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Abstract. Cloud computing enables elasticity - rapid provisioning and deprovi-
sioning of computational resources. Elasticity allows cloud users to quickly adapt
resource allocation to meet changes in their workloads. For cloud providers, elas-
ticity complicates capacity management as the amount of resources that can be
requested by users is unknown and can vary significantly over time. Overbooking
techniques allow providers to increase utilization of their data centers. For safe
overbooking, cloud providers need admission control mechanisms to handle the
tradeoff between increased utilization (and revenue), and risk of exhausting re-
sources, potentially resulting in penalty fees and/or lost customers. We propose
a flexible approach (implemented with fuzzy logic programming) to admission
control and the associated risk estimation. Our measures exploit different fuzzy
logic operators in order to model optimistic, realistic, and pessimistic behaviour
under uncertainty. The application has been coded with the MALP language by
using the FLOPER system developed in our research group. An experimental
evaluation confirm that our fuzzy admission control approach can significantly
increase resource utilization while minimizing the risk of exceeding the total
available capacity.

Keywords: Cloud Computing, Admission Control, Fuzzy Logic Programming,
Resource Utilization, Risk Assessment.

1 Introduction

Cloud computing is a recently emerged paradigm where computational resources are
leased over the Internet in a self-service manner under a pay-per use pricing scheme.
Organizations and individuals, the cloud users, can thus continuously adjust their cloud
resource allocations to their current needs, so called elasticity [21]. The core of cloud
infrastructure are data centers, large store-house like facilities hosting hundreds of thou-
sands of servers, along with storage and networking equipment, as well as advanced
systems for cooling and power distribution [24]. Through virtualization technologies,
these data centers (cloud providers) can provision applications from multiple users on
the same physical servers and thus make efficient use of their hardware. In cloud data
centers, user applications are packaged as Virtual Machines (VMs) [7], which in essence
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are software implementations of servers that are time-shared on the physical hardware.
Users can thus at any time, themselves or through automatic elasticity management
software, increase or decrease the number of VMs allocated. Consequently, it is com-
mon for for cloud providers to require users to specify upper and lower limits to the
number of VMs to be used in a service request [19], or to simply have predefined rules
for all users, e.g., 1-20 VMs per data center for the largest cloud provider, Amazon [6].

For data centers, elasticity results in a long-term capacity allocation problem, as the
exact number of VMs to be used at any time by each user is unknown. Running too few
VMs in total results in poor data center hardware utilization and lowered incomes from
users, whereas having too many VMs may lead to low performance and/or crashes, poor
user experience, and may also have financial consequences if Service Level Agreements
(SLAs) regarding user performance expectations are violated. To handle this trade off,
admission control mechanisms [9] can be used by cloud providers to determine whether
a new user service request should be admitted into the data center or not. In our pre-
vious work [22], we demonstrate how resource overbooking, a technique well-known
from airline revenue management and network bandwidth multiplexing, can be used to
increase provider utilization and revenue, with acceptable risks of running out of hard-
ware capacity. Further examples of previous work in this area includes an algorithmic
framework [9] that uses cloud effective demand to estimate the total physical capacity
required for performing the overbooking, including probability of launching additional
VMs in the future.

However, evaluating risk during admission control with respect to performing re-
source overbooking actions is far from trivial. Overbooking and the associated schedul-
ing problems are multi-dimensional packing problems, commonly solved using heuris-
tics. It is also not clear in the general case how to balance the short and long term
impact when deciding whether to accept a new service. Furthermore, admission control
is associated with several uncertainties, include limited knowledge of future workloads,
potential side effects from co-locating particular VMs, and exact impact on applica-
tions of potential resource shortage. Based on these properties of the admission control
problem, we propose a fuzzy approach to admission control. Since its initial develop-
ment by L. A. Zadeh in the sixties [23], fuzzy logic has become a powerful theoretic
tool for reaching elegant solutions to problems in various fields of software, industry,
etc. More recently, there exist fuzzy extensions of the classical logic language Prolog,
which can be used in a very natural way to solve problems where fuzzy logic plays an
important role. A conceptual overview of how our cloud overbooking framework use
fuzzy logic during admission control is shown in Figure 1. In must be noted that the
risks are calculated for the three capacity dimensions that we consider for each VM:
CPU, memory and I/0. For each one of these, the risk is calculated based on predicted
information about future available capacity (referred to as Free in the rest of the paper),
future amount of unrequested capacity (denoted Unreq) and the capacity requested by
the incoming service (denoted Req). Unreq is the inverse difference between what users
requested and what they really used (Free). All these future expected values are pre-
dicted by using exponential smoothing functions [22].

