the design there was a single module called parserTranslator responsible for the entire

compilation process, finally the compiler has been divided into two modules: parser and

translator.

Of these two modules, the parser deals with the first part of the compilation process,

that is, the lexical, syntactic and semantic analysis of programs, ontologies and queries writ-

ten in the Bousi∼Prolog language.

Starting from a BPL source code file or a text string with a BPL query, the parser

performs the analysis of the BPL code and generates a series of intermediate structures that

can be later used by the module translator to build, respectively, a TPL code file or a Prolog

query that can be executed on the system interpreter.

The parser uses the module directives to check the validity of the specific Bousi∼Pro-

log directives found in the BPL code (and execute those that are correct). It also makes use

of the module foreign because the lexical analysis is delegated to an external predicate for

efficiency reasons.

As indicated in Figure 4.10, the public interface of this module consists only of the

following two predicates:

n parse_program(+ProgramFile, +OntologyFile, -Directives, -Rules,

-Equations, -LingTerms, -Messages). Performs the joint analysis of the BPL

code files passed to ProgramFile and OntologyFile (which must be an ontol-

ogy), and returns in each list the directives, rules, equations and linguistic terms found

in them. The OntologyFile parameter can be omitted to load only one program.

On the other hand, in the parameter Messages a list with the warnings and error

messages generated during the compilation is returned.

n parse_query(+ProgramPrefix, +String, -Query, -LingTerms, -Me-

ssages). It analyzes the BPL query contained in the text string String and returns

69

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

parser

translator
...

parse_query/5

parse_query/5

parse_program/7

...

parse_program/7

ext_tokenize/2

directive/2

foreign... ext_tokenize/2

directives

directive/2

...

Name
Arguments

ProgramFile
OntologyFile

Directives
Rules

Equations
LingTerms
Messages

is_directive_valid/2 is_directive_valid/2

ProgramPrefix
String

Query
LingTerms
Messages

Name
Arguments

TokensString

(a) External view

parser

directive/2

parse_query/5

parse_program/7

messages/1 Directives
Rules

Equations

{assert/retract}

Name
Arguments

reset_parser/0

custom_ops/1

parse_file/4

{Reglas DCG para
analizar programas}

bpl_filename/1

{Reglas DCG para
analizar consultas}

{Reglas DCG para
analizar términos}

linguistic_terms/1

add_message/4

is_directive_valid/2ext_tokenize/2

StringTokens

Tokens

Query

Tokens

Directives
Rules

Equations

File

Filename

Message
Line

Column
Type

{assert}LingTerms

LingTerms

{assert}

{assert}

OpList

{retract}

{retract}

{retract}

Name
Arguments

Messages

(b) Internal view

Figure 4.10: Diagrams of the module parser.

70

4.4. DESIGN

directives.bpl equations.bpl program.bpl
:- transitivity(no). young ∼ adult = 0.7. young(anne).

adult ∼ old = 0.4. adult(peter).

with_include.bpl without_include.bpl
:- include(‘directives.bpl’). :- transitivity(no).

:- include(‘equations.bpl’). ≡ young ∼ adult = 0.7.

:- include(‘program.bpl’). adult ∼ old = 0.4.

young(anne).

adult(peter).

Code listing 4.1: Example of use of the directive include.

the translated query along with the linguistic terms that appear in it and the messages

generated during its translation. The ProgramPrefix parameter indicates the prefix

associated with the program loaded in memory.

Internally, the module parser has a predicate parse_file that allows you to analyze

a BPL source code file. This predicate is not only used to analyze the program and the

ontology passed as a parameter to parse_program, but it is also invoked recursively to

analyze the secondary files referenced within the program and the ontology.

In this sense, for the user can distribute their programs and ontologies in several files,

the directive includehas been added to the language. This directive receives as parameter

the name or path of a BPL code file and behaves similarly to the directive #include of C:

a BPL program with a directive include is equivalent to another program with the same

code but in which the directive has been replaced by the content of the referenced BPL file

(see the Code listing 4.1).

Ultimately, both the predicate parse_file and parse_query use definite clause

grammars (DCG) to perform the syntactic and semantic analysis of the BPL code from the

tokens returned by the lexical analyzer.

The DCGs are composed of a special type of rules that facilitate the handling of to-

kens and the execution of production rules. As an example, the Code listing 4.2 shows a

simple grammar that recognizes the regular expression «a*b*c*» and returns the number

of letters read. As you can see, in the DCG the operator --> separates the left part (the

non-terminal symbol) and the right part (which may contain both tokens and non-terminal

symbols) of each rule, the tokens are enclosed in square brackets and the production rules

rules are delimited with braces.

71

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

% Grammar that recognizes the regular expression "a*b*c*"
% and returns the total number of read letters

s(N) --> a(NA), b(NB), c(NC), {N is NA + NB + NC}.

a(N) --> [a], a(N1), {N is N1 + 1}.
a(0) --> [].

b(N) --> [b], b(N1), {N is N1 + 1}.
b(0) --> [].

c(N) --> [c], c(N1), {N is N1 + 1}.
c(0) --> [].

% Examples of grammar use

example1 :- phrase(s(N), [a, b, c, c]), write(N). % write ’4’
example2 :- phrase(s(N), [a, a, c, b, c]), write(N). % Fail
example3 :- phrase(s(N), []), write(N). % write ’0’

Code listing 4.2: Definite clause grammar that recognizes the language a*b*c* [40].

In the diagram of Figure 4.10 the rules of the DCG have been grouped to analyze the

programs, the terms and the queries in three static predicates. However, when implementing

grammar, as a rule you need a rule for each production of the grammar of the language you

want to recognize.

4.4.7. Module translator

The module translator implements the second and last phase of the compilation pro-

cess. Depending on whether you are compiling a BPL code file or translating a query entered

by the user, this module is responsible for generating a TPL code file or a goal that can be

sent to the interpreter of the BPL system, respectively. In both cases, the intermediate repre-

sentation of the code returned by the parser is taken as input.

The module translator is only used by the command processor and depends on four

other modules of the system: parser, evaluator, foreign and flags. The two public predicates

that this module has are the following:

n translate_program(+InputProgram, +InputOntology, +OutputFile).

Compiles the BPL code files together InputProgram and InputOntology (which

must be an ontology), and store the resulting TPL code in the file OutputFile. The

InputOntology parameter can be omitted to compile only one program.

n translate_query(+String, -Query, -Bindings, -Degree). Translates the

72

4.4. DESIGN

translator

parser

translate_query/4

...

translate_program/3

ext_closure/5

parse_program/7

foreign...

ext_closure/5

evaluator

get_sim_equations/1

...

Directives
Rules

Equations
LingTerms
Messages

ProgramFile
OntologyFile

add_sim_equations/1 add_sim_equations/1

Query
LingTerms
Messages

ProgramPrefix
String

parse_program/7

parse_query/5

parse_query/5

get_sim_equations/1

ext_translate_fuzzy_sets/5

bplShell

...
translate_program/3

translate_query/4...

...

ext_translate_fuzzy_sets/5

Flag

get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1
Flag

Flag

OutputEquations

InputEquations
Closure
TNorm

RelationName

Equations

Domain
Subsets

NewSubsets
RelationName

Equations

Equations

InputProgram
InputOntology
OutputFile

String

Query
Bindings
Degree

flags... add_bpl_flag/1

get_bpl_flag/1

remove_bpl_flag/1

(a) External view

translator

ProgramPrefix
String

expand_equations/3

parse_query/5

Equations

EqPrefix
Equations

ExpandedEquations

Equations

get_sim_equations/1 add_sim_equations/1

parse_program/7 ext_closure/5 ext_translate_fuzzy_sets/5

expand_rules/4

translate_fuzzy_sets/2

Query
LingTerms
Messages

ProgramFile
OntologyFile

Directives
Rules

Equations
LingTerms
Messages

Domain
Subsets

NewSubsets
RelationName

Equations

InputEquations
Closure
TNorm

RelationName

OutputEquations

ProgramPrefix
Rules

Equations

ExpandedRules

Sets

Equations

Flag

get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1

Flag

Flag

LingTerms

Sets

translate_program/3

translate_query/4

add_linguistic_terms/2

(b) Internal view

Figure 4.11: Diagrams of the module translator.

73

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

BPL query contained in the text string String and return:

o In Query the query TPL (Prolog) that can be executed by the BPL system in-

terpreter.

o In Bindings a list of links that relates each free variable of the query to its

original name. This list will be used to show the «results» of the query, that is,

the computed substitution.

o In Degree the variable where the approximation degree of the answer will be

stored, when the query be executed.

Internally, the translation of the BPL code files is divided into two clearly differentiated

stages, which have been called expansion of equations (predicate expand_equations) and

expansion of rules (predicate expand_rules).

The expansion of equations consists of calculating the reflexive, symmetric and/or tran-

sitive closure of the (proximity) equations introduced by the user in the BPL program, in

order to generate the complete set of equations of the six fuzzy relations available in the

language.

To obtain the type of closure that must be applied in each relation, the information of the

directives transitivity and fuzzy_rel, which the module directives will have stored

in the flags during syntactic and semantic analysis is used. To perform the computation of

these closures the predicate ext_closure of the external library is employed.

In the Code listing 4.3 you can see an example of expansion of equations for a simple

ontology formed by three equations. Notice how a similarity relation is generated from the

two proximity equations (relation ∼) and how the symmetric equation is added for the only

equation that has the relation ∼1∼. In this example, in addition, you can see the translation

of the Bousi∼Prolog directives according to the syntax explained in the module directives.

On the other hand, the expansion of rules is the process by which the definitive rules

of the TPL code are generated, applying the techniques seen in Section 3.3.2. From the

proximity or complete similarity relation of the program being compiled, each rule of the

BPL code is replicated in the TPL code once for each symbol that is close to the relation

symbol that is in its head.

The Code listing 4.4 contains a fragment of TPL code generated from a program frag-

ment composed of two proximity equations and two facts. In this fragment you can see

how three rules are generated from the fact mystery (chinatown) because the symbol

74

4.4. DESIGN

% BPL Code
% ----------

:- transitivity(yes).
:- fuzzy_rel(~1~, [symmetric]).
a ~ b = 0.5.
b ~ c = 0.8.
p ~1~ q = 0.2.

% TPL Code
% ----------

:- directive(transitivity, [yes]).
:- directive(fuzzy_rel, [frel1, [symmetric]]).
sim(a, b, 0.5).
sim(a, c, 0.5).
sim(b, a, 0.5).
sim(b, c, 0.8).
sim(c, a, 0.5).
sim(c, b, 0.8).
sim(X, X, 1.0).
frel1(p, q, 0.2).
frel1(q, p, 0.2).

Code listing 4.3: Expansion of the equations in a BPL code fragment.

mystery is close to itself (because the reflexive property), to adventure (for the sym-

metric property) and to thriller (for the equation in the BPL code). Something similar

happens with the fact adventure(indiana_jones), which is "expanded" giving rise to

two different rules.

In the TPL code of Code listing 4.4 it can also be seen that the identifier prog_ has

been prefixed to the heads of all program rules. This identifier represents the prefix of the

program that is being compiled, and is used to distinguish two or more predicates with the

same name that belong to different programs. In the example of Code listing 4.4 the file

containing the source BPL program has been named prog.bpl.

This prefix has had to be added because the older versions of SWI-Prolog do not allow

downloading a complete program once it has already been loaded into memory (except in

case the same program is loaded several times, in which case the old content of the program

is removed). Thus, to maintain the maximum possible compatibility, in those cases the prefix

allows the predicates of a program not to conflict with those of other programs, even if they

have the same predicate name.

Before performing the expansion of the equations and rules, when a program or ontol-

ogy is going to be compiled in which one or more linguistic variables are defined, it is nec-

75

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

% BPL Code
% ----------

:- transitivity(no).
adventure ~ mystery = 0.5.
mystery ~ thriller = 0.9.
mystery(chinatown).
adventure(indiana_jones).

% TPL Code
% ----------

:- directive(transitivity, [no]).
sim(adventure, mystery, 0.5).
sim(mystery, thriller, 0.9).
sim(mystery, adventure, 0.5).
sim(thriller, mystery, 0.9).
sim(X, X, 1.0).
prog_mystery(Arg1, Degree)) :-

unify_arguments([[Arg1, chinatown, DegreeArg1]]),
min_degree([DegreeArg1], Degree).

prog_thriller(Arg1, Degree)) :-
over_lambdacut(0.9),
unify_arguments([[Arg1, chinatown, DegreeArg1]]),
min_degree([DegreeArg1, 0.9], Degree).

prog_adventure(Arg1, Degree)) :-
over_lambdacut(0.5),
unify_arguments([[Arg1, chinatown, DegreeArg1]]),
min_degree([DegreeArg1, 0.5], Degree).

prog_adventure(Arg1, Degree)) :-
unify_arguments([[Arg1, indiana_jones, DegreeArg1]]),
min_degree([DegreeArg1], Degree).

prog_mystery(Arg1, Degree)) :-
over_lambdacut(0.5),
unify_arguments([[Arg1, indiana_jones, DegreeArg1]]),
min_degree([DegreeArg1, 0.5], Degree).

Code listing 4.4: Expansion of the rules in a BPL code fragment.

essary to generate the reflexive fuzzy relation associated to the fuzzy subsets of the linguistic

terms. This task is occupied by the internal predicate translate_fuzzy_sets, which del-

egates the generation of the relation to the external predicate ext_translate_fuzzy_sets

.

