
Proceedings of the 12th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2012
La Manga, Spain, July, 2–5, 2012.

SSE: Similarity-based Strict Equality

for Multi-Adjoint Logic Programs

Ginés Moreno, Jaime Penabad and Carlos Vázquez1

1 Faculty of Computer Science Engineering, UCLM, 02071, Albacete (Spain),

emails: {Gines.Moreno,Jaime.Penabad}@uclm.es, Carlos.Vazquez@alu.uclm.es

Abstract

A classical, but even nowadays challenging research topic in declarative program-
ming, consists in the design of powerful notions of “equality”, as occurs with the flexible
(fuzzy) and efficient (lazy) model that we have recently proposed for hybrid declarative
languages amalgamating functional-fuzzy-logic features. The clever idea is that, by ex-
tending at a very low cost the notion of “strict equality” typically used in lazy functional
(Haskell) and functional-logic (Curry) languages, and by relaxing it to the more flex-
ible one of similarity-based equality used in modern fuzzy-logic programming languages
(such as Likelog and Bousi∼Prolog), similarity relations can be successfully treated
while mathematical functions are lazily evaluated at execution time. Now, we are con-
cerned with the so-called Multi-Adjoint Logic Programming approach, MALP in brief,
which can be seen as an enrichment of Prolog fuzzy connectives. In this work, we
revisit our initial notion of SSE (Similarity-based Strict Equality) in order to re-model
it at a very high abstraction level by means of a simple set of MALP rules. The result-
ing technique not only simulates, but also surpass in our target framework, the effects
obtained in other fuzzy logic languages based on similarity relations (with much more
complex/reinforced unification algorithms in the core of their procedural principles),
even when the current operational semantics of MALP relies on the simpler, purely
syntactic unification method of Prolog.

Key words: Equality, Similarity, Multi-adjoint Logic Programming.

1 Introduction

Logic Programming [13] has been widely used for problem solving and knowledge repre-
sentation in the past. Nevertheless, traditional logic programming languages are not able

c⃝CMMSE ISBN:xxxxxxxxx

SSE: Similarity-based Strict Equality Model for Multi-Adjoint Logic Programs

to treat with partial truth. Fuzzy Logic Programming is an interesting and still growing
research area that agglutinates the efforts for introducing Fuzzy Logic into Logic Program-
ming, in order to provide these traditional languages with techniques or constructs (coming
up from the mathematical background of fuzzy logic [23]) to deal with uncertainty in a
natural way. In the last two decades, several fuzzy logic programming languages have been
developed where, in essence, the classical SLD resolution principle of Prolog [4] (based on
syntactic unification) has been replaced by a fuzzy variant of itself, with the aim of dealing
with partial truth and reasoning with uncertainty in a natural way. Most of these languages
implement (extended versions of) the resolution principle introduced by Lee [11], such as
Elf-Prolog [8], Fril [3], F-Prolog [12] and MALP [14]. There exists also a family of fuzzy
languages based on sophisticated unification methods [24] to cope with similarity/proximity
relations, as occurs with Likelog [2], SQLP [5] and Bousi∼Prolog [9].

On the other hand, during the last three decades of investigation in the field of the
integration of declarative programming paradigms (functional, fuzzy and logic), the scien-
tific community of the area has produced important and advanced contributions related
to both theoretical and practical aspects. However, whereas the functional and logic pro-
gramming styles have been successfully integrated in the past and, as said before, more
recently fuzzy logic has also been introduced into the logic programming paradigm, there
is not precedent for a total integration of all these frameworks, apart from our preliminary
approach presented in [21]. In [20], we gave a new step in this last sense, by proposing a
method combining different equality models traditionally supported by each one of these
declarative paradigms. It is important to take into account that an appropriate notion of
equality has a capital importance when designing the repertoire of expressive resources for
a particular declarative language. In general, when we use the term “equality” in declara-
tive programming, there are several different meanings depending of the concrete paradigm
being considered. A representative (not exhaustive) list of some cases could be:

∙ Syntactic equality. It is the simplest equality model used in the context of classical
pure logic programming (as occurs with Prolog, but also in the fuzzy logic language
MALP) which is simply concerned with syntactic identity. In this sense, two element
are considered “equal” if they have exactly the same syntax. For instance, f(a) is
equal to f(a) but not to g(b).

