
Beyond Multi-Adjoint Logic Programming -cmmse-131

Ginés Morenoa, Jaime Penabadb, Carlos Vázqueza

a Department of Computing Systems, Faculty of Computer Science Engineering
University of Castilla-La Mancha, 02071 Albacete (Spain)

b Department of Mathematics, Faculty of Computer Science Engineering
University of Castilla-La Mancha, 02071 Albacete (Spain)

Abstract

In “Multi-Adjoint Logic Programming”, MALP in brief, each fuzzy logic
program is associated with its own “multi-adjoint lattice” for modeling truth
degrees beyond the simpler case of true and false, where a large set of
fuzzy connectives can be defined. On this wide repertoire, it is crucial to
connect each implication symbol with a proper conjunction thus conforming
constructs of the form (←i,&i) called “adjoint pairs”, whose use directly
affects both declarative and operational semantics of theMALP framework.
In this work, we firstly show how the strong dependence of adjoint pairs
can be largely weakened for an interesting “sub-class” of MALP programs.
Then, we reason in a similar way till conceiving a “super-class” of fuzzy
logic programs beyond MALP which definitively drops out the need for
using adjoint pairs, since the new semantics behaviour relies on much more
relaxed lattices than multi-adjoint ones.

Keywords: Multi-adjoint Logic Programming, Adjoint Pairs, Multi-adjoint

Lattice

1. Introduction

MALP represents a modern and powerful approach for fuzzifying pure Logic
Programming (LP) [12] by dealing with truth degrees and connectives col-

1Extended version of a previous work entitled “Relaxing the Role of Adjoint Pairs in
Multi-adjoint Logic Programming” and presented in the “13th International Conference
on Mathematical Methods in Science and Engineering, CMMSE 2013 [23]”.

Email addresses: Gines.Moreno@uclm.es (Ginés Moreno),
Jaime.Penabad@uclm.es (Jaime Penabad), Carlos.Vazquez@uclm.es (Carlos
Vázquez)
Preprint submitted to Elsevier August 9, 2013

lected from lattices more complex than the “boolean” case. Focusing on this
setting, in [8, 19, 21, 22, 18, 1, 2, 6, 20] we describe some fundamental and
practical issues regarding the design of declarative languages, programming
environments and real-world applications with a fuzzy taste2 developed in
our research group during the last years. In essence, our research onMALP

follows the fruitful path initiated by Lee in [11], where the classical infer-
ence mechanism of SLD–Resolution used in LP, has been replaced by a
fuzzy variant able to handle partial truth and uncertainty in a comfortable
way. Some other approaches trying to introduce inside the LP paradigm
some techniques/constructs based on fuzzy logic can be found in the fuzzy
logic programming systems [10, 4, 31, 5, 27, 24].

In the MALP framework [16], each program has its own associated
multi-adjoint lattice L and each program rule is “weighted” with an element
of L, whereas the components in its body are linked with connectives of
the lattice. For instance, in the following propositional MALP program
whose underlyin lattice is based on real numbers in the unit interval obeying
product’s logic (and where obviously @aver refers to the classical average
operator):

p ← @aver(q, r) with 0.9
q ← with 0.8
r ← with 0.6

the last two rules directly assign truth values 0.8 and 0.6 to propositional
symbols q and r, respectively, and the execution of p using the first rule,
simply consists in evaluating the expression “0.9 ∗ @aver(0.8, 0.6)”, which
returns the final truth degree 0.63.

On the other hand, in [8] we have obtained, for the first time in the
literature related with MALP, the semantic notion of least fuzzy model
conceived as the infimum of a set of interpretations. This concept, which
reproduces the classical conception of least model of pure logic program-
ming, is equivalent to the fix-point semantics and, also, to the procedural
semantics conceived as the set of fuzzy computed answers. In [21], we used
this concept of least fuzzy Herbrand model to characterize correct answers
and the notion of logical consequence, as well as their relationships.

After resuming in Sections 2 and 3 the syntax and operational/declarative
semantics of MALP, the rest of the paper focuses on both a sub-class as
well as a super-class of fuzzy logic programs non depending on adjoint pairs.

2Visit too dectau.uclm.es/floper/ and dectau.uclm.es/fuzzyXPath/.

2

Firstly, in Section 4 we define the sub-class of MALP >-programs which
use simpler versions of models and computational steps than MALP. Next,
in Section 5 we build a very simple technique able to map every MALP

program with other one in this sub-class, thus moving the need for using
adjoint pairs from the semantic core of MALP to a purely syntactic pre-
process [23].

From here, in Section 6 we reason in a similar way for building the X-

MALP super-class of fuzzy logic programs beyond MALP, which defini-
tively drops out the need for using adjoint pairs since the new semantics
behaviour relies on much more relaxed lattices (complete lattices) than
multi-adjoint ones. Moreover, before concluding in Section 8, we detail
the fix-point semantics of the new enlarged framework in Section 7.