Also, another important task that the module translator performs is the incorporation

of the linguistic terms constructed with the operator # to the definition of the linguistic

variables.

Although terms using the operator # do not need to be declared with the directive

fuzzy_set, they must be taken into account for the generation of the reflexive fuzzy re-

lation. For this reason, the module translator receives a list with this type of linguistic

76

4.4. DESIGN

% BPL Code
% ----------

:- domain(pressure, 0, 250, kpa).
:- fuzzy_set(pressure, [weak(0, 0, 30, 100),

normal(60, 130, 190),
strong(130, 190, 250)]).

current_pressure(very#weak).

% TPL Code
% ----------

:- directive(domain, [pressure, 0, 250, kpa]).
:- directive(fuzzy_set, [pressure, [weak(0,0,30,100),

normal(60,130,190),
strong(130,190,250)]]).

sim(very_weak, normal, 0.08).
sim(very_weak, weak, 0.888).
sim(strong, normal, 0.25).
sim(normal, very_weak, 0.08).
sim(normal, strong, 0.25).
sim(normal, weak, 0.143).
sim(weak, very_weak, 1.0).
sim(weak, normal, 0.143).
sim(X, X, 1.0).
prog_current_pressure(Arg1, Degree) :-

unify_arguments([[Arg1, very_weak, DegreeArg1]]),
min_degree([DegreeArg1], Degree).

Code listing 4.5: Translation of linguistic variables in a BPL code fragment.

terms from the parser and, using the add_linguistic_terms predicate, adds them to the

definition of the corresponding linguistic variable stored in the flags before generating the

equations of the relation.

The Code listing 4.5 shows a simple example BPL program that contains a linguis-

tic variable called pressure and four linguistic terms, three defined with the directive

fuzzy_set and one compound that is used in a fact (very#weak). From these terms, the

nine equations4 that appear in the TPL code are generated, in which the literal very_weak

is used to represent the compound term very#weak.

In the case of translating a query, this process is slightly more complex because, if a

query uses a linguistic term that has not been used until now, it is necessary to recalculate

the reflexive fuzzy relation and modify the program loaded in memory5. The concrete steps

that follow in this situation are the following:

4Equations whose proximity degree is 0 need not be represented.
5Given the large number of linguistic terms that can be defined with the operator #, it is not feasible to

generate at compile time a fuzzy relation with all possible terms for each universe of discourse. That is why it
is inevitable to have to recalculate and modify the relationship during the translation of the query.

77

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

a) Add the new term to the definition of its corresponding linguistic variable.

b) Calculate the relationship between the new term and all other terms of the linguistic

variable to which it belongs.

c) Add the equations obtained in the previous step to the program loaded in memory.

This is the reason why the predicate add_sim_equations has been defined in the

module evaluator.

4.4.8. Module bplShell

The module bplShell implements the command processor of the BPL system. It is

the central module of the application, since it is the one that allows the user to enter the

commands, receive the answers to the queries and manage the execution of both the compiler

and the Bousi∼Prolog loader/interpreter.

The command processor acts as an interface between the user and the BPL system,

so that it must allow the user to carry out all the functions proposed in the requirements

specification and the use cases. For this task, the processor has the following 14 commands:

n ld: Shows the name of the program and the ontology currently loaded.

n ld <program>: Compiles and loads in memory the <program> passed as a param-

eter.

n ld -f <program>: Same as the previous command but ignores the content of the

associated TPL file and forces the recompilation of the BPL code.

n ld -o <ontology>: Compiles and loads in memory the <ontology> passed as a

parameter together with the last program that was loaded with the command ld.

n ld -fo <ontology>: Same as the previous command but ignores the content of the

associated TPL file and forces the recompilation of the BPL code.

n sv <query> o <query>: Translates and executes the indicated <query>; Then, if

any answer is found, it is shown to the user and the option to search for additional

answers is offered. The command sv is the default command of the system, which

means that if the user enters an order that does not conform to any of the commands

shown in this list, the command will be interpreted as a Bousi∼Prolog query. In other

words, the sv command can be ignored when writing a query.

n lc: Shows the current lambda cut value.

78

4.4. DESIGN

bplShell

bplHelp

start_bpl_shell/0

bpl_help/0

evaluator
...

translator...

translate_query/4

command_help/1

translate_program/3

bousi... start_bpl_shell/0

Flag

flags get_bpl_flag/1

remove_bpl_flag/1

add_bpl_flag/1

Flag

Flag

foreign

...

...

Topic

InputProgram
InputOntology
OutputFile

Query
Bindings
DegreeString

load_tpl/1

solve_goal/1

Goal

File

restore_bpl_flags/0

backup_bpl_flags/0

reset_bpl_flags/0

String
ArgumentsPrompt

List

List

File
MaxCommands

File

ext_set_program_predicate_list/1

ext_read_shell_line/3

ext_load_shell_history/1

ext_save_shell_history/2

ext_set_system_predicate_list/1

reset_bpl_flags/0

backup_bpl_flags/0

restore_bpl_flags/0

get_bpl_flag/1

add_bpl_flag/1

remove_bpl_flag/1

ext_read_shell_line/3

ext_load_shell_history/1

ext_save_shell_history/2

ext_set_system_predicate_list/1

ext_set_program_predicate_list/1

load_tpl/1

solve_goal/1

translate_query/4

translate_program/3

bpl_help/0

command_help/1

(a) External view

translate_query/4

bplShell

translate_command/3

List

bpl_shell_loop/0
File

Options

Flag

ld/0

ld/1

restore_bpl_flags/0

translate_program/3

load_tpl/1

ext_set_program_predicate_list/1

reset_bpl_flags/0

last_program_loaded/2

sv/3 solve_goal/1

lc/0

lc/1

qt/0

hp/0

hp/1

ext_set_system_predicate_list/1 ext_load_shell_history/1

start_bpl_shell/0

ext_read_shell_line/3

ls/0

cd/1

pwd/0

bpl_help/0

command_help/1

ext_save_shell_history/2

File

List

add_bpl_flag/1

remove_bpl_flag/1

Flag

Flag

get_bpl_flag/1

File Prompt

Program
Ontology

InputProgram
InputOntology
OutputFileFile

Topic Topic

Query
Bindings
Degree

Query

File
MaxCommands

Directory

String
Arguments

Query
Bindings
Degree

String

Command String
Arguments

{assert/retract}

Lambda

ld/2

backup_bpl_flags/0

(b) Internal view

Figure 4.12: Diagrams of the module bplShell.

79

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

n lc <degree>: Set <degree> as the new system lambda cut value.

n pwd: Shows the path of the current working directory.

n ls: Displays the list of files and folders in the current working directory.

n cd <directory>: Sets <directory> as the new working directory of the system.

n hp: Displays the list of available commands in the shell of the BPL system.

n hp <command>: Shows the syntax and description of the indicated <command>.

n qt: Quits the system.

Given its status of a central module, the module bplShell is the one with the most

dependencies of the entire system. So, you need to use predicates exported from the modules

bplHelp, to show the help; evaluator, to execute queries; translator, to compile files and BPL

queries; flags, to retrieve and modify some flags; and foreign, to access the support library of

the command line (in order to manage the history and autocomplete functions).

The module bplShell has only one public predicate, which is invoked by the module

bousi when the system is booted:

n start_bpl_shell. Initialize and launch the command processor of the BPL sys-

tem. This predicate requests an order from the user, executes it and continues to

request commands from the user until the qt command is entered.

When designing this module it was decided to create an internal predicate for each

order available in the command processor, as seen in Figure 4.12. Each predicate has as

many arguments as parameters receives its corresponding command, with the exception of

the command ld, where the list of options is considered as a single parameter that can

receive three values: [f], [o] or [f, o].

The predicate translate_command is responsible for converting the text strings with

the commands entered by the user in calls to any of the internal predicates of this module.

When an order written by the user contains a query, the module translator is accessed to

generate a query that can be sent to the interpreter.

In general, the execution of each of the commands is based on making calls to another

module of the BPL system. The most complicated order is that of loading programs and

ontologies, because the compiler and the load/interpreter must be involved in its execution.

In this sense, the use of the predicates backup_bpl_flags and restore_bpl_flags

should be highlighted so as not to alter the current flags of the system in the event of an error

during the compilation of the program indicated by the user.

80

4.4. DESIGN

bousi

main/0bplShell

start_bpl_shell/0

load_foreign_extension/0foreign...

Punto de entrada
del sistema BPL

start_bpl_shell/0

load_foreign_extension/0

...

(a) External view

bousi

load_foreign_extension/0

start_bpl_shell/0

main/0

(b) Internal view

Figure 4.13: Diagrams of the module bousi.

4.4.9. Module bousi

The module bousi is the module that contains the entry point of the application, that is,

it is the first one that is executed when the BPL systemis started.

As shown in Figure 4.13, this module has a single public predicate with no arguments

called main. This predicate takes care of initializing the BPL system and leaving it ready so

that the user can start working with it. Basically, this predicate loads the BPL foreign library,

displays a welcome message to the user and then launches the command processor.

4.4.10. Module foreign

The module foreign represents the interface between the BPL system and the BPL

foreign library implemented in C. This library, which connects to Prolog through the foreign

interface of SWI-Prolog, contains various predicates that was implemented in C instead of

in Prolog to increase the efficiency of the system.

In the BPL system there are three modules that actively use the foreign library:

n The module parser uses an external predicate to execute the Bousi∼Prolog lexical

81

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

foreign

ext_load_shell_history/1

ext_tokenize/2

bplShell

...
ext_read_shell_line/3

ext_save_shell_history/2

ext_read_shell_line/3

ext_translate_fuzzy_sets/5

ext_load_shell_history/1

ext_set_system_predicate_list/1

translator... ext_closure/5

ext_translate_fuzzy_sets/5

bousi
...

load_foreign_extension/0

...

...

...

load_foreign_extension/0

ext_closure/5

ext_set_program_predicate_list/1

ext_save_shell_history/2

ext_set_system_predicate_list/1

ext_set_program_predicate_list/1

parser
...

ext_tokenize/2

...

InputEquations
Closure
TNorm

RelationNameOutputEquations

Domain
Subsets

NewSubsets
RelationNameEquations

StringTokens

File

File
MaxCommands

Prompt
String

Arguments

List

List

Figure 4.14: External view diagram of the module foreign.

analyzer, which is generated automatically with the Flex tool from the definition of

the language.

n The module translator delegates to this library the computation of the closures of the

fuzzy relations, as well as the generation of the fuzzy relation from the fuzzy subsets.

n The module bplShell uses the foreign library to access the functions of the support

library to the command line (Editline or Linenoise, depending on the operating sys-

tem).

Below is the description of each of the predicates provided by the foreign library:

n ext_tokenize(+String, -Tokens). Lexically analyzes the string passed as a

parameter, which can represent both a program and a query written in the Bousi∼Pro-

loglanguage, and returns the corresponding list of tokens with the format expected by

the parser.

n ext_closure(+InputEquations, +Closure, +TNorm, +RelationName,

-OutputEquations). Calculates the reflexive, symmetric and/or transitive clo-

82

4.4. DESIGN

sure of the equation list InputEquations and returns a new list of equations in

OutputEquations headed with the symbol RelationName. The parameters Closure

and TNorm indicate the properties that must be applied to the relation and the type of

t-norm to be used, respectively.

n ext_translate_fuzzy_sets(+Domain, +Subsets, +NewSubsets, +Re-

lationName, -Equations). Generates a reflexive fuzzy relation from the list of

fuzzy subsets Subsets passed as a parameter, and returns in Equations the equa-

tions of the relation in which some of the subsets indicated in NewSubsets inter-

vene. The argument Domain contains the definition of the domain to which the fuzzy

subsets belong, while RelationName indicates the symbol that is used to head the

equations.

n ext_read_shell_line(+Prompt, -String, -Arguments). It shows to the

user the indicated Prompt and waits for him to enter a line of text. The full line

is returned in String, whereas the substrings into which the line is divided, using

the blanks as delimiters, is returned in Arguments.

n ext_load_shell_history(+File). Loads the file that contains the history of

recent commands.

n ext_save_shell_history(+File, +MaxCommands). Records the history of

recent commands in the indicated file, limiting the number of commands to MaxCo-

mmands.

n ext_set_system_predicate_list(+List). Sets the list of predefined predi-

cates of the BPL system that will be used in the query autocompletion.

n ext_set_program_predicate_list(+List). It establishes the list of predi-

cates defined in the program currently loaded in memory, which will be accessed to

automatically complete the queries.

The load_foreign_extension predicate is also part of the module foreign but not

of the foreign library itself, since it is used when the application is started to load the library

into memory.

83

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

4.5. IMPLEMENTATION

Once the system architecture has been defined and a design diagram has been drawn up

for each of its components, the next step in the development is to implement these modules

and connect them together to build the complete system.

In the next sections we mention the main difficulties that have been encountered during

the implementation of the BPL system, and explain the functioning of some algorithms that

are considered relevant (e.g., weak unification). Finally, several example sessions with the

BPL system are presented, in which some of the use cases established in the analysis phase

are carried out.

4.5.1. Patterns and style norms

To facilitate the understanding and reuse of the BPL system code, before starting its

development, a set of rules was established in order to maintain a coherent style in the im-

plementation of the whole system.