∙ Strict equality. When considering lazy languages, both pure functional (Haskell [6])
and integrated functional-logic (Curry [7]) languages, this new equality notion is the
only applicable one in a lazy setting, mainly due to the possible presence of non ter-
minating functions. For instance, if the evaluation of f(a) does not finish then we
can not say that f(a) is strictly equal to itself. And, on the contrary, two terms with
different syntax, such as g(b) and ℎ(c), could be proved equal if they produce the same
final value (for example 0) after being evaluated by rewriting or narrowing.

c⃝CMMSE ISBN:xxxxxxxxx

G. Moreno, J. Penabad, C. Vázquez

∙ Similarity-based equality. As we will see in Section 2, this model emerges as a
direct consequence of several attempts for fuzzifying the original notion of syntactic
equality, which are appreciable in the design of fuzzy logic languages such as Likelog,
SQLP and Bousi∼Prolog. In this case, the idea is to allow the presence of a set of
the so-called “similarity/proximity equations” between symbols of a given program.
So, if we have a program with the equations eq(a, b) = 0.5 and eq(f, g) = 0.3 then,
it could be proved that expressions f(a) and g(b) are similar with a concrete truth
degree.

In Section 3, we recast from [20] our original definition of SSE (Similarity-based Strict
Equality), initially modeled by means of a set of rewriting rules and which fuses the last
two equality versions above. The clever idea of our method is to simply add to a given
functional-logic program (written in Curry, for instance) a set of rewriting rules defining
the new symbol ≈:≈ which captures similarities and thus, is implemented at a very low cost
by simply performing a syntactic pre-process on programs.

The main goal of this paper is to adapt such definition to the MALP framework. In
Section 4 we will see that SSE admits a much more natural definitions by means of a
set of MALP rules instead of using rewriting rules. Moreover, although this fuzzy pro-
gramming style is based on pure syntactic unification, our method introduces a similarity-
based equality model without altering its core, which is useful not only for testing if two
ground data terms are comparable (as occurs too with more complex languages -Likelog,
Bousi∼Prolog- with extended unification algorithms), but also for producing complete
lists of similar terms (not achievable by Likelog and Bousi∼Prolog).

2 Similarity Relations and Fuzzy Logic Programming

As we have just said, although in principle it is not the case of MALP (whose operational
semantics uses syntactic unification on its core), some fuzzy languages such as Likelog,
SQLP and Bousi∼Prolog are able to treat with the mathematical notions of similarity
(and proximity), by incorporating a flexible variant of unification -beyond the simpler case
of Prolog- on their procedural principles.

A similarity relation is a mathematical notion able to manipulate alternative instances of
a given entity that can be considered equals with concrete truth degrees. Similarity relations
are closely related with equivalence relations (and, then, to closure operators) [25]. Let us
recall that a T-norm ∧ in [0, 1] is a binary operation ∧ : [0, 1] × [0, 1] → [0, 1] associative,
commutative, non-decreasing in both the variables, and such that x∧ 1 = 1∧x = x for any
x ∈ [0, 1]. Formally, a similarity relation ℜ on a domain U is a fuzzy subset ℜ : U×U → [0, 1]
of U × U such that, ∀x, y, z ∈ U , the following properties hold: reflexivity ℜ(x, x) = 1,
symmetry ℜ(x, y) = ℜ(y, x) and transitivity ℜ(x, z) ≥ ℜ(x, y) ∧ ℜ(y, z). It is important to
note that this last property is not required when considering proximity relations. In order

c⃝CMMSE ISBN:xxxxxxxxx

SSE: Similarity-based Strict Equality Model for Multi-Adjoint Logic Programs

to simplify our developments, as in [24], we assume that x∧ y is the minimum between the
two elements x, y ∈ [0, 1].

A very simple, but effective way, to introduce similarity relations into pure logic pro-
gramming, generating one of the most promising ways for the integrated paradigm of fuzzy
logic programming, consists of modeling them by a set of the so-called similarity equations
of the form eq(s1, s2) = �, with the intended meaning that s1 and s2 are predicate/function
symbols of the same arity with a similarity degree �. As in [21], we assume here that the
intended similarity relation ℜ associated to a given program ℛ, is induced from the (safe)
set of similarity equations of ℛ, verifying that the similarity degree of two symbols s1 and
s2 is 1 if s1 = s2 or, otherwise, it is recursively defined as the transitive closure of the
similarity equations.