The structure of this paper is as follows. In Section 2, a brief introduction to the
MALP (Multi-Adjoint Logic Programming) language and the FLOPER system is given.
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Fig. 1. Conceptual picture of the system

In Section 3 we explain the main features of our implementation based on fuzzy logic
programming using MALP and FLOPER. Next, in Section 4, we present our experi-
mental results. Finally, Section 5 concludes the paper and outlines directions for further
research.

2 The Multi-adjoint Logic Language and FLOPER

Multi-Adjoint Logic Programming (see [14,11] for a complete formulation of this frame-
work), MALP in brief, can be thought as a fuzzy extension of Prolog and it is based
on a first order language, £, containing variables, function/constant symbols, predi-
cate symbols, and several connectives such as implications (-1, <2, ..., ), cOn-
junctions (&1, &a, . . ., &), disjunctions (V1, Va, .. ., V), and general hybrid operators
(“aggregators” @Qq, @y, ..., @,), used for combining/propagating truth values through
the rules, and thus increasing the language expressiveness. Additionally, our language £
contains the values of a multi-adjoint lattice in the form (L, <, +1,&1,...,4n, &n),
equipped with a collection of adjoint pairs (+;,&;) where each &; is a conjunctor
intended to the evaluation of modus ponens [20,12,14]. A rule is a formula “A +; B
with o, where A is an atomic formula (usually called the head), B (which is called
the body) is a formula built from atomic formulas B, ..., B, (n > 0), truth values
of L and conjunctions, disjunctions and general aggregations, and finally o € L is the
“weight” or truth degree of the rule. The set of truth values L may be the carrier of any
complete bounded lattice, as for instance occurs with the set of real numbers in the in-
terval [0, 1] with their corresponding ordering < r. Consider, for instance, the following
program, P, with associated multi-adjoint lattice ([0, 1], =g, <—p, &p) (where label P
means for Product logic with the following connective definitions for implication and
conjunction symbols, respectively: “<—p(x,y) = min(1, z/y)”, “&p(z,y) = z *y”, as
well as “Qayer (z,y) = (x 4+ y)/27):
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&prod (s (0, @awer(inwio))
[}

&prod(0.8,@aver{fimadrid) wimadrid))) &prod (0.9, @aver(fiiokyo) witokya)) Eprod(0.3,@aver(fiistambul),wiistambull)) &prod(0.3, @aver(f(haku) wibaku))
{madrid X 1madrid} {¥tokyo X1 ftokya} {istambul ¥ 1/istambul} {Hhaku 1 ihaku}

&prod(0.8,@aver(0.8,w{madrid)) Eprod(0.9,@aver(D.7 witokyo))) &prodi0.3,@aver(0.4,wistambul))) Eprod(0.3,@aver(D.2,wihakuy)
{madrid X 1madrid} {¥tokyo X1 ftokya} {istambul ¥ 1/istambul} {Hhaku 1 ihaku}

&prod(0.8,@aver(0.8,0.9))
{madrid X 1madrid}

Eprod(0.9,@aver(0.7,0.6))
{¥tokyo X1 ftokya}

&prodi0.3,@aver(0.4,0.8)
{istambul ¥ 1/istambul}

&prod(0.3,@aver(0.2,0.5))
{Hhaku 1 ihaku}

0.6800000000000002
{madrid X 1madrid}

0.585
{¥tokyo X1 ftokya}

0.18000000000000002
{istambul ¥ 1/istambul}

0105
{Hhaku 1 ihaku}

Fig. 2. Execution tree for program P and goal oc (X)

Ri: oc(X) <- s(X) &prod (f(X) Qaver w(X)) with 1.