According to these guidelines, all the predicates of the BPL system (including those of

the foreign library) are preceded by a comment in which its operation is briefly described

and both the name and the type (input, output or input/output) of each of its arguments are

indicated.

Thanks to the systematic writing of documentation for all the predicates, through a

package included in SWI-Prolog you can automatically generate a PDF manual with the

documentation of the entire system. More details on the creation of this manual can be

found in Appendix A.

Finally, during the development of the BPL system some common Prolog patterns and

programming techniques have been used, among which we can mention accumulator pass-

ing, last call optimization and failure-driven loops [40, 32].

4.5.2. Weak unification algorithm

The Bousi∼Prolog language is based on the WSLD resolution strategy which is im-

plicitly implemented in the TPL code generated by the compiler of the BPL system, as it

was explained at the end of the previous chapter.

In order for the TPL code to work correctly, it is necessary to provide the implementa-

84

4.5. IMPLEMENTATION

% weak_unify(?Term1, ?Term2, +Lambda, ?Degree)

weak_unify(Atomic1, Atomic2, Lambda, Degree) :-
% Atom (constant) unification
atomic(Atomic1), atomic(Atomic2), !,
sim(Atomic1, Atomic2, Degree),
Degree >= Lambda.

weak_unify(Term1, Term2, Lambda, Degree) :-
% Term decomposition
compound(Term1), compound(Term2), !,
Term1 =.. [Functor1|Args1],
Term2 =.. [Functor2|Args2],
length(Args1, Arity),
length(Args2, Arity),
sim(Functor1, Functor2, DegreeFunctor),
DegreeFunctor >= Lambda,
weak_unify_args(Args1, Args2, Lambda, DegreeArgs),
Degree is min(DegreeFunctor, DegreeArgs).

weak_unify(Term, Variable, _Lambda, 1) :-
% Term/variable swap + Variable elimination
nonvar(Term), var(Variable), !,
Variable = Term.

weak_unify(Variable, Term, _Lambda, 1) :-
% Variable elimination + Trivial equation removal
var(Variable),
Variable = Term.

% weak_unify_args(?Args1, ?Args2, +Lambda, ?Degree)

weak_unify_args([], [], _Lambda, 1).

weak_unify_args([Arg1|MoreArgs1],[Arg2|MoreArgs2],Lambda,Degree) :-
weak_unify(Arg1, Arg2, Lambda, DegreeArg),
weak_unify_args(MoreArgs1, MoreArgs2, Lambda, DegreeMoreArgs),
Degree is min(DegreeArg, DegreeMoreArgs).

Code listing 4.6: Implementation of the weak unification algorithm.

tion, among others, of the predicate unify_arguments, which is used to weakly unify the

real and formal parameters of the predicates.

In the BPL system, the predicate that implements the weak unification algorithm is

called weak_unify and is a component of the module evaluator, since it is in this mod-

ule where the dynamic predicate sim that contains the proximity equations of the program

loaded in memory. The complete code of weak_unify can be found in the Code listing 4.6.

The predicate definition weak_unify is largely based on the rules of the weak uni-

fication algorithm of Table 2.3 that was explained in more detail in the chapter on fuzzy

85

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

logic programming. The correspondence between the rules of the original algorithm and its

implementation is briefly discussed below.

n Term decomposition This rule has been implemented by means of two clauses,

to differentiate the case where the entry terms are simple (constant) or compound

(i.e., general terms or atomic formulas). In the latter case, after verifying that the

relation or functor symbols of both terms are close, an auxiliary predicate called

weak_unify_args is used to weakly unify its arguments.

n Swap and variable elimination This rule partially corresponds to the third clause of

the predicate weak_unify. In this clause, the swap and variable elimination rules of

the weak unification algorithm are applied simultaneously to optimize its execution.

n Variable elimination and removal of trivial equations. These two rules of the

weak unification algorithm have been merged into a single clause that acts as follows:

whenever the first input term of the algorithm is a variable, it is unified with the

second term, regardless of whether it is an atomic or compound term, a variable or a

reference to the first term.

n Failure rule The rule responsible for detecting that two expressions are not unifi-

able has not been actually implemented. Instead, following the Prolog program-

ming style, it is considered that two expressions are not unifiable when the predicate

weak_unify fails.

n Occur check This rule has been omitted for reasons of efficiency as it is done in most

Prolog systems.

It noteworthy that the composition of substitutions and the generation of the final sub-

stitution are tasks that Prolog performs automatically when an explicit unification statement

is executed as Variable = Term.

4.5.3. Term comparison algorithm

In addition to the weak unification algorithm, the BPL system also implements the

term comparison algorithm, which calculates the approximation degree between any two

terms according to the formula presented in Section 3.1.1, page 28. As commented in that

section, this algorithm provides the extension to the domain of terms of the respective fuzzy

relations defined by the user.

Given its similarity to the weak unification algorithm, the term comparison algorithm

86

4.5. IMPLEMENTATION

% compare_terms(+Relation, ?Term1, ?Term2, +Lambda, ?Degree)

compare_terms(Relation, Term1, Term2, _Lambda, Degree) :-
% Variable-Variable comparison
var(Term1), var(Term2), !,
Term1 == Term2,
apply(Relation, [Term1, Term2, Degree]),
var(Term1), var(Term2).

compare_terms(Relation, Term1, Term2, Lambda, Degree) :-
% Atomic-Atomic comparison
atomic(Term1), atomic(Term2), !,
apply(Relation, [Term1, Term2, Degree]),
Degree >= Lambda.

compare_terms(Relation, Term1, Term2, Lambda, Degree) :-
% Compound-Compound comparison
compound(Term1), compound(Term2), !,
Term1 =.. [Functor1|Args1],
Term2 =.. [Functor2|Args2],
length(Args1, Arity),
length(Args2, Arity),
apply(Relation, [Functor1, Functor2, DegreeFunctor]),
DegreeFunctor >= Lambda,
compare_args(Args1, Args2, Relation, Lambda, DegreeArgs),
Degree is min(DegreeFunctor, DegreeArgs).

% compare_args(?Args1, ?Args2, +Relation, +Lambda, ?Degree)

compare_args([], [], _Relation, _Lambda, 1).

compare_args([Arg1|MArgs1],[Arg2|MArgs2],Relation,Lambda,Degree) :-
compare_terms(Relation, Arg1, Arg2, Lambda, DegreeArg),
compare_args(MArgs1, MArgs2, Relation, Lambda, DegreeMArgs),
Degree is min(DegreeArg, DegreeMArgs).

Code listing 4.7: Implementation of the term comparison algorithm.

only deserves to emphasize the use of higher-order predicates as apply in order to use the

same algorithm with any of the fuzzy relations that the Bousi∼Prolog language has (exclud-

ing the fuzzy relation that participates in weak unification algorithm). The full code of the

term comparison algorithm is found in the Code listing 4.7.

4.5.4. Closures computation

The computation of reflective, symmetric and/or transitive closure of fuzzy relations is

a task performed by the predicate ext_closure of the BPL systemforeign library, written

in C, since it requires the generation and management of tables that can get to be large and

in that aspect C is much more efficient than Prolog.

87

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

From the proximity equations indicated by the programmer in the source code, the

predicate ext_closure generates a bidimensional matrix with one row and one column for

each symbol that intervenes in the relation. This matrix is called the adjacency matrix.

The adjacency matrix is initially filled with the approximation degrees of the proximity

equations that partially specify the relation, after which the following algorithms are used to

complete the matrix with the values that form the reflexive, symmetric and transitive closure

of the relation (in this order) :

a) Reflexive closure. All the entries of the main diagonal of the adjacency matrix are

set to 1 (the maximum possible approximation degree).

b) Symmetric closure. The entries of the adjacency matrix below to the main diagonal

are copied to their respective symmetrical positions above to the diagonal and vice

versa.

c) Transitive closure. A variant of the Warshall algorithm for binary adjacency matri-

ces is applied, in which the Boolean operators OR and AND are respectively replaced

by the maximum t-conorm and a t-norm chosen for the computation of transitivity.

The code of C method that is specifically responsible for calculating the closures of a

fuzzy relation characterized by an adjacency matrix6 can be found in the Code listing 4.8.

4.5.5. Syntactic analysis of terms

Based on what was decided during the design of the module parser, the parser of Bou-

si∼Prolog has been implemented through a defined clause grammar (DCG). Taking as a

reference the formal Prolog specification collected in the ISO Prolog standard [14] and the

Bousi∼Prolog syntax, in total about 60 rules have been nedeed to recognize all the construc-

tions of both languages.

When compiling a DCG as the one developed in the BPL system, Prolog internally

generates a series of predicates that build a parser for the language defined by the DCG

rules. This parser, in accordance with the Prolog execution model, is a top-down parser with

backtracking that reads the input strings from left to right [40].

Descending analyzers of this type, because of the need to use backtracking to fully rec-

6Since C does not have data structures for handling dynamic-sized arrays, for the development of the foreign
library an auxiliary C module called array has been implemented that allows the creation of two-dimensional
arrays of strings, numbers and pointers whose number of rows and columns may vary at runtime. The header
file of this module defines a structure called array that contains all the necessary data about a dynamic matrix.

88

4.5. IMPLEMENTATION

static void build_closure(array *pmAdjMatrix, int nSize,
int nClosureId, int nTNormId) {

double dDegree, dTNormResult;
bool bTransitive, bSymmetric, bReflexive;
int i, j, k;

/* extracts the closure properties from the closure id */
/* [...] */

/* reflexive closure */
if(bReflexive) {

for(i = 0; i < nSize; i++) {
array_set_double(pmAdjMatrix, i, i, 1.0);

}
}
/* symmetric closure */
if(bSymmetric) {

for(i = 0; i < nSize; i++) {
for(j = 0; j < nSize; j++) {

if(i != j && array_get_double(pmAdjMatrix, i, j) > 0.0) {
array_set_double(pmAdjMatrix, j, i,

array_get_double(pmAdjMatrix, i, j));
}

}
}

}
/* transitive closure (Warshall-like algorithm) */
if(bTransitive) {

for(k = 0; k < nSize; k++) {
for(i = 0; i < nSize; i++) {

for(j = 0; j < nSize; j++) {
switch(nTNormId) {
case TNM_MINIMUM:

dTNormResult=MIN(array_get_double(pmAdjMatrix, i, k),
array_get_double(pmAdjMatrix, k, j));

break;
case TNM_PRODUCT:

dTNormResult=PRODUCT(array_get_double(pmAdjMatrix,i,k),
array_get_double(pmAdjMatrix,k,j));

break;
case TNM_LUKASIEWICZ:

dTNormResult=LUKA(array_get_double(pmAdjMatrix, i, k),
array_get_double(pmAdjMatrix, k, j));

break;
}
dDegree = MAX(array_get_double(pmAdjMatrix, i, j),

dTNormResult);
array_set_double(pmAdjMatrix, i, j, dDegree);

} /* for(j) */
} /* for(i) */

} /* for(k) */
}

}

Code listing 4.8: Implementation of the algorithm to compute the reflexive, symmetric and/or
transitive closure.

89

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

ognize input strings, are usually slightly slower than analyzers without backtracking. How-

ever, the biggest problem is that, if the original grammar is recursive to the left, the analyzer

can fall into an infinite loop when recognizing certain chains [1].

Since the Prolog language has several left associative operators (+, -, * and, in general,

all the arithmetic operators), its grammar collected in the standard ISO Prolog is recursive

to the left. Just look at one of the productions of the non-terminal left term of the language

syntax to check it:

left term [n] = left term [n] , operator [n / yfx] , term [n - 1]

Therefore, in order to properly recognize programs written in Prolog (and Bousi∼Pro-

log) by means of a DCG, first, it is essential to eliminate the left recursion of the original

grammar of the language, keeping its syntax intact. In particular, it is necessary to modify the

way in which the Prolog terms are analyzed, which are those that may contain left associative

operators.

To solve this problem, several options were posed, such as grouping the operators by

priority and creating different rules for each group of them, or limiting the number of times

that the same DCG rule could be applied recursively. However, while the first solution

prevented the use of user-defined operators (a requirement of the system), the second solution

arbitrarily restricted the length of the terms that could appear in the programs.

Finally, the solution that has been adopted is to recognize the Prolog terms by means of

a right recursive grammar and generate flat lists with all the operands and operators (prefixes

and infixes, not postfixes)7 that appear in them. Then, these lists are passed to algorithms

that generate the real syntactic tree of each term, based on the priority and the associativity

of each of its operators.

The need to use additional algorithms to obtain the real syntactic tree of the terms from

the result of the right recursive analyzer is reflected in the example of Figure 4.15. In this

figure, it is analyzed the expression 1 * 2 + 3 using two analyzers: one left-right recursive

and another recursive only to the right. While the first one is able of generating the correct

syntactic tree of the expression, using the precedence of its operators, with the second one

we obtain a tree that does not represent the expected expression.

To see how the syntactic analysis has finally been implemented, an example will be

7Not allowing the use of postfix operators does not represent a major limitation because the standard ISO
Prolog does not define any default operator of that type. However, it prevents users from declaring their own
postfix operators.