This approach is followed, for instance, in the fuzzy logic languages Likelog [2] and
Bousi∼Prolog [9], where a set of usual Prolog clauses are accompanied by a set of sim-
ilarity equations playing an important role at (fuzzy) unification time. Instead of classical
syntactic unification, we speak now about weak unification [9]. Of course, the set of simi-
larity equations is assumed to be safe in the sense that each equation connects two symbols
of the same arity and nature (both predicates or both functions) and the properties of the
definition of similarity relation are not violated, as occurs, for instance, with the wrong set
{eq(a, b) = 0.5, eq(b, a) = 0.9} which, apart for introducing risks of infinite loops when
treated computationally, in particular, it does not satisfy the symmetric property.

Example 2.1. Following [2], if we consider a database of books of different kinds contain-
ing the fact “horror(drakula)”, then the goal “?-adventurous(Book)” would not have
classical solution in the case that there were no rule in the database unifying with atom
“adventurous(X)”. Nevertheless, it seems reasonable that the user considers the constants
“adventurous” and “horror” similar to a certain degree. More precisely, if the user in-
troduces a similarity equation like “eq(adventurous, horror) = 0.9” into a Likelog or
Bousi∼Prolog interpreter, the system would successfully respond with a computed an-
swer incorporating the corresponding truth degree “0.9” (i.e, something like the 90 % of
credibility) to substitution “Book 7→ drakula”, as obviously expected.

3 Rewriting Rules, Strict Equality and Similarity

The theory of Term Rewriting Systems (TRS) has been largely used in declarative pro-
gramming to develop pure functional and integrated (functional-logic) languages, such as
Haskell and Curry, respectively. A Haskell or a Curry program is no more than a
TRS, that is, a set of rewrite rules (instead of a set of clauses, as occurs with logic lan-
guages) that can not be distinguished under a syntactic point of view: the differences appear
only at the operational level, depending whether rewriting or narrowing is used to execute
programs. In what follows we give a short summary explaining such concepts [10].

c⃝CMMSE ISBN:xxxxxxxxx

G. Moreno, J. Penabad, C. Vázquez

We consider a signature Σ partitioned into a set C of constructors and a set ℱ of defined
functions. The set of constructor terms with variables1 is obtained by using symbols from C
and a set of variables X . The set of variables occurring in a term t is denoted by Var(t). A
rewrite rule is an expression of the form l → r such that l ∕∈ X , and Var(r) ⊆ Var(l). The
terms l and r are called the left-hand side (lhs) and the right-hand side (rhs) of the rule,
respectively. A set of rewrite rules is called a term rewriting system (TRS). In this setting,
the evaluation of a complex expression E (possibly containing defined function symbols
from ℱ) devoted to obtain a final data term, is performed by applying rewriting/narrowing
computations where, in essence, each step replaces a subterm of E which matches/unifies
with the lhs of a rewriting rule, by the corresponding instance of its rhs. In lazy compu-
tations, only steps exploiting outermost subterms (when there exists several chances on E)
are considered.

On the other hand, it is usual in functional logic programming to simulate typical (crisp)
predicates of pure logic programming by means of boolean functions. However, a second
much more interesting way to face this problem is by using constraints. An elementary
constraint is an equational constraint e1 =:= e2 between two expressions (of base type).
Then, e1 =:= e2 is satisfied if both sides are reducible to a same ground data term. This
notion of equality, which is the only sensible notion of equality in the presence of non-
terminating functions [22] and also used in (lazy) functional languages, it is also called
strict equality. As a consequence, if one side is undefined (non-terminating), then the strict
equality does not hold (so, it is not reflexive). Operationally, an equational constraint
e1 =:= e2 is solved by evaluating e1 and e2 to unifiable data terms. Constraints can
be also combined into a conjunction (which can be interpreted concurrently), written as
c1&c2. This evaluation mechanism can be implemented at a very high abstraction level by
assuming that each program implicitly incorporates the standard set of rewrite rules shown
in Figure 1, defining the semantics of the primitive “strict equality” relation symbols “=:=”
and “&” [7, 22].