Ro: s(madrid) with 0.8.  Rs: s(tokyo) with 0.9.
Rs: f(madrid) with0.8.  Rg: f(tokyo) with 0.7.
R4 : w(madrid with0.9.  Rr7: w(tokyo) with 0.6.
Rs: s(istambul)  with0.3.  Ri1: s(baku) with 0.3.
Ry : flistambul) with0.4. Ria: f(baku) with 0.2.
Rio : w(istambul) with 0.8.  Riz: w(baku) with 0.5.

This program models, through predicate “oc”, the chances of a city for being an
“olympic city” (i.e., for hosting olympic games). Predicate “oc” is defined in rule
R1, whose body collects the information from three other predicates, “s”, “£” and
“w”, modeling, respectively, the security level, the facilities and the good weather of a
certain city. These predicates are defined in rules Ry to R3 for four cities (Madrid,
Istambul, Tokyo and Baku), in such a way that, for each city, the feature modeled by
each predicate is better the greater the truth value of the rule.

In order to run and manage MALP programs, during the last years we have de-
signed the FLOPER (Fuzzy LOgic Programming Environment for Research) system
[16,15,17,18], which is freely accessible online [10]. The parser of our tool has been
implemented by using the classical DCG’s (Definite Clause Grammars) resource of the
Prolog language, since it is a convenient notation for expressing grammar rules. Once
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the application is loaded inside a Prolog interpreter, it shows a menu which includes
options for loading/compiling, parsing, listing and saving fuzzy programs, as well as
for executing/debugging fuzzy goals. These actions are based on the translation of the
fuzzy code into standard Prolog code: all internal computations (including compiling
and executing) are pure Prolog derivations, whereas inputs (fuzzy programs and goals)
and outputs (fuzzy computed answers) have always a fuzzy taste, thus producing the
illusion on the final user of being working with a purely fuzzy logic programming tool.
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¥ (& Fuzzy-Prolog files [«
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[ simsim
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[ pruebas.ds

[ num.lat

&prodts (0, @avertho wos
oang

&prod(0.8, &prod(0.9, witokyo | &Rrodi0.3, k &prod(0.3, wihaku)))
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> R1 < &prod(s(x),@aver (F(x),w(x))), {X1/x} >
R2 < &prod(0.8,eaver (f(madrid),w(madrid))), {x/madrid,x1/madrid} >
£ R3 < &prod(0.8,@aver (0.8, w(madrid))), {x/madrid,xi/madrid} >
R4 < &prod(0.8,Gaver(0.8,0.9)), {x/madrid,x1/madrid} >
- [Fesult < 0.6800000000000002, {X/madrid,xl/madrid} >}
RS « &nrodf0 0 @aver (flrakun) wltakund)) X /Takun X1 /Takunl s _"
LIRS 3

Fig.3. The FLOPER System showing the execution tree for goal “oc (X)”

The FLOPER system is able to manage programs with very different lattices. By using
option “lat” (and “show”), we can associate (and display) a new lattice to a given
program. Such lattice must be loaded into the tool as a pure Prolog program. As an ex-
ample, the following clauses show the program modeling the lattice of the real interval
[0, 1] with the usual ordering relation and connectives (conjunction and disjunction of
the Product logic, as well as the average aggregator) where the meaning of the manda-

99 <

tory predicates “member”, “top”, “bot” and “leq” is obvious:

member (X) : - number (X), 0=<X, X=<I1. bot (0) .
leg(X,Y) :- X=<Y. top (1) .
and_prod(X,Y,Z) :- Z is X*Y.

or_prod(X,Y,Z) :— Ul is X*Y, U2 1s X+Y, Z is U2-Ul.

agr_aver (X,Y,2Z) Ul is X+Y, Z is Ul/2.