90

4.5. IMPLEMENTATION

Left-right recursive analyzer right recursive analyzer
T → T + T T → A + T

T → T * T T → A * T

T → A T → A

A → 1 | 2 | 3 A → 1 | 2 | 3

Precedence: +, *

Analyzed expression: Analyzed expression:
1 * 2 + 3 1 * 2 + 3

T

TT

T

A

*

1

+

A

3

T

A

2

T

T

A

2

+

*

T

A

3

A

1

(1 * 2) + 3 1 * (2 + 3)

Correct Incorrect

Figure 4.15: Limitations of right recursive analyzers.

shown starting from the following Prolog term:

X is 5 + -2, true, fail

The DCG rules of the module parser convert this term into a list that contains all its

operands and operators in the order in which they appear in the source code. During this

stage it is checked that the term is correct syntactically (for example, it is verified that there

are not two consecutive infix operators). For the proposed term the list that would be obtained

would be:

[X, operator(is, infix), 5, operator(+, infix),

operator(-, prefix), 2, operator(’,’, infix),

true, operator(’,’, infix), fail]

This list is passed to algorithms developed expressly for the BPL system that apply the

well-known “divide and conquer” technique to obtain the syntactic tree associated with the

initial term. Since all operators have a well defined priority and associativity, it will only be

possible to generate a term from each list.

If there were ambiguities in the construction of the syntactic tree (for example, because

several non-associative operators or incompatible associativities would have been the same

91

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

level), an error at compile time would occur.

Next is presented the pseudocode of the algorithms that have been developed to create

the syntactic tree of a term from a list generated by the rules of the DCG. The two algorithms

are implemented within the module parser.

ALGORITHM 1. generateSyntacticTree

INPUT: list, a flat list with the operands and operators of a term.

OUTPUT: a syntactic tree representing the term associated with list.

Begin

If list only has one element then

tree← only element of list

else

operator← higherPriorityOperator(list)

LeftList← sublist of list with the elements prior to operator

RigthList← sublist of list with the elements after operator

If operator is an infix operator then

LeftExpression← generateSyntacticTree(LeftList)

RightExpression← generateSyntacticTree(RigthList)

tree←

operator

LeftExpression RightExpression

Else

If LeftList is not empty then Throw error

Expression← generateSyntacticTree(RigthList)

tree←

operator

RightExpression

End If

End If

Return tree

92

4.5. IMPLEMENTATION

ALGORITHM 2. higherPriorityOperator

INPUT: list, a flat list with the operands and operators of a term.

OUTPUT: main operator of the term passed as a parameter. The main operator is the

highest priority operator of a term or, if there are several with the same prior-

ity, the one with the highest level according to the rules of associativity.

Begin

mainOperator← null

higherPriority← –1

For each element operator of list do

If operator is an operator then

priority← priority of operator

If priority > higherPriority then

// New operator of higher priority

higherPriority← priority

mainOperator← operator

Else If priority = higherPriority then

If operator is left associative (yfx class) then

// Left associativity, change the current operator

higherPriority← priority

mainOperator← operator

Else If operator is not left associative (xfy/xfx/fx/fy class)

and mainOperator is right associative (xfy/fy class) then

// Right associativity, maintain the current operator

Else

Throw error Collision of operators

End If

End If

End If

End For

Return mainOperator

Applying the algorithms explained to the list generated from the example term, it would

93

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

result the following syntactic tree, which reflects the real structure of the initial term.
,

,

failtrue

is

X

5

+

-

2

X is 5 + -2, true, fail

4.5.6. Execution of higher-order predicates

Although the translation of BPL code to TPL code does not affect the behavior of the

vast majority of the predefined predicates of the underlying Prolog system (in our case SWI-

Prolog), there is a series of predefined predicates that require special treatment so that they

can be executed correctly in the BPL system.

These predicates that need to be treated differently from the others are within the so-

called higher-order predicates, those that can receive as parameters one or several objectives

composed of calls to other predicates.

To see the problems that arise when executing this class of predicates, consider the

following Prolog program that makes use of the higher-order predicate findall, which

finds all the solutions to the goal indicated in the second argument:

search(L) :- findall(X, p(X), L).

p(1). p(2).

In this example the predicate search would unify the variable L with the list [1, 2],

which are the only two values for which p(X) holds.

Now, assume that the previous code is entered into a BPL program and the compiler

translates it into TPL code exactly as explained so far. The generated TPL code would be

(after some simplifications) as follows:

prog_search(A1, D) :- unify_arguments([[A1, L, D1]]),

findall(X, p(X), L), min_degree([D1], D).

prog_p(A1, D) :- unify_arguments([[A1, 1, D1]]),

min_degree([D1], D).

prog_p(A1, D) :- unify_arguments([[A1, 2, D1]]),

min_degree([D1], D).

94

4.5. IMPLEMENTATION

If this program were loaded with the command processor of the BPL system and an

attempt to launch the query search(L), no result would be obtained, since there is no

predicate p of arity 1 in the TPL code. Instead, during the compilation process the original

predicate p has been converted into a predicate called prog_p that includes an additional

output parameter (the approximation degree).

Therefore, the correct translation to TPL code of the predicate search of the example

would be the one shown below:

prog_search(A1, D) :- unify_arguments([[A1, L, D1]]),

findall(X, prog_p(X, _), L),

min_degree([D1], D).

With respect to this translation it is convenient to make two clarifications. First, the

approximation degree of prog_p is ignored, since only the approximation degrees of the

predicates that appear in the body of the clauses are considered relevant. Secondly, the

translation has been done at compile time and not at run time, in order to transfer as much

“logic” as possible to the compiler and thus accelerate the execution process.

To carry out this special translation the compiler of the BPL system maintains a list of

higher-order predicates with the type of each of its arguments. When a predicate that appears

in that list is recognized, the parameters that contain goals are translated as if they were a

clause of the program, which entails adding the degree variables and the program prefix to

the user-defined predicates.

However, in addition to the higher order predicates, it is also possible to use the term

construction operators, such as =.. to compose goals at run time. See for example the

following Prolog code fragment, in which the variable Pred is unified with a certain term

and then launched as a goal:

search(Name, Value) :- Pred =.. [Name, Value], Pred.

If this code were translated into TPL, the same problem would occur as in the previous

cases, since the degree variable is not added to the goal stored in Pred. For this reason, in

the body of the clauses of the BPL programs, isolated variables are not allowed to appear.

These should always appear within a higher-order predicate as call8, which internally is

translated to a call to an auxiliary predicate of the module evaluator called bpl_call.

Finally, we must also mention the special treatment of the higher-order predicates

8Given any variable X, the standard ISO Prolog states that executing X and call(X) must produce exactly
the same result.

95

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

assert and retract, which allow respectively adding and removing clauses (in this case

only facts)9 of the programs. In the same way that to compile a BPL file it is necessary

to perform an expansion of the rules, when adding and eliminating clauses dynamically the

same criteria must be followed.

So, given the following BPL code:

young ∼ old = 0.2.

new :- assert(young(carlos)).

The translation that would be made of the predicate new would be:

prog_new(D) :-

assert((prog_young(A1,D1):-unify_arguments([[A1,carlos,D11]]),

min_degree([D11],D1))),

assert((prog_old(A1,D1):-over_lambdacut(0.2),

unify_arguments([[A1,carlos,D11]]),

min_degree([D11,0.2],D1))),

min_degree([], D).

In summary, the BPL system is compatible with all the higher-order predicates that

were collected in the requirements specification (see Page 48), also including the two types

of negations available in the Bousi∼Prolog language (not and \+).

4.5.7. Library of foreign predicates

The dynamic library of foreign predicates that uses the BPL system consists of a total

of eight modules implemented in C, which are briefly described below.

n closure.c. This module is responsible for computing the closure of a fuzzy relation

defined by means of a set of proximity equations.

n fuzzysets.c. The module fuzzysets implements the generation of a reflexive fuzzy

relation from a list of fuzzy subsets.

n lexical.c. This file is automatically generated by the Flex tool from the file scan-

ner.lex, which contains the definition of the lexical analyzer of the Bousi∼Prologlanguage.

n tokenize.c. The module tokenize has a foreign predicate that serves as an interface

between Prolog and the lexical analyzer generated by Flex.

9According to the standard ISO Prolog, the predicates assert and retractmust be able to be used to
add and remove both facts and rules of the programs. However, adding new rules to a program at runtime results
in a self-modifying code, a technique not recommended and banished in modern programming languages [40,
15]. On the other hand, the controlled use of assert and retract with facts can be useful for maintaining
a dynamic database or declaring global variables.

96

4.6. TESTING

n shell.c. In this source code file all external predicates related to command line manip-

ulation are placed. The predicates of this module make use of the functions offered

by the Editline library.

n leditwin.c. This module contains alternative implementations for Windows of some

methods of the Editline library. Most of the functions of this module have been

extracted from the Editline and Linenoise libraries.

n array.c. The module array is an auxiliary module that allows to create vectors and

matrices of variable size in C, and has been created with the purpose of abstracting to

the rest of the modules from the memory management tasks for this type of structures.

n install.c. In this source file is found the installation function of the foreign predicates

that SWI-Prolog needs to load a foreign library.

4.5.8. Example sessions

In the Figures 4.16 to 4.24 of the following pages several example sessions of the BPL

system are shown. They show the developed system in execution, carrying out some of the

most relevant use cases that were collected in the analysis phase.

In the execution of the chosen cases of use, the compiler, the loader/interpreter and,

of course, the command processor of the BPL systemintervene, so everything that was ex-

plained in this and the previous sections is illustrated.

4.6. TESTING

To ensure the quality of the developed code, the implementation phase must be accom-

panied by a testing phase in which the correct operation of the built modules is verified.

This section aims to explain the approach followed to elaborate the automated func-

tional tests of the BPL system, and present a report with the code coverage reached by these

tests.

4.6.1. Test plan

Being an interpreter of a programming language, the interaction between the users and

the BPL system will consist mainly of loading programs in memory and then executing a

series of queries and seeing its results. The test plan of BPL system has been designed

97

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

keeping in mind that this will be the main scenario of use of the system.

In this way, most of the BPL system tests are small Prolog or Bousi∼Prolog code

fragments that are loaded into the BPL system and then run to see if the results offered by

the system are the expected. By choosing an appropriate set of code fragments, with this

approach it is possible to cover almost the entire system code (except for the subsystem of

the command processor).

In more detail way, the BPL system tests can be divided into four large blocks:

n Testing of Prolog predicates. They intend to ensure that all predefined Prolog pred-

icates that were mentioned in the requirements specification (see Page 48) work cor-

rectly under the BPL system.

Based on the fact that most of the Prolog predicates indicated in the requirements

belong to the standard ISO Prolog, the examples of each predicate that appear in the

standard itself [14] have been used to test its behavior.

Therefore, the tests of each Prolog predicate consist in executing their corresponding

examples on SWI-Prolog and the BPL system, and then comparing the solutions and

the output obtained in both executions. In total, more than 350 examples extracted

from the documentation of the standard ISO Prologhave been added to the tests.

Figure 4.16: Welcome to the BPL system.

98

4.6. TESTING

Figure 4.17: Getting help on the BPL system.

Figure 4.18: Getting help on the lc command in the BPL system.

99

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

Figure 4.19: Loading a program in the BPL system.

Figure 4.20: Loading an ontology in the BPL system.

100

4.6. TESTING

Figure 4.21: Loading a code file with errors in the BPL system.

Figure 4.22: Execution of queries in the BPL system.

101

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

Figure 4.23: Querying and modifying the lambda cut in the BPL system.

Figure 4.24: BPL system command processor autocomplete.

102

4.6. TESTING

n Testing of Bousi∼Prolog predicates. They serve to check the operation of all direc-

tives and specific sentences of the Bousi∼Prolog language.

In this case, the approach followed to verify the predicates of the Prolog language is

unfeasible, so the tests consist of a set of Bousi∼Prolog code files in which several

test predicates are defined in order to cover the largest number of possible situations.

n Testing of wrong programs. They allow to ensure the correct behavior of the BPL

system when loading a program that has errors or warnings.

To perform these tests, several Bousi∼Prolog code files have been created with syn-

tax errors, invalid directives, unused variables (singleton variables), etc. During the

execution of the tests, attempts are made to load these files into memory and it is

checked if the processor shows error or warning messages only on the lines where

there is really a problem.

n Testing the shell. They are used to confirm that all command processor commands

work properly and that invalid commands are detected.

In this block of tests, a series of predetermined commands are executed following

the same line that would be followed if the user had entered those commands in the

terminal. After executing each command, the output generated by the processor is

analyzed to see if it contains the expected messages10.

Given its dependency on the operating system, certain commands from the command

processor, such as ls or qt, have been excluded from the tests.

4.6.2. Coverage report

The most recent versions of SWI-Prolog include a library called test_cover, through

which it is possible to analyze which clauses of an application are used (they are «covered»)

by a set of tests.

The report that test_cover generates only measures the coverage of clauses, that is, the

percentage of clauses in the application that have been executed and successfully completed

at least once during execution of all the tests.

Table 4.2 shows the coverage achieved by the tests in each module of the BPL system,

as well as the global coverage of the entire system. As it can be seen, in all the modules a

10For example, for the command lc 1.5 an error message is expected, while the ld command should show
the full path of the currently loaded program.

103

CHAPTER 4. DEVELOPMENT OF THE BPL SYSTEM

Coverage reached

Module bplHelp 100%

Module bplShell 85%

Module directives 100%

Module evaluator 95%

Module flags 96%

Module parser 98%

Module translator 100%

Module utilities 96%

TOTAL 95%

Table 4.2: Report of coverage of the BPL systemtests.

coverage exceeding 95% has been achieved except in bplShell, where the coverage is 85%

due to the fact that several commands have had to be excluded from the tests.