Since =:= represents a natural way to deal with strict equality and constraints simu-
lating “crisp predicates”, our next task consists of introducing a new operator, say ≈:≈,
for modeling “fuzzy predicates” by means of the new notions of similar equality and f-
constraints. Given an f-constraint e1≈:≈e2, the goal now is to reduce both expressions e1
and e2 to ground values, and then comparing the resulting data terms v1 and v2, having
into account the similarity relation ℜ induced by the set of the similarity equations of the
corresponding program as shown in (see Figure 1). Now, instead of success, we are looking
for a real number in the interval [0, 1] representing the similarity degree between outputs
v1 and v2. Basically, the set of rewrite rules defining “≈:≈” in Figure 1 proceeds as follows.
The similarity degree between two constructor symbols of arity 0 is the one returned by

1Also called data terms, or directly terms, in the terminology of both pure and fuzzy logic programming
languages (Prolog, MALP, Likelog, Bousi∼Prolog, etc).

c⃝CMMSE ISBN:xxxxxxxxx

SSE: Similarity-based Strict Equality Model for Multi-Adjoint Logic Programs

the induced similarity relation ℜ. On the other hand, when comparing two data terms
(obtained after reducing the original parameters of a f-constraint) with arguments, it is
necessary to recursively compute the similarity degree between the corresponding pairs of
arguments of the data terms, together with the similarity relation between the constructor
symbols heading each data term.

4 SSE for/with Multi-Adjoint Logic Programming

In this section we firstly summarize the main features of the MALP language2, next we
introduce the “Fuzzy LOgic Programming Environment for Research”, ℱℒOPℰℛ in brief,
developed in our research group (see [16, 19] and visit http://dectau.uclm.es/floper/)
and finally, we detail our new MALP-based model of SSE according Figure 1.

% Rewriting rules modeling classical “Strict Equality”
c=:=c→ success ∀c/0 ∈ C
c(x1, .., xn)=:=c(y1, .., yn)→ x1=:=y1 & . . .&xn=:=yn ∀c/n ∈ C
success & success→ success

% SSE modeled witℎ rewriting rules
c≈:≈d→ ℜ(c, d) ∀c/0, d/0 ∈ C
c(x1, .., xn)≈:≈d(y1, .., yn)→ min(ℜ(c, d), x1≈:≈y1, . . .

. . . xn≈:≈yn) ∀c/n, d/n ∈ C

% SSE modeled witℎ MALP rules
sse(c, d) witℎ ℜ(c, d)
sse(c(x1, .., xn), d(y1, .., yn)) ←G sse(x1, y1) &G . . .

. . .&G sse(xn, yn) witℎ ℜ(c, d)

Figure 1: Rules defining “Strict Equality” and “Similarity-based Strict Equality”

4.1 MALP

We work with a first order language, ℒ, containing variables, function symbols, predicate
symbols, constants, quantifiers (∀ and ∃), and several arbitrary connectives such as impli-
cations (←1,←2, . . . ,←m), conjunctions (&1,&2, . . . ,&k), disjunctions (∨1,∨2, . . . ,∨l), and

2As said before, this fuzzy language uses a syntax near to Prolog and enjoys high level of flexibility, for
which we give some theoretical/practical reinforcements in our precedent works [18, 17, 1].

c⃝CMMSE ISBN:xxxxxxxxx

G. Moreno, J. Penabad, C. Vázquez

general hybrid operators (“aggregators” @1,@2, . . . ,@n), used for combining/propagating
truth values through the rules, and thus increasing the language expressiveness. Addition-
ally, our language ℒ contains the values of a multi-adjoint lattice, ⟨L,⪯,←1,&1, . . . ,←n,&n⟩,
equipped with a collection of adjoint pairs ⟨←i,&i⟩ (where each &i is a conjunctor intended
to the evaluation of modus ponens) verifying the so-called adjoint property: ∀x, y, z ∈
L, x ⪯ (y ←i z) if and only if (x &i z) ⪯ y. The set of truth values L may be the
carrier of any complete bounded lattice, as for instance occurs with the set of real numbers
in the interval [0, 1] with their corresponding ordering ≤. A rule is a formula “A←i ℬ with
�”, where A is an atomic formula (usually called the head), ℬ (which is called the body)
is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0), truth values of L and con-
junctions, disjunctions and general aggregations, and finally � ∈ L is the “weight” or truth
degree of the rule. Consider, for instance, the following program P composed by three rules
with associated multi-adjoint lattice ⟨[0, 1],≤,←P,&P,←G,&G⟩ (where labels P and G mean
for Product logic and Gödel intuitionistic logic, respectively, with the following connective
definitions: “←P (x, y) = min(1, x/y)”, “&P(x, y) = x ∗ y”, “←G (x, y) = 1 if y ≤ x or x
otherwise” and “&G(x, y) = min(x, y)”):