2. Multi-adjoint Lattices and MALP Syntax

In essence, the notion of multi-adjoint lattice considers a carrier set L
(whose elements verify a concrete ordering ≤) equipped with a set of con-
nectives like implications, conjunctions, disjunctions and other hybrid oper-
ators (not always belonging to a standard taxonomy) with the particularity
that for each implication symbol there exists its adjoint conjunction used
for modeling the modus ponens inference rule in a fuzzy logic setting. For
instance, some adjoint pairs -i.e. conjunctors and implications- in the lat-
tice ([0, 1],≤) are presented in Figure 1, where labels L, G and P mean
respectively Lukasiewicz logic, Gödel logic and product logic (with different
capabilities for modeling pessimist, optimist and realistic scenarios, respec-
tively).

&P(x, y) , x ∗ y ←P (x, y) , min(1, x/y) Product

&G(x, y) , min(x, y) ←G (x, y) ,

{

1 if y ≤ x

x otherwise
Gödel

&L(x, y) , max(0, x+ y − 1) ←L (x, y) , min{x− y + 1, 1} Lukasiewicz

Figure 1: Adjoint pairs in [0, 1] for Lukasiewicz, Gödel and product fuzzy logics

Definition 2.1. Let (L,≤) be a lattice. A multi-adjoint lattice is a tuple
(L,≤,←1,&1, . . . , ←n,&n) such that:

3

i) (L,≤) is a complete lattice, namely, ∀S ⊂ L, S 6= ∅, ∃ inf(S), sup(S)3.

ii) (&i,←i) is an adjoint pair in (L,≤), i.e.:

1) &i is non-decreasing in both arguments, for all i, i = 1, . . . , n.

2) ←i is non-decreasing in the first argument and non-increasing in
the second one.

3) x ≤ (y ←i z) if and only if (x&iz) ≤ y, for any x, y, z ∈ L
(adjoint property)4.

iii) >&iv = v&i> = v for all v ∈ L, i = 1, . . . , n, where > = sup(L).

In what follows, we present a short summary of the main features of the
MALP language (we refer the reader to [16, 15] for a complete formu-
lation). We work with a first order language, L, containing variables,
function symbols, predicate symbols, constants, quantifiers (∀ and ∃), and
several (arbitrary) connectives to increase language expressiveness. In our
fuzzy setting, we use implication connectives (←1,←2, . . . ,←m) and also
other connectives which are grouped under the name of aggregators or
aggregation operators. They are used to combine/propagate truth values
through the rules. The general definition of aggregation operators sub-
sumes conjunctive operators (denoted by &1,&2, . . . ,&k), disjunctive oper-
ators (∨1,∨2, . . . ,∨l), and average and hybrid operators (usually denoted by
@1,@2, . . . ,@n). Although the connectives &i, ∨i and @i are binary opera-
tors, we usually generalize them as functions with an arbitrary number of
arguments. By definition, the truth function for an n-ary aggregation opera-
tor [[@]] : Ln → L is required to be monotone and fulfills [[@]](>, . . . ,>) = >,
[[@]](⊥, . . . ,⊥) = ⊥. Additionally, our language L contains the elements of
a multi-adjoint lattice, (L,�,←1,&1, . . . ,←n,&n), equipped with a collec-
tion of adjoint pairs (←i,&i), where each &i is a conjunctor intended to the
evaluation of modus ponens. In general, the set of truth values L may be
the carrier of any complete lattice.

A rule is a formula H ←i B, where H is an atomic formula (usually
called the head) and B (which is called the body) is a formula built from
atomic formulas B1, . . . , Bn (n ≥ 0), truth values of L and conjunctions,

3Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and
>, respectively.

4This condition is the most important feature of the framework.

4

Multi-adjoint logic program:

P =

R1 : 〈p(X) ←P q(X,Y) &G (r(Y) |L s(Y)) ; 0.8〉
R2 : 〈q(a, Y) ← ; 0.9〉
R3 : 〈r(b) ← ; 1〉

Admissible derivation:

〈p(X); id〉
AS1
 R1

〈0.8 &P (q(X1, Y1) &G (r(Y 1) |L s(Y 1))); {X/X1}〉
AS2
 R2

〈0.8 &P (0.9 &G (r(Y 2) |L s(Y 2))); {X/a,X1/a, Y1/Y2}〉
AS2
 R3

〈0.8 &P (0.9 &G (1 |L s(Y 2))); {X/a,X1/a, Y1/b, Y2/b}〉
AS3

〈0.8 &P (0.9 &G (1 |L 0)); {X/a,X1/a, Y1/b, Y2/b}〉

Interpretive derivation:

〈0.8 &P (0.9 &G (1 |L 0)); {X/a}〉
IS

〈0.8 &P (0.9 &G 1); {X/a}〉
IS

〈0.8 &P 0.9; {X/a}〉
IS

〈0.72; {X/a}〉 — f.c.a. means “p(X) is proved with
truth degree 0.72 when X = a”.