FLOPER includes two main ways for evaluating a goal, given a MALP program and
its corresponding lattice. Option “run” translates the whole program into a pure Prolog
program and evaluates the (also translated) goal, thus obtaining a list of fuzzy computed
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answers, each one containing the truth-degree and the corresponding variable substitu-
tion for each concrete solution. For instance, in our example we can run goal “oc (X)”
to obtain the following result indicating that the different chances of Baku, Istambul,
Tokyo and Madrid for being “Olympic cities” are respectively 10.5%, 18%, 58.5% and
68%:

>> run.
[Truth_degree=0.105, X=baku]
[Truth_degree=0.180,X=istambul]
[Truth_degree=0.585, X=tokyo]
[Truth_degree=0.680, X=madrid]

On the other hand, option “tree” computes and displays the whole execution (or
derivation) tree for the intended goal. Moreover, it is possible to select the deepest level
to be built (which is obviously mandatory when trees are infinite) via option “depth”
or even to indicate that only the set of leaves be displayed via option “leaves”. Com-
ing back again to our example, we can use option “tree” to obtain the execution tree
for goal “oc (X)”, which is generated by FLOPER in three different formats. Firstly
the tree is displayed in graphical mode, as a PNG file, as shown in Figures 2 and 3.
The tree is composed by two kinds of nodes. Yellow nodes represent states reached by
FLOPER following the state transition system that describes the operational seman-
tics of MALP [14]. The root node represents the first state (composed by the original
goal together with the identity substitution), and subsequent lower nodes are its children
states (that is, states reached from the root). A state contains a formula in the upper side
and a substitution (obtained after composing all substitutions applied from the original
goal to the current state) at the bottom. A final state, if reached, is a fuzzy computed
answer whose associated formula is just an element (truth-degree) of the lattice. Blue
rounded nodes appearing between a pair of yellow nodes (states) represent program
rules; specifically, the program rule that is exploited in order to go from one state (the
upper one) to another (the lower state). These rules are named with letter “R” plus its
position in the program. For example, observe that from the initial state to the next one,
the first rule of the program has been exploited, as shown in the blue intermediate node.
As an exception, when all atoms have been exploited in (the formula of) a certain state,
the following blue node is labeled with word “result”, informing that the next state
contains a fuzzy computed answer.

FLOPER can also generate the execution tree in two textual formats. The first one
contains a plain description of the tree, while the second one provides an XML structure
to that description. In this XML format, tag “node” is used to include all the informa-
tion of a node, such as the rule performed to reach that state (tag “rule”), the formula
of the state (tag “goal”), the accumulated substitution (tag “substitution”) and
the children nodes in a nested way (tag “children”). These XML files can be ac-
curately explored with the Fuzzy XPath application we have recently developed in our
research group with FLOPER [1,2,4,5], in order to perform some interesting debugging
tasks with the same tool, as documented in [3].
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&p(z,y) Ex*y p(z,y) 2o +y—z*xy <> (z,y) = min(l,z/y)

. 1 ify<zx

&G(‘r7 y) é mln(x7y) ‘G(‘T7y) é max{:r, y} ] (%?J) é Y 7,
x otherwise

&i(z,y) £ max(0,z +y—1) [L(z,y) £minf{z +y,1} <« (z,9) £ min{z —y+ 1,1}

Fig.4. Fuzzy conjunction, disjunction, and implication connectives from fukasiewicz (pes-
simistic), Gddel (optimistic), and Product (realistic) logics, resp., defined in the real unit interval