ℛ1 : p(X) ←P q(X,Y) &G r(Y) witℎ 0.8
ℛ2 : q(a, Y) ← witℎ 0.9
ℛ3 : r(b) ← witℎ 0.7

In order to describe the procedural semantics of the multi–adjoint logic language, in the
following we denote by C[A] a formula where A is a sub-expression (usually an atom) which
occurs in the –possibly empty– one hole context C[] whereas C[A/A′] means the replacement
of A by A′ in context C[], and mgu(E) is the most general unifier of an equation set E. The
pair ⟨Q;�⟩ composed by a goal and a substitution is called a state. So, given a program
P, an admissible computation is formalized as a state transition system, whose transition

relation
AS
⇝ is the smallest relation satisfying the following admissible rules:

1) ⟨Q[A];�⟩
AS
⇝⟨(Q[A/v&iℬ])�;��⟩ if A is the selected atom in goal Q,

⟨A′←iℬ; v⟩ in P, where ℬ is not empty, and � = mgu({A′ = A}).

2) ⟨Q[A];�⟩
AS
⇝⟨(Q[A/v])�;��⟩ if ⟨A′←i; v⟩ in P and � = mgu({A′ = A}).

The following derivation illustrates our definition (note that the exact program rule
used -after being renamed- in the corresponding step is annotated as a super–index of the
AS
⇝ symbol, whereas exploited atoms appear underlined):

c⃝CMMSE ISBN:xxxxxxxxx

SSE: Similarity-based Strict Equality Model for Multi-Adjoint Logic Programs

⟨p(X); {}⟩
AS
⇝

ℛ1

⟨0.8 &P (q(X1, Y1) &G r(Y1)); {X/X1}⟩
AS
⇝

ℛ2

⟨0.8 &P (0.9 &G r(Y2)); {X/a,X1/a, Y1/Y2}⟩
AS
⇝

ℛ3

⟨0.8 &P (0.9 &G 0.7); {X/a,X1/a, Y1/b, Y2/b}⟩

The final formula can be directly interpreted in the lattice L to obtain the fuzzy com-
puted answer or f.c.a., in brief. So, since 0.8 &P (0.9 &G 0.7) = 0.8∗min(0.9, 0.7) = 0.56, we
say that goal p(X) is true at a 56 % when X is a.

4.2 ℱℒOPℰℛ

As detailed in [15, 16], our parser has been implemented by using the classical DCG’s (Defi-
nite Clause Grammars) resource of the Prolog language, since it is a convenient notation for
expressing grammar rules. Once the application is loaded inside a Prolog interpreter (such
as Sicstus or SWI), it shows a menu which includes options for loading/compiling, parsing,
listing and saving fuzzy programs, as well as for executing/debugging goals and managing
multi-adjoint lattices.

All these actions are based in the compilation of the fuzzy code into standard Prolog
code. The key point is to extend each atom with an extra argument, called truth vari-
able of the form “ TVi”, which is intended to contain the truth degree obtained after the
subsequent evaluation of the atom. For instance, the first clause in our target program is
translated into: p(X, TV0) :- q(X,Y, TV1), r(Y, TV2), and godel(TV1, TV2, TV3),
and prod(0.8, TV3, TV0). Moreover, the remaining rules in our fuzzy program, becomes
the pure Prolog facts “q(a,Y,0.9)” and “r(b,0.7)”, whereas the corresponding lattice is
expressed by these clauses (the meaning of the mandatory predicates member, top, bot and
leq is obvious):

member(X) :- number(X),0=<X,X=<1. bot(0). top(1). leq(X,Y) :- X=<Y.

and_godel(X,Y,Z):- pri_min(X,Y,Z). pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z). pri_prod(X,Y,Z) :- Z is X * Y

Finally, a fuzzy goal like “p(X)”, is obviously translated into the pure Prolog goal:
“p(X, Truth degree)” (note that the last truth degree variable is not anonymous now) for
which, after choosing option “run”, the Prolog interpreter returns the desired fuzzy com-
puted answer [Truth degree = 0.56, X = a]. Note that all internal computations (including
compiling and executing) are pure Prolog derivations, whereas inputs (fuzzy programs and
goals) and outputs (fuzzy computed answers) have always a fuzzy taste, thus producing the
illusion on the final user of being working with a purely fuzzy logic programming tool.