On the other hand, the module foreign is not included in the previous table, because the

library test_cover does not measure the coverage of foreign predicates (which does not mean

that they are not executed by the tests), nor the module bousi, because this module only has

the predicate that acts as the entry point of the application implementing the BPL system.

104

CHAPTER 5. BOUSI∼PROLOG APPLICATIONS

The goal of this chapter is to present a series of practical examples in which the Bou-

si∼Prolog programming language and, in particular, the implementation that has been done

in this work, can be applied successfully.

In [22, 20, 38] you can find more examples of the Bousi∼Prolog language use, as well

as a more detailed explanation of several of the examples presented in this chapter1.

5.1. TEXT CATALOGING

The BPL system that has been developed throughout this project has been used in [34]

to implement a declarative approach to text cataloging, making use of the flexible matching

of terms and the similarity relations that offers Bousi∼Prolog.

In the proposal of the aforementioned article, a BPL program is used to perform a

flexible search of the terms of a document that are similar to the categories by which it is to

be classified. Furthermore, the post-processing of the results obtained in the search is also

carried out with the same program.

The Code listing 5.1 contains a code fragment analogous to the one used by the text

classifier to search the words of a document that are close to a certain concept. In the real

application the terms to be analyzed are read from some text files, but for simplicity in the

presented example they are passed in a list within the program itself.

The predicate in charge of looking for the similar terms is search_term, which re-

ceives as a parameter the concept to be searched and the list of words in the input document.

This predicate returns a new list with elements of the type t(Word, Degree), where Word

is a word similar to the searched concept and Degree indicates the degree of approximation

between both terms.

Once the search is completed, the list returned by search_term is passed to the

group_results predicate to count and save the number of times each found term is re-

peated, thus obtaining the results that are passed to the next phase of the classifier.

To determine if two terms are close to each other, in [34] is proposed to use an ontology

1Those examples were written for the low-level implementation of Bousi∼Prolog and have been rewritten
to conform to certain syntax changes and take advantage of features offered by the high-level implementation,
such as customized fuzzy relations or compatibility with higher-order predicates.

105

CHAPTER 5. BOUSI∼PROLOG APPLICATIONS

% search_term(+Term, +WordList, -Results)
% Looks for words similar to Term in WordList and returns a list
% with a t(SimilarTerm, Degree) item for each word found.

search_term(_Term, [], []).

search_term(Term, [Word|MoreWords], [t(Word, Degree)|Results]) :-
Term ~1~ Word = Degree, !,
search_term(Term, MoreWords, Results).

search_term(Term, [_Word|MoreWords], Results) :-
search_term(Term, MoreWords, Results).

% group_results(+Results, -GroupedResults)
% Removes the duplicate items from Results and adds the number of
% occurrences to each item. Given [t(X,0.5), t(Y,0.8), t(X,0.5)],
% this predicate will return [t(X,2,0.5), t(Y,1,0.8)].

group_results(Results, GroupedResults) :-
setof(t(Term, Occurrences, Degree),

(member(t(Term, Degree), Results),
count_results(Results, Term, Degree, Occurrences)),

GroupedResults).

% count_results(+Results, +Term, +Degree, -Occurrences)
% Counts how many t(Term, Degree) items are in the Results list.

count_results(Results, Term, Degree, Occurrences) :-
bagof(t(Term, Degree),

member(t(Term, Degree), Results),
FilteredList),

length(FilteredList, Occurrences).

% sample_search(+Term, -Results)
% Runs a sample search for the given Term.

sample_search(Term, Results) :-
search_term(Term, [agriculture, department, report, farm,

own, reserve, national, average, price,
loan, release, price, reserves, matured,
bean, grain, enter, corn, sorghum, rates,
bean, potato],

UngroupedResults),
group_results(UngroupedResults, Results).

Code listing 5.1: Bousi∼Prolog Program for a flexible search of terms.

106

5.1. TEXT CATALOGING

% Ontology definition

:- fuzzy_rel(~1~, [reflexive, symmetric, transitive(min)]).

wheat ~1~ bean = 0.315.
wheat ~1~ corn = 0.315.
wheat ~1~ grass = 0.315.
wheat ~1~ horse = 0.315.
wheat ~1~ human = 0.205.
bean ~1~ crop = 0.315.
bean ~1~ corn = 0.48.
bean ~1~ child = 0.33.
bean ~1~ grass = 0.315.
bean ~1~ horse = 0.335.
bean ~1~ flower = 0.315.
bean ~1~ animal = 0.35.
bean ~1~ potato = 0.5.
bean ~1~ table = 0.35.

Code listing 5.2: Ontology used to test the text classifier [34].

modeled through a proximity or similarity relation. However, this ontology has not been

deliberately included in the Code listing 5.1, since one of the advantages of the BPL system

is that it allows the separate loading of a program and an ontology, in order to use the same

program with different ontologies and compare their results.

The Code listing 5.2 shows one of the ontologies used in [34] to test the text classi-

fier, which in this case represents the «structurally analogous» to wheat. The proximity

equations of this ontology have been obtained through ConceptNet note, a commonsense

knowledge base freely available, and then manually translated into Bousi∼Prolog syntax.

Once the Code listing 5.1 program and the Code listing 5.2 ontology are loaded in the

BPL system, queries can be launched to see how many terms, close to one given, are in the

sample document contained in the sample_search predicate, which has been extracted

from the Reuters document collection2. For example, for the concept corn, the result ob-

tained is as follows:

BPL> sample_search(corn, Results)

Results = [t(bean,2,0.48),t(corn,1,1.0),t(potato,1,0.48)]

With approximation degree: 1

As you can see, the system returns that the term potato is similar to corn although

there is no equation that indicates this in the ontology because the BPL system automatically

generates the transitive closure of the relation specified.

2http://www.daviddlewis.com/resources/testcollections/reuters21578/

107

http://www.daviddlewis.com/resources/testcollections/reuters21578/

CHAPTER 5. BOUSI∼PROLOG APPLICATIONS

5.2. FLEXIBLE DEDUCTIVE DATABASES

Databases are systems that are used to maintain and manage large amounts of infor-

mation. When this information comes from the real world, database systems should offer

mechanisms to deal with the vagueness and imprecision that often appear when modeling

reality. The incorporation of this type of techniques to the database managers has given rise

to what is known as flexible databases.

Within the field of flexible databases, one of the approaches studied is to include con-

cepts from fuzzy logic and fuzzy set theory as a way to handle uncertainty and vagueness.

The Buckles-Petry and Shenoi-Melton models, for example, extend the classic relational

databases model with a similarity or proximity relation to obtain a database able of handling

inaccurate information [20].

Since the Bousi∼Prolog language uses a proximity or similarity based resolution mech-

anism, it is suitable for the construction of flexible databases following the aforementioned

Buckles-Petry and Shenoi-Melton models. In addition, being a logic programming lan-

guage that allows to specify facts and rules, Bousi∼Prolog is also useful to build deductive

databases, that is, databases that have a certain capacity for deduction.

In the Code listing 5.3, we present a simple flexible deductive database extracted from [20]

which is implemented in the Bousi∼Prologlanguage.

The database contains information about several films and the theaters where they are

projected. It is composed of three tables, represented by facts in the BPL code: film, which

stores the name, the director and the genre of each film; theater, where the name, owner

and location of the theaters are stored; and engagement, that indicates in which theater(s)

each movie can be viewed.

Following the model of Shenoi-Melton, in this database the vagueness is modeled by a

proximity relation. In that relation, it is indicated the distances between the different loca-

tions of the cinemas and the proximity between the genres of films.

Once the database is loaded into the BPL system, the search predicate can be used

to search for those theaters near a certain location where movies of the preferred genre (or

a similar one) are projected. However, an unrestricted search would return a large number

of results, many with a low degree of approximation and, therefore, little relevance. For

this reason, before performing the search, it would be convenient to modify the value of the

lambda cut and assign an intermediate value between 0 and 1, depending on how much you

108

5.2. FLEXIBLE DEDUCTIVE DATABASES

% film(?Title, ?Director, ?Genre)
% Stores the film table.

film(modern_times, chaplin, comedy).
film(psycho, hitchcock, suspense).
film(robbery, yates, suspense).
film(star_wars, lucas, adventure).
film(surf_party, dexter, drama).

% theater(?Name, ?Owner, ?Location)
% Stores the theater table.

theater(chinese, mann, hollywood).
theater(odeon, cineplex, santa_monica).
theater(rialto, independent, downtown).
theater(village, mann, westwood).

% engagement(?Film, ?Theater)
% Stores the engagement table (where is each film displayed on).

engagement(modern_times, rialto).
engagement(star_wars, rialto).
engagement(star_wars, chinese).
engagement(surf_party, village).
engagement(robbery, odeon).
engagement(modern_times, odeon).

% search(+Genre, +Location, -Film, -Theater)
% Returns a Film which the given Genre which is shown on a
% Theater close to the specified Location.

search(Genre, Location, Film, Theater) :-
film(Film, _Director, Genre),
engagement(Film, Theater),
theater(Theater, _Owner, Location).

% Proximity relation for distance relation
bervely_hills ~ santa_monica = 0.45.
bervely_hills ~ hollywood = 0.56.
bervely_hills ~ westwood = 0.9.
downtown ~ hollywood = 0.45.
downtown ~ santa_monica = 0.23.
hollywood ~ santa_monica = 0.3.
hollywood ~ westwood = 0.45.
santa_monica ~ westwood = 0.9.

% Proximity relation for genre relation
comedy ~ drama = 0.6.
comedy ~ adventure = 0.3.
drama ~ adventure = 0.6.
drama ~ suspense = 0.6.
adventure ~ suspense = 0.9.

Code listing 5.3: A films and theaters deductive database implemented in bpl [20].

109

CHAPTER 5. BOUSI∼PROLOG APPLICATIONS

want to restrict the search.

For example, if you set the value of the lambda cut to 0.4 and launch the goal

search(adventure, downtown, Film, Theater)

to search the movies of adventures near downtown, the result will be this:

BPL> lc 0.4

New lambda-cut value is: 0.4

BPL> search(adventure, downtown, Film, Theater)

Film = star_wars

Theater = rialto

With approximation degree: 1 ;

Film = star_wars

Theater = chinese

With approximation degree: 0.45

With the information stored in the database, the system has determined that there are

two movies and theaters that meet the conditions indicated in the query. For example, one of

the solutions obtained is that in the cinema chinese, despite not being located in downtown

, you can see the movie star_wars; this result has an approximation degree of 0.45 because

the theater is located in hollywood, and the locations hollywood and downtown are

related with degree 0.45.

5.3. APPROXIMATE REASONING

Approximate reasoning is, essentially, the inference of an imprecise conclusion from

imprecise premises [38]. This type of reasoning is common in artificial intelligence appli-

cations because it is more like the way people think and act than the exact reasoning, since

many real-world concepts are neither absolute truths nor absolute falsehoods.

In a logic program, the approximate reasoning can be carried out through fuzzy in-

ferences, understanding a fuzzy inference as the application of a generalized modus ponens

inference rule in which the known fact does not coincide exactly with the one that appears in

the antecedent (condition) of the conditional sentence.

Thus, while in traditional logic the modus ponens rule is defined as follows:

110

5.3. APPROXIMATE REASONING

If A is true, then B is true

A is true

B is true

The generalized modus ponens rule of fuzzy logic could be expressed intuitively as

follows [45]:

If A is true, then B is true

A’ (which is close to A) is true

B’ (which is close to B) is true

To see how the Bousi∼Prolog language can be useful in modeling approximate reason-

ing, we will start with the following fuzzy inference, taken from [38]:

If X is young, then X is fast

Bill is middle aged

Bill is somewhat fast

The Code listing 5.4 shows a possible Bousi∼Prolog formalization of the above infer-

ence. To represent the concepts «young» and «fast» we have chosen to define two linguistic

variables, age and speed, containing these two linguistic terms.

When the program of Code listing 5.4 is loaded into the BPL system, internally, a fuzzy

proximity relation is generated that relates the linguistic terms of each linguistic variable.

This relation is what enables the system to produce the following approximate answer when

it is asked if Bill is fast.

BPL> speed(bill, fast)

Yes

With approximation degree: 0.325

In the example program that has just been explained, the age of three other people has

also been formalized. For this, the fuzzy subset construction operator # has been used. As

you can see, with this operator it is possible to indicate in a very intuitive way people ages,

either in an exact or approximate way. In the example, Lisa is 20 years old, Robert is only

known to be very old and Susan is between 30 and 40 years old.

With these new three facts, it would be interesting to ask the BPL system to compute

which people are fast. The answer we would get in that case would be the following:

111

CHAPTER 5. BOUSI∼PROLOG APPLICATIONS

% Linguistic variable ’age’
:- domain(age, 0, 100, years).
:- fuzzy_set(age, [baby(0,0,5),

young(0,10,30,40),
middle(20,40,60,80),
old(50,80,100,100)]).

% Linguistic variable ’speed’
:- domain(speed, 0, 40, kmh).
:- fuzzy_set(speed, [slow(0,0,10,20),

normal(15,20,25,35),
fast(25,30,40,40)]).

% Rules
speed(Person, fast) :- age(Person, young).