3 Implementation Based on Fuzzy Logic Programming

On towards fuzzy formulations of the admission control problem, in this section we
present a flexible method that has been implemented MALP using FLOPER. As we
have just detailed in the previous section, the MALP language represents a fuzzy ex-
tension of the popular Prolog language in the field of pure (crisp) logic programming
[13]. In this fuzzy declarative framework, each program is accompanied with a lat-
tice for modeling truth-degrees beyond the simpler case of the (crisp) Boolean pair
{true, false}. Hence, fuzzy program rules can utilize fuzzy connectives defined on
such richer lattices for improving the expressive power of classical Prolog clauses. For
instance, some standard connective definitions for conjunctions, disjunctions, and im-
plications in the lattice of real numbers in the unit interval [0, 1] are presented in Figure
4, where labels L, G, and P mean respectively Lukasiewicz logic, Godel logic, and Prod-
uct logic, with different capabilities for modeling pessimistic, optimistic, and realistic
scenarios, respectively.

In our application we use a refined version of such a lattice, as we try to identify the
notion of truth-degree with the one for “overbooking risk along a time period”. This
means that instead of single values, our program manipulates lists of real numbers as
truth-degrees' after analyzing the behaviour’s curves representing “free, unrequested,
and requested (CPU/memory/net) resources” also expressed as input lists to the tool.
For instance, if expression “&p(x,y) = = * 3~ refers to the conjunction of Product
logic for pairs of values, its extended version coping with pairs of lists of values should
look like “&p([21, - - -, Znl, [Y15- -, Yn]) = [X1 * Y1, .., Tn * ys]”. In our application
this connective can be recursively defined with the following code:

and_prod(I[]1,[]1,[1).
and_prod ([X|LX], [Y|LY], [Z|LZ]):- Z is X*Y, and_prod(LX,LY,LZ).

In the lattice we have also implemented extended versions managing lists of the re-
maining connectives seen in Figure 4, as well as other connectives like @append (for
concatenating two lists of numbers), @show (which is described afterwards) and the
two connectives @very and @approx (where Query(z) = x? and Qapprox(x) = \/T)
known as linguistic modifiers. These are useful for fine-tuning the more pessimistic
or optimistic shape of the answers produced by our application under this uncertain
scenario.

! Sometimes accompanied with annotations like maz, avg, peak and so on, for readability
reasons.



A Fuzzy Approach to Cloud Admission Control for Safe Overbooking 219

Usage
[ R (R | N )

0

240 250 260 270 280 290 300

10

Usage
0 40 K

A
\

— T T T T

240 250 260 270 280 290 300

Time (minutes)
Fig. 5. Graphics showing different choices for estimating risk

Thanks to the high expressive power of the previous lattice, it is possible now to
easily design a MALP program composed by a few rules starting with the following
one, which receives as input parameters three lists representing the curves associated to
free, unrequested and requested values, as well as a fourth argument indicating which
resource, or Field, (CPU, network or memory) is considered:

risk([F|Free], [U|Unreq], [R|Req],Field)<-
Qappend (combine (F,U,R), risk(Free,Unreq, Req,Field))

This definition of predicate “risk” produces a truth degree that is a list of numbers
obtained after contrasting the input curves “Free”, “Unreq” and “Req”. This eval-
uation is recursively performed by calling predicate “combine” with three concrete
values each time in order to compare the requested resources with the free and unre-

quested values.
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In Figure 5 we graphically represent two different alternatives to perform this con-
trast where the background colour moves through white, yellow and red tonalities from
the lower to the higher risk found in each instant. A preliminary version for predicate
“combine” associated to the upper graphic in Figure 5 could be represented by:

combine (Free,Unreq, Req) <- (Reg>=Free & [1]) | (Reg>Unreq & [0.5])

which, in essence, assigns risk 1 (red band) when the requested resource is over the
free value, 0.5 (yellow band) when it is between the free and unrequested values, and 0
(white band) otherwise. Moreover, we have also implemented a more sophisticated ver-
sion based on linear interpolation (down graphic in Figure 5) according the following
formula:

inter (Req, Free,Unreq) = (Reg-Unreq)/ (Free-Unreq)