Moreover, it is also possible to select into the FLOPER’s goal menu, options “tree”
and “depth”, which are useful for tracing execution trees and fixing the maximum length al-
lowed for their branches (initially 3), respectively. From http://dectau.uclm.es/floper/

c⃝CMMSE ISBN:xxxxxxxxx

G. Moreno, J. Penabad, C. Vázquez

you can download our last version of the ℱℒOPℰℛ tool, which incorporates a graphical
interface as shown in Figure 2.

4.3 SSE, MALP and ℱℒOPℰℛ

Assume that we plan to compare data terms by using constants “mary” and“maria”, which
have a similarity degree of 80% and function symbols (with arity one) “brother” and “sib-
ling” with are similars at 90%. According to our MALP-based definition of SSE seen in
Figure 1, we could generate a set ofMALP rules using the “min’ operator (based on Goguel’s
logic) to propagate similarity degrees. Instead of it, in the following MALP program loaded
into ℱℒOPℰℛ we have used a version inspired on “product logic’:

Figure 2: Screen-shot of a work session with FLOPER.

sse(maria,maria) with 1.

sse(mary,mary) with 1.

sse(mary,maria) with 0.8.

sse(maria,mary) with 0.8.

sse(sibling(X),sibling(Y)) <prod sse(X,Y) with 1.

c⃝CMMSE ISBN:xxxxxxxxx

SSE: Similarity-based Strict Equality Model for Multi-Adjoint Logic Programs

sse(brother(X),brother(Y)) <prod sse(X,Y) with 1.

sse(sibling(X),brother(Y)) <prod sse(X,Y) with 0.9.

sse(brother(X),sibling(Y)) <prod sse(X,Y) with 0.9.

Now, for a goal like “sse(brother(mary),sibling(maria))”, our technique tests that both
parameters are similar terms in the same way than Likelog andBousi∼Prolog. Anyway,
these last languages only would report just one solution for goals “sse(brother(mary),X)”
and “sse(X,Y)”, whereas our system is able to provide the corresponding four answer for
the first query shown in Figure 2, as well as infinite solutions for the second goal which necce-
sarily must to include: [Truth degree = 0.72, X = brother(mary), Y = sibling(maria)].

5 Conclusions and Future Work

In this paper we have adapted to the MALP framework our preliminary notion of SSE pre-
sented in [20], in order to cope with similarity relations which surpass in some cases the
effects obtained in other fuzzy languages which are not based on the simpler syntactic uni-
fication method of Prolog. We have shown an experimental result obtained by using our
ℱℒOPℰℛ platform. Due to its interesting behaviour, we are nowadays automating this
technique inside the core of such system.

References

[1] J.M. Almendros-Jiménez, A. Luna, and G. Moreno. A Flexible XPath-based Query
Language Implemented with Fuzzy Logic Programming. In N. Bassiliades, G. Gov-
ernatori, and A. Pasckhe, editors, Proc. of 5th International Symposium on Rules:
Research Based, Industry Focused, RuleML’11. Barcelona, Spain, July 19–21, pages
186–193. Springer Verlag, LNCS 6826, 2011.

[2] F. Arcelli and F. Formato. Likelog: A logic programming language for flexible data
retrieval. In Proc. of the 1999 ACM Symposium on Applied Computing (SAC’99),
February 28 - March 2, 1999, San Antonio, Texas, USA, pages 260–267. ACM, Arti-
ficial Intelligence and Computational Logic, 1999.

[3] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and Evidential Reasoning
in Artificial Intelligence. John Wiley & Sons, Inc., 1995.

[4] Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison Wesley, Septem-
ber 2000.

[5] R. Caballero, M. Rodŕıguez-Artalejo, and C. A. Romero-Dı́az. Similarity-based rea-
soning in qualified logic programming. In Proceedings of the 10th international ACM

c⃝CMMSE ISBN:xxxxxxxxx

G. Moreno, J. Penabad, C. Vázquez

SIGPLAN conference on Principles and practice of declarative programming, PPDP
’08, pages 185–194, New York, USA, 2008. ACM.

[6] Cordelia V. Hall, Kevin Hammond, Will Partain, Simon L. Peyton Jones, and Philip
Wadler. The glasgow haskell compiler: A retrospective. In John Launchbury and
Patrick M. Sansom, editors, Functional Programming, Workshops in Computing, pages
62–71. Springer, 1992.