% Facts
age(bill, middle).

% Additional facts
age(lisa, age#20).
age(robert, very#old).
age(susan, about#age#30#40).

Code listing 5.4: An example of approximate reasoning in Bousi∼Prolog [38].

BPL> speed(Person, fast)

Person = bill

With approximation degree: 0.325 ;

Person = lisa

With approximation degree: 1 ;

Person = susan

With approximation degree: 0.5

According to the BPL system, for the four people that appear in the program, the only

one which is certainly not fast is Robert. This fact makes sense because Robert’s age is

determined by the linguistic term «very old» and this is not close to «young».

112

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this chapter a summary of the most outstanding characteristics of the developed

system is made and its advantages, limitations and some conclusions are commented. It also

includes several proposals with which the system and our work could be continued, improved

and expanded.

6.1. RESUMEN

We have designed A fuzzy logic programming language called Bousi∼Prolog, and

the necessary tools to create, edit and execute programs written in this language have been

implemented.

The Bousi∼Prolog language is an extension of Prolog that uses a variant of the SLD

resolution strategy called WSLD resolution. This new resolution strategy replaces the classi-

cal unification algorithm of the SLD resolution strategy with the weak unification algorithm

proposed in [39]. Thanks to it, the language can intuitively handle vagueness, while at the

same time makes the query answering process more flexible.

Through the operators ∼, ∼>, <∼, ∼1∼, ∼2∼ and ∼3∼ up to six fuzzy relations with

different properties of reflexivity, symmetry and transitivity can be defined. The relation

∼ intervenes in the core of the weak unification algorithm and, therefore, in the WSLD

resolution process. This is the one that allows the management of vague information and the

flexible answer to the queries, while the others can be used to build synonyms and hierarchies

or, in general, arbitrary relationships and make queries about them.

Also, the Bousi∼Prolog language facilitates the definition of linguistic terms and their

association with fuzzy subsets thanks to the directives domain and fuzzy_set. Moreover,

it allows the construction of composite linguistic terms with the operator #. Following the

proposals of [23, 19], the information represented by the the fuzzy subsets (associated to the

linguistic terms) becomes a fuzzy binary relation on the set of linguistic terms, so that the

system can compare the proximity between these terms using the same methods as in the rest

of the fuzzy relations.

The system that implements the Bousi∼Prolog language has been called BPL system

and it has been essentially divided into three subsystems: the command processor, which

113

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

deals with the input commands entered by the user; the compiler, whose function is to trans-

late the Bousi∼Prolog programs into an intermediate representation; and the interpreter, in

charge of executing the queries and computing their answers.

The approach that we have followed to implement the WSLD resolution strategy, which

is the operational mechanism of the Bousi∼Prolog language, consisted on translating the

BPL code of the programs into a code that has been called translated BPL code or TPL code1.

The TPL files storing that code only have Prolog sentences, but they explicitly implement

the computation of approximation degrees and weak unification thanks to the incorporation

of additional parameters and calls to auxiliary predicates implemented by the interpreter.

In the development of the BPL system we have followed methodologies according to

the technologies and the type of system built, and we have been carried out the five classic

phases of Software Engineering: requirement specification, analysis, design, implementation

and testing.

6.2. ADVANTAGES AND LIMITATIONS

Compared to other existing fuzzy logic programming systems, one of the main ad-

vantages of the BPL system is that it is based on a powerful Prolog implementation and in

accordance with the ISO standard, such as SWI-Prolog. In this way, the BPL system inherits

a extensive predicate library from SWI-Prolog and, thanks to a specific translation process,

supports special operators, some higher-order predicates, the cut and a indexing mechanism

for clauses.

Another contribution of the developed system is its support for the definition of both

similarity and proximity relations, which allows the use of this language in situations where

the transitive property of a fuzzy relation is not desirable. However, in specific cases the use

of proximity relations in combination with the algorithms that are currently implemented

can lead to incompleteness problems (that is, some answers may be lost), although always

maintaining the correction (that is, the answers obtained are always correct). These problems

and their possible solutions are discussed in [38].

Also noteworthy is the integration in Bousi∼Prolog language of the handling of lin-

guistic variables and fuzzy subsets, and the wide variety of mechanisms that are provided to

1Compare this approach with the one followed in [16, 17, 19], where an extension of the Warren abstract
machine is used to execute the BPL code.

114

6.3. FINAL CONCLUSIONS

represent domain points, domain ranges and modifiers of other fuzzy subsets using a simple,

intuitive syntax.

One of the major practical limitations of the BPL system is the one related with the

efficient consumption of time and memory in the execution of queries. Although this con-

sumption is notably lesser than the consumption experimented by the first prototype of the

BPL system (which was a metainterpreter), a drop in performance is still observed when

executing programs of medium or high complexity.

The BPL system also presents some limitations to handle errors of source code files,

given the large number of error situations that may occur. Nevertheless, the most common

mistakes made by Prolog programmers have been taken into account, leaving aside a more

specialized treatment as a future improvement.

6.3. FINAL CONCLUSIONS

The work done in the present work is an example of how engineering in general and

computer science in particular can be used to put into practice ideas and scientific theories,

in order to obtain a feedback that allows to deepen and improve those theories.

The main fruit of this project, the BPL system, covers the fields of logic programming,

fuzzy logic and the theory of fuzzy sets, and can be classified within the framework of the

so-called similarity-based fuzzy logic programming systems.

This project shows that the different programming paradigms that currently exist do not

have to be used independently, but can be combined to take advantage of the capacities of

each one of them. Not in vain, in the implementation of the BPL system we have used two

programming languages (Prolog, and C) belonging to different paradigms (declarative and

structured).

As a final conclusion, it is important to say that when this project was started, one of the

main objectives was to make it easier for regular Prolog programmers, and also programmers

of other programming languages, to have access to the Bousi∼Prologlanguage on which the

BPL systemis based. This objective has been reached for four reasons:

n The Bousi∼Prolog language is an extension of Prolog, not a completely new lan-

guage. Except for certain specific sentences, most of its syntax will be familiar to

Prolog programmers. However, as it was said, it embodies a richer operational se-

115

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

mantics which transparent to the user of the system allowing him/her a greater ex-

pressivity.

n The BPL system is a command-line application with a similar structure to the current

Prolog interpreters. The execution of queries and the presentation of results is done

in the same way as in SWI-Prolog, GNU Prolog or YAP.

n The BPL system is publicly available on the website of the research group Dec-tau2

and can be installed on Windows, Linux and Mac OS X. Also, the BPL system can

be run on-line through of a tool which is accessible in3.

6.4. FUTURE WORK

Bousi∼Prolog is a programming language of recent creation and, as such, there are

many aspects that can be improved to give the language more expressiveness and versatility.

Some of the most interesting future work lines for the BPL system are those mentioned

below:

n To assign weight annotations to the program clauses. This characteristic, derived

from fuzzy logic programming languages that use graded rules and partially imple-

mented in systems such as Prolog-ELF [13] or FProlog [29], consists of assigning

truth degrees (or some kind of weights) to the clauses that make up a program. Its

inclusion in the Bousi∼Prolog language would allow to solve some limitations that

proximity-based fuzzy logic programming languages present.

n Improvements handling fuzzy sets. To adapt the use of the BPL system to con-

trol applications, it would be convenient to implement defuzzification mechanisms

that would allow the results of inferences with fuzzy subsets to be converted into

crisp values, something that has already does on systems like FuzzyCLIPS [33] or

(partially) the low level implementation of the BPL system [19].

n Maintenance of ontology repositories. For the design of systems involving large

volumes of data it would be useful to create repositories of ontologies, that is, collec-

tions of ontologies that could be loaded and downloaded at runtime.

n Debugging. The existence of a debugger is essential so that a programming language

can be considered as a real alternative for the development of medium-sized systems.

2https://dectau.uclm.es/bousi-prolog
3https://dectau.uclm.es/BPLweb

116

https://dectau.uclm.es/bousi-prolog
https://dectau.uclm.es/BPLweb

6.4. FUTURE WORK

A future line of work of the BPL system would be the creation of a debugger with

which the execution of the BPL code could be followed4.

4It is now possible to use the underlying SWI-Prolog debugger to execute programs written in the Bou-
si∼Prologlanguage step by step, but the code that is actually debugged is the TPL code.

117

ANEXO A. INSTALLATION MANUAL OF THE BPL SYSTEM

This appendix explains the steps that you must follow to install and compile the source

code of the BPL system developed in this work.

A.1. LINUX AND MAC OS X

The Linux version of the BPL system requires to have installed the packages of the

following programs and libraries in order to compile correctly its source code:

n SWI-Prolog 5.7 or higher, including the development package (if any). If SWI-Prolog

is not part of the Linux distribution that is being used, alternatively you can manually

download and compile its source code 1.

n Editline Library 2.11 or higher, including the development package.

n Flex 2.5.4 or higher.

n GCC 4.0 or higher.

n GNU Make 3.81 or higher.

On the other hand, to be able to compile and execute the BPL system in the Mac OS X

operating system it is essential to have previously installed these applications:

n SWI-Prolog 5.7 or higher.

n Xcode Tools 3.2 or higher2. From this package, at least the development tools for

UNIX must be installed.

Once the necessary programs and development libraries have been installed, the steps

that must be followed to copy, configure and compile the BPL system in the Linux or Mac

OS X operating systems are the following.

1. Unzip the package bousi-source-linux-installer.tar.gz or bousi-source-macosx-installer.tar.gz(depending

on the platform) found on the Bousi∼Prolog website in any temporary directory of the

hard disk.

$ cd <temp_directory>

$ tar xzf <ruta_DVD>/bousi-source-<your_system>-installer.tar.gz

1http://www.swi-prolog.org/
2http://developer.apple.com/technologies/tools/

119

http://www.swi-prolog.org/
http://developer.apple.com/technologies/tools/

ANEXO A. INSTALLATION MANUAL OF THE BPL SYSTEM

Figure A.1: Installation Script of the BPL system in a Linux operating system.

2. Execute in a terminal the installer.sh script that will be created inside the directory bousi-

source-installer and follow the instructions that appear on the screen (see Figure A.1).

The installation wizard will ask for the directory in which you want to copy the source

code and will ask if you want to compile it now or later.

$ cd <temp_directory>/bousi-source-installer

$. installer.sh

By default, the BPL system is installed in a local directory of the active user, but if the

installer.sh script is run as administrator you will have the option of installing the BPL

system for all users, so that after the program is compiled, any user can execute it.

3. When the installation is complete, you can delete the directory bousi-source-installer

created in step 1.

$ rm -r <temp_directory>/bousi-source-installer

4. If the source code of the BPL system was not compiled during the installation, it can be

done at any time from a terminal by going to the folder where the application was stored

and running the tool make without arguments.

$ cd <installation_directory>

$ make

5. Once the BPL system has been compiled, to start it you just have to execute the command

bousi in a terminal from any directory.

120

A.2. WINDOWS

$ bousi

If the BPL system was installed as an administrator and for all users, any other user of

the system can also launch it by typing bousi in a terminal.

6. Optionally, in addition to the executable image of the BPL system, it is also possible to

generate the test bench and the code documentation as explained below:

o To compile the test bench, the command make bousitest must be invoked from the

installation folder. After the compilation, the program bousitest can be run to launch

all the tests and see the coverage reached by them.

$ cd <installation_directory>

$ make bousitest

$./bousitest

o The documentation of the source code can be generated automatically with the com-

mand make doc.pdf. It must be taken into account that a distribution of LATEX must

be installed in the system to generate the documentation in PDF format.

$ cd <installation_directory>

$ make doc.pdf

7. When you want to uninstall the BPL system you have to execute the uninstaller.sh script

that will be in the folder where the source code of the BPL system was copied. The

uninstall wizard will ask for confirmation before making any changes.

$ cd <installation_directory>

$./uninstaller.sh

A.2. WINDOWS

En Windows es necesario tener instaladas las siguientes aplicaciones para poder compi-

lar y ejecutar correctamente el BPL system: In the Windows operating system it is necessary

to have installed the following applications in order to compile and correctly execute the

BPL system:

n SWI-Prolog 5.7 or higher3.

n Flex 2.5.4 or higher4. It is recommended to install the complete package that does

not include the source code.

n Windows SDK 6.0 or higher5. From this development kit you should at least install

3http://www.swi-prolog.org/
4http://gnuwin32.sourceforge.net/packages/flex.htm
5http://msdn.microsoft.com/es-es/windows/bb980924

121

http://www.swi-prolog.org/
http://gnuwin32.sourceforge.net/packages/flex.htm
http://msdn.microsoft.com/es-es/windows/bb980924

ANEXO A. INSTALLATION MANUAL OF THE BPL SYSTEM

the Visual C ++ compilers, the header files and the libraries for the x86 platform.

If Visual Studio 2005 SP1 or some later version is already installed in the system,

instead of installing the Windows SDK separately, support for Visual Studio Visual

C ++ programming should be installed.

The following describes step by step how to install and compile the source code of the

BPL system under the Windows operating system.

1. Before proceeding with the installation, the following modifications must be made to the

system environment variables:

1.1. Add to the environment variable PATH the path to the directory where the file

vcvars32.bat of the Windows SDK is located. This path will depend on the op-

erating system that is being used and the version of the Windows SDK installed.

For example, for Windows 7 and Windows SDK 7.0, the appropriate path would

be «C:\Program Files\Microsoft Visual Studio 9.0\VC\bin».