Thus, it can return risk 0 when the requested value is below the unrequested one, a risk
in [0,1] (tonalities vary from white through yellow to red as risk grows) if the requested
point is between the other two values, and risk above 1 (tonalities vary from red to
black as risk grows) if the amount of requested capacity is higher than the free one.
When requested is above free, we say that a peak emerges, which allows us to improve
the evaluation of the final risk by taking into account the performance impact of each
peak.
The program is invoked by calling predicate “main” with appropriate parameters:

main (Free,Unreq, Req,Field) <- @show(risk (Free,Unreq,Req,Field))

This rule makes use of connective “@show”, which receives the truth degree (i.e., a
list of numbers) produced by “risk” and returns a new truth degree as a list with the
following shape:

[ avg(ni), min(nz2), max(ns),
over ( [peak (hi,l1,a1), ...,peak (hi,l;,a:;) 1),
opt(n4), real(ns), pes(ne) 1

CLINNTS

Here, labels “avg”, “min”, and “max” contain the average (n1), minimum (n3), and
maximum (n3) values, respectively, of the input list; “over” gives the list of peaks
(each one is represented by its maximum height (%;), length (I;), and area (a;)) and
finally, “opt”, “real”, and “pes” labels provide an optimistic (n4), realistic (ns),
and pessimistic (ng) estimation -based on the previous elements- about the risk of ac-
cepting the requested task. These estimations are produced by combining the average
measure (appropriately modulated with the Qapprox and Query connectives, for refer-
ring to the pessimistic and optimistic cases, respectively) together with the disjunctions
of all the peaks by using different versions of the disjunction operators. This is modeled
according to Lukasiewicz, Product, and Godel fuzzy logics, as shown in the table of
Figure 4, where it is easy to see that Vz,y € [0,1], 2.y > z|py > x|¢z. This justifies
once again the power of fuzzy logic and the strong expressive resources of MALP for
managing pessimistic, realistic and optimistic scenarios. For instance, when we intro-
duce the following goal into FLOPER:

main([50,20,40,73,991,[25,10,2,51,40],[20,23,45,60,49],cpu)
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Fig. 6. FLOPER executing our application

The system solves it by generating a list representing the final truth degree associated
to the query, with the following shape:

[ avg(0.9300780175180026), min(0), max(1l.3),
over ([peak(2,1.3,0.27078683857231306)1]),
opt (0.8045594490364215), real(0.9015891243354114), pes(1l)]

In Figure 6 we show a screen-shot of FLOPER when executing the previous goal. In
the main window, we can observe (the initial portion of) the derivation tree for this
goal which, in essence, consists in a transition system where each state is coloured
in yellow and transitions appear as blue circles, so the initial state is just the original
goal appearing in the root of the tree, and the final state (not explicitly displayed in the
figure) contains the final truth degree associated to the query. In our case, this solution
corresponds to the text darkened in blue in the box at the bottom of the screen.

4 Experiments

To evaluate our proposal, the fuzzy risk assessment is included into the framework
presented in [22], which only included a simple admission control technique. This way,
the admission control now uses this information to take the decisions about service
acceptance or rejection when performing resource overbooking. In that previous work,
a simulator to test the development was implemented which is reused here to simulate
the cloud infrastructure and emulate the workload.
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Table 1. Performance Summary (Figure 7)

Average utilization |Node capacity overpassed (%)|Aggregated node capacity overpassed (%)
No Risk 38.9 % (1) 0 0
Pessimistic| 69.1 % (1.78) 0 0
Realistic 84.6 % (2.17) 6.99 0.43
Optimistic| 92.5 % (2.38) 11.88 0.84

The cloud infrastructure simulated for testing the different risk evaluators consists
of 16 nodes where each one of them has 32 cores. We consider four different types of
VMs (S, M, L and XL), similar to Amazon’s model [6], where each one doubles the
capacity of the previous one, starting from the S VM (1 CPU and 1.7GB of memory).
Those VMs simulate the execution of a dynamic workload made of different kind of
applications (some of them with steady behavior and others with bursty one), profiled
by using monitoring tools after running the real applications. The workload is a mixture
of applications, following a Poisson distribution for submission rates. See [22] for more
details about the testbed and workload generation. With that workload, the performance
evaluation has been carried out by generating service requests according to that Poisson
distribution. Then, the accepted requests (by the admission control) are scheduled and
run on the 16 nodes. During this execution, we measure the utilization and resource
shortage.