[7] M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/˜mh/curry/, 2003.

[8] M. Ishizuka and N. Kanai. Prolog-ELF Incorporating Fuzzy Logic. In Aravind K.
Joshi, editor, Proceedings of the 9th Int. Joint Conference on Artificial Intelligence,
IJCAI’85, pages 701–703. Morgan Kaufmann, 1985.

[9] P. Julián, C. Rubio, and J. Gallardo. Bousi∼prolog: a prolog extension language for
flexible query answering. Electronic Notes in Theoretical Computer Science, 248:131–
147, 2009.

[10] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume I, pages 1–112. Oxford Uni-
versity Press, 1992.

[11] R.C.T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the ACM, 19(1):119–
129, 1972.

[12] D. Li and D. Liu. A fuzzy Prolog database system. John Wiley & Sons, Inc., 1990.

[13] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second
edition.

[14] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based Unification: a multi-
adjoint approach. Fuzzy Sets and Systems, 146:43–62, 2004.

[15] P.J. Morcillo and G. Moreno. Programming with Fuzzy Logic Rules by using the
FLOPER Tool. In Nick Bassiliades et al., editor, Proc of the 2nd. Rule Representation,
Interchange and Reasoning on the Web, International Symposium, RuleML’08, pages
119–126. Springer Verlag, LNCS 3521, 2008.

[16] P.J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. A Practical Management of
Fuzzy Truth Degrees using FLOPER. In M. Dean et al., editor, Proc. of 4nd Intl
Symposium on Rule Interchange and Applications, RuleML’10, pages 20–34. Springer
Verlag, LNCS 6403, 2010.

c⃝CMMSE ISBN:xxxxxxxxx

SSE: Similarity-based Strict Equality Model for Multi-Adjoint Logic Programs

[17] P.J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. Declarative Traces into Fuzzy
Computed Answers. In N. Bassiliades, G. Governatori, and A. Pasckhe, editors, Proc. of
5th International Symposium on Rules: Research Based, Industry Focused, RuleML’11.
Barcelona, Spain, July 19–21, pages 170–185. Springer Verlag, LNCS 6826, 2011.

[18] P.J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. Dedekind-Macneille Comple-
tion and Multi-Adjoint Lattices. In J. Vigo-Aguiar, editor, Proc. 11th International
Conference on Mathematical Methods in Science and Engineering (special session on
’Mathematical Methods for Computer Science’), CMMSE’11. Benidorm, Spain, June
26–30, volume 2, pages 846–857 (en proceso de revisión una versión extendida sometida
a ’International Journal of Computer Mathematics’, de Taylor&Francis). Actas del con-
greso con ISBN 978-84-614-6167-7, 2011.

[19] P.J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. Fuzzy Computed Answers
Collecting Proof Information. In J. Cabestany et al., editor, Advances in Compu-
tational Intelligence - Proc of the 11th International Work-Conference on Artificial
Neural Networks, IWANN 2011, pages 445–452. Springer Verlag, LNCS 6692, 2011.

[20] G. Moreno. Similarity-based equality with lazy evaluation. In E. Hullermeier, R. Kruse,
and F. Hoffmann, editors, Proc. of the 13th International Conference on Information
Processing and Management of Uncertainty in Knowledge-based Systems, IPMU’10,
June 28-July 2, Dortmund, Germany, pages 108–117. Springer CCIS 80 (Part I), 2010.

[21] G. Moreno and V. Pascual. A hybrid programming scheme combining fuzzy-
logic and functional-logic resources. Fuzzy Sets and Systems, 160:1402–1419, 2009.
doi:10.1016/j.fss.2008.11.028.

[22] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Functions
and Predicates: The language Babel. Journal of Logic Programming, 12(3):191–224,
1992.

[23] H.T. Nguyen and E.A. Walker. A First Course in Fuzzy Logic. Chapman & Hall/CRC,
Boca Ratón, Florida, 2000.

[24] M.I. Sessa. Approximate reasoning by similarity-based SLD resolution. Fuzzy Sets and
Systems, 275:389–426, 2002.

[25] L. A. Zadeh. Similarity relations and fuzzy orderings. Informa. Sci., 3:177–200, 1971.

c⃝CMMSE ISBN:xxxxxxxxx