1.2. Also add to the variable PATH the path of the subfolder bin of the directory

where SWI-Prolog was installed. This path should be similar to «C:\Program

Files\pl\bin».

1.3. Create a new environment variable called GNUWIN32 that points to the base

directory in which the Flex tool is installed. Typically the path of this folder will

be similar to «C:\Program Files\GnuWin32».

2. Unzip the package bousi-source-windows-installer.zip found on the Bousi∼Prolog web-

site in any temporary directory of the hard disk.

3. Open in a Windows Explorer window the directory bousi-source-installer that will have

been created in the previous step, run the file batch installer.bat and follow the instruc-

tions on the screen (see Figure A.2). The installation wizard will ask for the path where

you want to copy the source code and also will ask if you want to compile it now or later

and if you want to create shortcuts in the Init Menu (see Figure A.3).

In Windows Vista and Windows 7 all batch files must be run as administrator if you intend

to install the BPL system in a protected directory of the system (such as «C:\Program

Files»).

4. When the installation is complete, you can delete the bousi-source-installer directory

created in step 2.

122

A.2. WINDOWS

Figure A.2: Batch file of installation of the BPL system in Windows.

Figure A.3: Shortcuts created by the installer of the BPL system in Windows.

5. If the source code of the BPL system was not compiled during the installation process,

it can be done at any time by launching the shortcut Bousi Prolog→ Build Bousi-Prolog

from the Init Menu or by opening the folder where it was installed the BPL system and

running the file batch make.bat.

6. Once the BPL system has been compiled, to start it, you must use the shortcut Bousi

Prolog→ Run Bousi-Prolog from the Init Menu, or you can open the instalation directory

and execute the file bousi.exe.

7. Optionally, in addition to the executable image of the BPL system, the test bench and the

code documentation can also be generated as indicated below:

o To compile the test bench you have to execute the batch file maketest.bat located in

123

ANEXO A. INSTALLATION MANUAL OF THE BPL SYSTEM

the installation folder. Then, with the program bousitest.exe you can launch all the

tests and see the coverage achieved by them.

o The documentation of the source code can be generated by launching the batch file

makedoc.bat. The documentation will be stored in the file doc.pdf, provided that

a distribution of LATEX has been installed in the system that allows generating the

documentation in PDF format.

8. When you want to uninstall the BPL system, you must use the shortcut Bousi Prolog→

Uninstall Bousi-Prolog from the Init Menu or open the installation folder and run the

batch file uninstaller.bat. The uninstall wizard will ask for confirmation before making

any changes.

124

ANEXO B. BPL SYSTEM USER MANUAL

This appendix contains the user manuals of the BPL system developed in this work.

The BPL system is a command-line interpreter that allows you to load and execute pro-

grams written in the Bousi∼Prolog language, an extension of the Prolog logic programming

language with fuzzy logic features. The main characteristics and syntax of Bousi∼Prolog

are fully explained in Chapter 3 and will not be repeated in this manual. Therefore, we focus

our attention on the BPL shell.

As can be seen in Figure B.1, when the BPL system starts, a welcome message is

displayed, after which the prompt BPL> appears, indicating that the system is waiting to

receive a command from the user.

The BPL system has a total of nine commands, which are summarized below:

n ld. Loads a BPL source file containing a program or ontology, or show the name of

the files currently loaded in memory.

n sv. Executes a query (you can also enter queries without using sv).

n lc. Shows or sets the minimum approximation degree (known as lambda cut) al-

lowed in a weak unification process.

n pwd. Shows the path of the current working directory.

n cd. Changes the current working directory.

n ls. Displays the contents of the current working directory.

n hp. Offers general help on the BPL system or information about a command.

n sh. Launches a new shell or command line interpreter without leaving the BPL

system.

n qt. Quits the BPL system

Each command must be entered on a separate line and, unlike what happens in Prolog,

it is not needed to add a period to the end of any command. In commands that can receive a

list of options (such as ld), this list should always be the first parameter.

Although the command line functionalities depend on the operating system being used,

all versions of the BPL system have a history that stores the last 100 commands entered.

Through the ↑ and ↓ keys you can navigate through this history to repeat or modify any of

the previously released orders.

125

ANEXO B. BPL SYSTEM USER MANUAL

Figure B.1: Wellcome to the BPL system.

In the following pages, the utility and the specific syntax of each command are ex-

plained in more detail.

Loading programs (ld command)

The ld command reads, compiles and loads a source code file written in the Bou-

si∼Prolog language, which can contain both a program and an ontology. In the BPL system,

a file that only contains proximity relations and / or directives (that is, it has no facts or rules)

is called an ontology.

The BPL system can keep a program and an ontology in memory simultaneously, so

that the same program can be executed with different ontologies in a simple way. When a

program is loaded and then an ontology, the equations in both code files are combined; if

a new ontology is subsequently loaded on the same program, only the equations defined in

the previous ontology are downloaded, maintaining both the rules and the equations that the

program had.

The default extensions used by the BPL system are .bpl for programs and .ont for

ontologies. When the program or ontology that you want to load has the default extension,

it is not necessary to indicate it in the load command.

126

Figure B.2: Loading a program and an ontology in the BPL system.

All the source code files Bousi∼Prolog are translated into an intermediate representa-

tion in Prolog that is called TPL code. This code is stored in files with the same name as their

corresponding BPL files but with the extension .tpl. To reduce the load time, when trying to

load a BPL file that has not been modified since it was compiled to TPL for the last time, the

system loads its TPL code directly without reading or translating the BPL code. To ignore

the contents of the TPL file and force the recompilation of the source code, you can pass the

-f option.

On the other hand, when used without arguments, the command ld shows the path of

the program and the ontology that are currently loaded in memory. In Figure B.2 you can

see this and the two previous uses of the ld command.

Sintaxis:

© ld shows the path of the program and the loaded ontology

© ld <file> translates and loads the BPL program contained in <file>

© ld -f <file> forces the compilation of the BPL <file> and then loads it

© ld -o <file> translates and loads the BPL ontology contained in <file>

© ld -fo <file> forces the compilation of the BPL ontology <file> and then

loads it

127

ANEXO B. BPL SYSTEM USER MANUAL

Figure B.3: Execution of several queries in the BPL system.

Running queries (sv command)

The sv command executes a query (query) about the program (and, possibly, the ontol-

ogy) currently loaded into memory using the WSLD resolution operational mechanism. You

can also launch queries when there is not a program loaded in memory, although in that case

only the predefined predicates of the system will be available.

In a Bousi∼Prolog query any statement or expression that is valid in the body of a

clause can appear. This includes both simple and compound Prolog terms as well as Bou-

si∼Prolog specific expression like term comparisons and weak unification of terms.

When the BPL system finds at least one solution for the query passed as a parameter, its

approximation degree and the binding of the variables that appeared in the query are shown.

Then you can type a semicolon (;) to find more solutions, or press Enter to end the query.

As soon as the BPL system does not find more solutions, or if the query has no solution, the

message No answers will be displayed on the screen. The Figure B.3 shows several query

examples in which these situations occur.

The sv command is the default system command, which means that you can also launch

queries without needing to be preceded by sv.

Sintaxis:

128

Figure B.4: Querying and modification of the lambda cut in the BPL system.

© sv <query> executes the indicated <query> using WSLD resolution

© <query> same as sv <query>

Management of the lambda cut (lc command)

Using the lc command, you can consult or modify the minimum approximation degree

allowed for a weak unification process to be successful. This minimum approximation degree

is called lambda cut in Bousi∼Prolog. The default lambda cut of a program is 0 unless it

contains a directive lambda_cut; however, when lc is used to set a new lambda cut the

value indicated in the aforementioned directive is overwritten.

The main utility of the lambda cut is to limit the expansion of the WSLD resolution

search tree. When the lambda cut is set to a value greater than 0, the weak unification

process will fail each time the resultant approximation degree s less than the lambda cut, so

the resolution step where the unification was executed will also fail and it will stop exploring

a branch of the search tree that with the default lambda cut would have been analyzed.

Figure B.4 presents a query example that produces different results depending on the value

of the lambda cut.

Sintaxis:

129

ANEXO B. BPL SYSTEM USER MANUAL

© lc shows the current value of the lambda cut

© lc <degree> sets <degree> as the new value of the lambda cut, where

<degree> is a real number between 0 and 1 (both inclusive)

Getting help (hp command)

The hp command allows you to obtain help on the available commands of the BPL

shell. With this help command you can either consult the complete list of supported com-

mands as well as show the description and syntax of some of them.

Sintaxis:

© hp shows the list of available commands in the BPL system

© hp <command> shows the description and syntax of the indicated

<command>

Querying the contents of the working directory (ls command)

As in a Unix terminal, the ls command displays the files and folders in the current

working directory, excluding those files and folders whose names begin with a period (.).

Sintaxis:

© ls shows the contents of the current working directory

Querying of the working directory (pwd)

The pwd command is used to check the absolute path of the current working directory.

Sintaxis:

© pwd shows the complete path of the current working directory

Modification of the working directory (cd command)

With the cd command you can change the working directory. Paths that include names

of directories with spaces must be enclosed in quotation marks so that the system interprets

them correctly.

Sintaxis:

© cd <path> sets <path> as the new working directory; <path> can be

both an absolute or relative path

130

Executing a shell (sh command)

The sh command allows you to run a new shell or command line without leaving the

BPL system. By default, the shell that is thrown when this command is executed is /bin/sh (in

Linux and Mac OS X) or cmd.exe (in Windows), but it can be execute a different command

interpreter by entering its path in the environment variables SHELL (in Linux and Mac OS

X) or COMSPEC (in Windows).

Sintaxis:

© sh launches a new shell without abandoning the BPL system

Quitting the BPL system (qt command)

The qt command exits immediately from the BPL system. You should always use this

command instead of the predefined Prolog halt predicate when you want to leave the BPL

system so that the history is saved correctly.

Sintaxis:

© qt quits the BPL system

131

ANEXO C. GRAPHIC NOTATION FOR PROLOG PROGRAMS

This appendix describes the symbolic notation for Prolog application design proposed

by G. Karam in [24]. This notation is the one that has been adopted for the elaboration of

the design diagrams of the BPL system.

C.1. INTRODUCTION

The notation described in [24] and explained in this appendix is a variant of Buhr’s

notation for the design of concurrent systems with Ada [5]. Both are oriented to the design

of modular systems, and use a reduced set of icons with a perfectly defined semantics.

Following the top-down approach that is commonly used in the development of declar-

ative programs, the notation of [24] can be used to construct two kinds of design diagrams:

n External view diagrams. They show the behavior of the system at a high level.

Only the public interfaces of each module and the relationships between them are

represented, abstracting from the rest of the details of their implementation.

n Internal view diagrams. They show the behavior of a single module at a low level,

isolating it from the rest of the modules of the system. The internal elements that

implement the functionality of the module and its public interface are represented in

greater depth.

In the following sections we proceed to explain in detail the meaning of each of the

symbols that can be used in both diagrams.

C.2. EXTERNAL VIEW DIAGRAMS

The external view diagrams show the dependencies between the different modules that

make up an application, as well as the flow of the data exchanged between them. In these

diagrams the modules are treated as black boxes, so that no details of their implementation

are represented, except for those predicates that are visible from the outside.

In Figure C.1 there is an external view diagram for an example system consisting of

two modules. The elements that can appear in this type of diagram are indicated below.

133

ANEXO C. GRAPHIC NOTATION FOR PROLOG PROGRAMS

Figure C.1: Example of the external view diagram of a simple system [24].

MODULE

mod_a

At the highest level of the diagrams are the modules of the

system being modeled, represented as rectangles labeled with

the name of each module.

EXPORTED PREDICATE

x_p1/1
Within a module, a rectangle of this type symbolizes an exported pred-

icate. The set of exported predicates from a module forms the public

interface that the rest of the modules can use to access its functionality.

Following Prolog standard notation, each predicate is uniquely identified

by its functor (name) and arity (number of arguments).

IMPORTED PREDICATE

i_p/2 A solid circle on the edge of a module represents an imported predicate, that

is, a dependency on the use of a predicate exported from another module.

134

C.3. INTERNAL VIEW DIAGRAMS

CALL

The lines that connect the different modules of the system denote

the calls that the modules make to each other, and allow to see the

dependencies between them.

Each line must connect a predicate imported from a module with a

predicate exported from another module that has the same signature

(functor and arity). The origin of the call is always the imported

predicate, while the destination is the exported predicate.

INPUT, OUTPUT OR INPUT/OUTPUT PARAMETER

d1

d2

name

These arrows symbolize the flow of data that occurs in calls between

modules. They can be of three kinds:

n An arrow pointing to the destination of the call indicates that

the parameter must be completely instantiated at the time of

the call (input parameter).

n If the arrow points to the origin, the argument must never be

instantiated, but must be a free variable (output parameter).

n An arrow with two points denotes a parameter that may or may

not be instantiated in the call, or a parameter that must be par-

tially instantiated1 (input/output parameter).

C.3. INTERNAL VIEW DIAGRAMS

The internal view diagrams are intended to show the internal structure of a particular

module and the interaction between its most important components (predicates). They intend

to serve as the basis for the implementation of the modules, but without falling into an ex-

cessive level of detail or incorporating specific characteristics of any specific programming

language.