Our evaluation is centered on measuring the impact of accurately evaluating the
risks taken by the admission control when performing resource overbooking within
data centers. The different risk values provided by the fuzzy logic engine are compared
against each other and also against a base case where no overbooking is performed —
no risks being taken. Those risk assessments from least risky to most are labeled as
“Pessimistic”, “Realistic”, and “Optimistic” — mapping them to the respective values
calculated by the fuzzy logic engine with those names. The base case is labeled “No
Risk”.

Figure 7 (a) shows the resource utilization achieved by using the different risk val-
ues at the admission control. Clearly, the more risks we take, the higher utilization is
achieved. However, this may have a negative impact regarding running out of resources
if total capacity is overpassed, not only regarding the whole data center utilization but
also regarding every single node into the system. Owing to that fact, Figure 7 (b) shows
a histograms over how many times one of the nodes has overpassed its total capacity,
and how large the impact on the performance is — performance degradation that may end
up in resource SLA violations. The x-axis represents the performance degradation expe-
rienced when total capacity in (at least) one of the nodes is overpassed. So, the smaller
the bars are, the better (less frequent risk situations) and it is desired that they remain
as close to 0 as possible - fewer performance degradation and greater possibilities of
resolving these. Notably, as shown in Figure 7 (a), the total infrastructure capacity is
not overpassed. This means that VM migration can be used to decrease the risks by
moving VMs from the overloaded nodes to the ones that still have enough available
capacity. This way certain overload situations can be avoided, as has been proposed by
Beloglazov et al. [8].

Finally, Table 1 highlights the improvement obtained thanks to performing resource
overbooking (up to 2.38 times) and the cost that this entails. Pessimistic has the lowest
improvement but without any performance degradation, while the other two techniques
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Fig. 7. Resource utilization and risk assessment comparison

present higher utilization rates but at expense of higher performance degradation that
may result in running out of resources. For the realistic and optimistic cases, the total
capacity of a single node has been overpassed around 6 % and 12 % of the time, respec-
tively. Despite this, the total impact on the final performance is not remarkable (below
1%) — calculated as the percent of time the capacity is overpassed at a node, weighted
by the amount of overpassed capacity.

5 Conclusions

In this paper we have used the FLOPER programming environment developed in our
research group for implementing with the fuzzy logic language MALP a real-world
application in the field of cloud computing.

Admission control techniques that apply overbooking actions are a promising so-
lution for low data center resource utilization, a problem that arises from the elastic
nature of cloud applications. However, overbooking actions may lead to performance
degradation if not planned carefully.

We propose an admission control that bases its acceptance or rejection decisions on
the information about the risks being taken. A fuzzy logic engine provides the informa-
tion that allows the admission control to estimate the long-term risks of accepting the
incoming request. That risk assessment is a combination of several parameter regarding
the relationship between available capacity and requested one, such as the difference be-
tween these and the information about the peaks when insufficient capacity is expected,
providing different degrees of risk that leads to more (or less) aggressive decisions re-
garding job acceptance.

The evaluation shows significant increases in resource utilization obtained by our
risk-aware fuzzy admission control methods. Even for the most optimistic estimates,
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available resources are exhausted as little as 0.84% of the time, while increasing utiliza-
tion by 138%. Thus, our fuzzy methods are a promising approach to help the admission
control to evaluate the risks associated with accepting a new service.

Further direction include to extend our work by taking the risk assessment into ac-
count together with the SLA information. One such extension could be to specify differ-
ent costs depending on the risk to be taken or using the different risk values depending
on the penalty that is to be paid in case of SLA violation, i.e., the greater the penalty
the more pessimistic the admission control should be.
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