It is important to emphasize that the level of detail of this class of diagrams will depend

to a great extent on the phase in which the design is located. In fact, design diagrams must

be refined as the development and understanding of the system progresses.

1A partially instantiated parameter is one that has a fixed structure but is made up of non-instantiated
variables. A typical case is a list in which both the head and the tail are free variables: [H|T].

135

ANEXO C. GRAPHIC NOTATION FOR PROLOG PROGRAMS

Figure C.2: Example of a internal view diagram of a simple system [24].

The internal view diagram of the Figure C.2 contains the implementation of the module

mod_a of the system example presented in Figure C.1. Next, the symbols that can be part of

these diagrams are shown.

MODULE

mod_a The outer rectangle of an internal view diagram represents the

module that is being designed or inspected (from now on, the

main module).

Within the main module there may be one or several sub-

modules, of which only its external view should be shown.

EXPORTED PREDICATE

x_p1/1 A rectangle at the edge of the main module symbolizes an exported predicate,

visible to the rest of the modules that are at the same level.

This notation considers that all exported predicates are static, that is, they

have an unalterable behavior at runtime.

136

C.3. INTERNAL VIEW DIAGRAMS

IMPORTED PREDICATE

i_p/2 As in external view diagrams, imported predicates are represented by solid

circles located at the edge of the main module.

STATIC PREDICATE

d_p/1

A rectangle with an extended side denotes a static predicate defined

within the main module.

In this as in the following classes of predicates, the extended side sym-

bolizes the entry point to which the calls originated by other predicates

are connected.

FACT-BASED DYNAMIC PREDICATES

dyn/1

Octagons with a simple edge and an extended side represent «fact-

based» dynamic predicates, that is, sets of facts dynamically added to a

module through the assert predicate.

These predicates can be understood as data repositories that are con-

sulted and modified by other predicates of the same module.

RULE-BASED DYNAMIC PREDICATES

dyn2/2

Octagons with a double edge and an extended side represent «rule-

based» dynamic predicates, that is, sets of rules added at runtime to

a module by means of the assert predicate.

Predicates of this type can be understood as variable code portions of a

module.

MODIFYING DYNAMIC PREDICATES

{assert} The thick arrows indicate what are the only predicates that can

modify the clauses of the dynamic predicates.

The text between braces is a notation that serves to clarify if the

relationship between both predicates is based on adding (assert)

and/or eliminating (retract) clauses of the dynamic predicate.

137

ANEXO C. GRAPHIC NOTATION FOR PROLOG PROGRAMS

CALL

The fine lines allow to represent the calls that are carried out between

the different predicates of the main module, as well as between these

and the predicates exported and imported from the submodules.

Since these lines are the same at both ends, the following rules must

be followed to determine the destination of a call:

n If a line connects any predicate with the entry point of a static or

dynamic predicate, this is the destination of the call. Example:

mod_c.d_p/1→ mod_a.d_p/1.

n If a predicate exported from a submodule is found at the

end of a line, it is always the destination. Example:

mod_a.x_p/1→ mod_b.b_p/1.

n In case the line connects two imported predicates, the destina-

tion of the call is the imported predicate from the most external

module. Example: mod_b.i_p/2→ mod_a.i_p/2

INPUT, OUTPUT OR INPUT/OUTPUT PARAMETER

d1

d2

arg

These arrows symbolize the flow of data that occurs in calls between

predicates and submodules. The explanation of the three types of

arrows can be found in the previous section, page 135.

138

BIBLIOGRAPHY

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.

Addison Wesley, 1988.

[2] H. Aït-Kaci. Warren´s Abstract Machine. A Tutorial Reconstruction. The MIT Press,

1991.

[3] J. F. Baldwin. Evidential Support Logic Programming. Fuzzy Sets and Systems,

24(1):1–26, 1987.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. El Lenguaje Unificado de Modelado. Addi-

son Wesley, 1999.

[5] R. J. A. Buhr. System Design with Ada. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1984.

[6] R. Caballero, M. Rodríguez-Artalejo, and C. A. Romero-Díaz. Similarity-based Rea-

soning in Qualified Logic Programming. In Proceedings of the 10th international ACM

SIGPLAN conference on Principles and Practice of Declarative Programming, PPDP

’08, Valencia, Spain, pages 185–194. ACM, 2008.

[7] M. Cayrol, H. Farreny, and H. Prade. Fuzzy Pattern Matching. Kybernetes, 11(2):103–

116, 1982.

[8] F. A. Fontana. Likelog for Flexible Query Answering. Soft Computing, 7(2):107–114,

2002.

[9] F. A. Fontana and F. Formato. A Fuzzy Logic Programming Language. In Proceedings

of the APPIA-GULP-PRODE ’97, pages 319–332, 1997.

[10] F. A. Fontana and F. Formato. Likelog: A Logic Programming Language for Flexible

Data Retrieval. In Proceedings of the 1999 ACM Symposium on Applied Computing,

pages 260–267, 1999.

[11] F. Formato. On Similarity and its application to Logic programming. PhD thesis,

University of Naples Federico II, 1999.

139

BIBLIOGRAPHY

[12] S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy Prolog: A new approach using

Soft Constraints Propagation. Fuzzy Sets and Systems, 144(1):127–150, 2004.

[13] M. Ishizuka and N. Kanai. Prolog-ELF incorporating Fuzzy Logic. New Generation

Computing, 3(4):479–486, 1985.

[14] ISO/IEC 13211-1:1995. Information technology – Programming languages – Prolog –

Part 1: General core. International Organization for Standardization, 1995.

[15] P. Julián and M. Alpuente. Programación Lógica. Teoría y Práctica. Pearson Prentice

Hall, 2007.

[16] P. Julián and C. Rubio. Introducing Weak Unification into the WAM. Technical re-

port, Dep. of Information Technologies and Systems, University of Castilla-La Man-

cha, 2006.

[17] P. Julián and C. Rubio. A Declarative Semantics for Bousi-Prolog. In Proceedings

of the 11th ACM SIGPLAN conference on Principles and practice of declarative pro-

gramming, pages 149–160. ACM, 2009.

[18] P. Julián and C. Rubio. A Programming Environment for Bousi∼Prolog. In Proceed-

ings of the 2010 International Conference on Artificial Intelligence, ICAI 2010, Las

Vegas Nevada, USA, July 12-15, pages 36–42. CSREA Press, 2010.

[19] P. Julián and C. Rubio. An Efficient Fuzzy Unification Method and its Implementation

into the Bousi∼Prolog System. In IEEE International Conference on Fuzzy Systems

(FUZZ), pages 1–8. IEEE, 2010.

[20] P. Julián and C. Rubio. Bousi∼Prolog: A Fuzzy Logic Programming Language for

Modeling Vague Knowledge and Approximate Reasoning. In Proceedings of the In-

ternational Conference on Fuzzy Computation and International Conference on Neu-

ral Computation, ICFC-ICNC 2010, Valencia, Spain, October 24-26, pages 93–98.

SciTePress, 2010.

[21] P. Julián, C. Rubio, and J. Gallardo. The Bousi∼Prolog User Manual In A Nutshell

(Version 1.04 – Release April 2008). Technical report, Dep. of Information Technolo-

gies and Systems, University of Castilla-La Mancha, 2008.

140

BIBLIOGRAPHY

[22] P. Julián, C. Rubio, and J. Gallardo. Bousi∼Prolog: a Prolog Extension Language

for Flexible Query Answering. Electronic Notes in Theoretical Computer Science,

248:131–147, 2009.

[23] P. Julián, C. Rubio, and J. Gallardo. Inclusión de Conjuntos Borrosos en el Núcleo

del Lenguaje Bousi∼Prolog. In Proceedings of the First Workshop on Computational

Logics and Artificial Intelligence, CLAI’2009 (integrated in CAEPIA’2009), Sevilla,

Spain, November 9, pages 81–90. Universidad de Sevilla, 2009.

[24] G. M. Karam. An Icon-Based Design Method for Prolog. Software, IEEE, 5(4):51–65,

1988.

[25] M. Kefer and V. S. Subrahmanian. Theory of Generalized Annotated Logic Program-

ming and its Applications. Journal of Logic Programming, 12:335–367, 1992.

[26] V. Loia, S. Senatore, and M. I. Sessa. Similarity-based SLD Resolution and its imple-

mentation in an Extended Prolog System. In The 10th IEEE International Conference

on Fuzzy Systems, volume 2, pages 650–653. IEEE, 2001.

[27] V. Loia, S. Senatore, and M. I. Sessa. Similarity-based SLD Resolution and its role for

Web Knowledge Discovery. Fuzzy Sets and Systems, 144(1):151–171, 2004.

[28] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions

on Programming Languages and Systems (TOPLAS), 4(2):258–282, 1982.

[29] T. P. Martin, J. F. Baldwin, and B. W. Pilsworth. The Implementation of FProlog – A

Fuzzy Prolog Interpreter. Fuzzy Sets and Systems, 23(1):119–129, 1987.

[30] M. Mukaidono, Z. L. Shen, and L. Ding. Fundamentals of Fuzzy Prolog. International

Journal of Approximate Reasoning, 3(2):179–193, 1989.

[31] H. T. Nguyen and E. A. Walker. A First Course in Fuzzy Logic. CRC Press, 2000.

[32] R. A. O’Keefe. The Craft of Prolog. The MIT Press, 1994.

[33] R. A. Orchard. FuzzyCLIPS Version 6.10d. User’s Guide, 2004.

[34] F. Pascual, P. Julián, M. Ferreira, and J. Gallardo. Una Aproximación Declarativa a la

Clasificación de Documentos. In XV Congreso Español de Tecnología y Lógica Fuzzy,

141

BIBLIOGRAPHY

ESTYLF 2010, Huelva, Spain, February 3-5, pages 543–548. Universidad de Huelva,

2010.

[35] W. Pedrycz and F. Gomide. An Introduction to Fuzzy Sets: Analysis and Design. The

MIT Press, 1998.

[36] R. Pérez. Procesado y Optimización de Espectros Raman mediante Técnicas de Lógica

Difusa: Aplicación a la identificación de Materiales Pictóricos. PhD thesis, Universitat

Politècnica de Catalunya, 2005.

[37] L. G. Rios-Filho and S. A. Sandri. Contextual Fuzzy Unification. In 5th IFSA, vol-

ume 95, pages 81–84, 1995.

[38] C. Rubio. Diseño e Implementación de un Lenguaje de Programación Lógica Borrosa

con Unificación Débil. PhD thesis, Universidad de Castilla-La Mancha, 2011.

[39] M. I. Sessa. Approximate Reasoning by Similarity-based SLD Resolution. Theoretical

Computer Science, 275(1-2):389–426, 2002.

[40] L. Sterling and E. Y. Shapiro. The Art of Prolog: Advanced Programming Techniques.

The MIT Press, 1994.

[41] H. E. Virtanen. Fuzzy Unification. In Proceedings of the International Conference on

Information Processing and Management of Uncertainty in Knowledge-based Systems

(IPMU 1994), pages 1147–1152, 1991.

[42] H. E. Virtanen. Linguistic Logic Programming. Logic Programming and Soft Comput-

ing, pages 91–128, 1998.

[43] P. Vojtáš. Fuzzy Logic Programming. Fuzzy Sets and Systems, 124(3):361–370, 2001.

[44] L. A. Zadeh. Fuzzy Sets. Information and Control, 8(3):338–353, 1965.

[45] L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate

Reasoning, Parts I, II and III. Information Sciences, 8 and 9, 1975.

[46] L. A. Zadeh. Fuzzy Logic. Computer, 21(4):93, 1988.

142

	Contents
	List of Figures
	List of Tables
	List of code listings
	Introduction, Motivations and Goals
	Motivation
	Main Goal
	Specific Goals
	Structure of this Document

	Fuzzy Logic Programming
	Fuzzy Logic
	Fuzzy sets
	Fuzzy Relations
	Linguistic variables
	Fuzzy relations and linguistic variables

	Foundations of Fuzzy Logic Programming
	Goals of a fuzzy logic programming system
	Weak unification
	WSLD Resolution

	Fuzzy Logic Programming Systems
	BousiProlog (low-level implementation)
	SiLog
	Likelog
	Comparative

	The BousiProlog language
	Characteristics of the BousiProlog language
	Weak unification and fuzzy relations
	Fuzzy sets and linguistic variables
	Negation in BousiProlog

	A Simple Example
	Translation to TPL code
	Purpose of the translation
	Simulating WSLD resolution

	Development of the BPL system
	Work method
	Requirement specification
	Analysis
	Use cases
	Sequence diagrams

	Design
	System architecture
	Module bplHelp
	Module flags
	Module directives
	Module evaluator
	Module parser
	Module translator
	Module bplShell
	Module bousi
	Module foreign

	Implementation
	Patterns and style norms
	Weak unification algorithm
	Term comparison algorithm
	Closures computation
	Syntactic analysis of terms
	Execution of higher-order predicates
	Library of foreign predicates
	Example sessions

	Testing
	Test plan
	Coverage report

	BousiProlog applications
	Text cataloging
	Flexible deductive databases
	Approximate reasoning

	Conclusions and Future Work
	Resumen
	Advantages and Limitations
	Final conclusions
	Future work

	Installation manual of the BPL system
	Linux and Mac OS X
	Windows

	BPL system user manual
	Graphic notation for Prolog programs
	Introduction
	External view diagrams
	Internal view diagrams

	Bibliography