Least fuzzy Herbrand model:

IP : BP → [0, 1] s.t. IP(p(a)) = 0.72, IP(q(a, a)) = IP(q(a, b)) =

0.9, and IP(r(b)) = 1

Figure 2: Illustrative examples of MALP syntax and semantics

disjunctions and aggregations. Rules with an empty body are called facts.
A goal is a body submitted as a query to the system. Variables in a rule
are assumed to be governed by universal quantifiers. Roughly speaking, a
MALP program is a set of pairs 〈R; v〉, where R is a rule and v is a truth
degree (a value of L) expressing the confidence which the user of the system
has in the truth of the rule R, as illustrated in Figure 2.

3. Operational and Declarative Semantics of MALP

In order to describe the procedural semantics of theMALP language, in the
following we denote by C[A] a formula where A is a sub-expression (usually

5

an atom) which occurs in the –possibly empty– context C[] whereas C[A/A′]
means the replacement of A by A′ in context C[]. Moreover, Var(s) denotes
the set of distinct variables occurring in the syntactic object s, θ[Var(s)]
refers to the substitution obtained from θ by restricting its domain to Var(s)
and mgu(E) denotes the most general unifier of a set of expressions E. In
the next definition, we always consider that A is the selected atom in goal
Q and L is the multi-adjoint lattice associated to P.

Definition 3.1 (Admissible Step). Let Q be a goal and let σ be a sub-
stitution. The pair 〈Q; σ〉 is a state. Given a program P, an admissible
computation is formalized as a state transition system, whose transition re-

lation
AS
 is the smallest relation satisfying the following admissible rules:

1) 〈Q[A]; σ〉
AS
 〈(Q[A/v&iB])θ; σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉

in P and B is not empty.

2) 〈Q[A]; σ〉
AS
 〈(Q[A/v])θ; σθ〉 if θ = mgu({H = A}), and 〈H←i; v〉

in P.

3) 〈Q[A]; σ〉
AS
 〈(Q[A/⊥]); σ〉 if there is no rule in P whose head uni-

fies with A (this case copes with possible unsuccessful branches).

An admissible derivation is a sequence 〈Q; id〉
AS
 ∗〈Q′; θ〉. As usual, rules

are taken renamed apart. We shall use the symbols
AS1
 ,

AS2
 and

AS3

to distinguish between computation steps performed by applying one of
the specific admissible rules. The application of a rule on a step will be

annotated as a superscript of the
AS
 symbol.

If we exploit all atoms of a given goal, by applying admissible steps as
much as needed during the operational phase, then it becomes a formula
with no atoms (a L-expression) which can be then interpreted w.r.t. lattice
L as follows.

Definition 3.2 (Interpretive Step and Fuzzy Computed Answer). Let P
be a program, Q a goal and σ a substitution. Assume that [[@]] is the truth
function of connective @ in the lattice (L,≤) associated to P, such that,
for values r1, . . . , rn, rn+1 ∈ L, we have that [[@]](r1, . . . , rn) = rn+1. Then,
we formalize the notion of interpretive computation as a state transition

system, whose transition relation
IS
 is defined as the least one satisfying:

〈Q[@(r1, . . . , rn)]; σ〉
IS
 〈Q[@(r1, . . . , rn)/rn+1];σ〉

6

An interpretive derivation is a sequence 〈Q; σ〉
IS
 · · ·

IS
 〈Q′; σ〉. When

Q′ = r ∈ L, the state 〈r; σ〉 is called a fuzzy computed answer (f.c.a.) for
that derivation.

Moreover, in the MALP framework [16, 15], each program has its own
associated multi-adjoint lattice and each program rule is “weighted” with an
element of L, whereas the components in its body (i.e., atoms and elements
of L) are linked with connectives of the lattice.

We formally introduce now the semantic notions of Herbrand interpre-
tation and Herbrand model, or directly, interpretation and model for short,
for a MALP program P, in a similar way to [16] and [8].

Definition 3.3 (Herbrand Interpretation). A Herbrand interpretation is a
map I : BP → L, where BP is the Herbrand base of the MALP program P
and (L,≤) is the multi-adjoint lattice associated to program P.

Definition 3.4 (Herbrand Model). An interpretation I satisfies (or is
model of) a rule 〈H←i B;αi〉 if, and only if, v ≤ I(H←i B). An in-
terpretation I is a Herbrand model of P if, and only if, all rules in P are
satisfied by I.

In [8] we have defined, for the first time in the literature using model the-
ory, a declarative semantics for multi-adjoint logic programming in terms of
the least fuzzy Herbrand model. This construction reproduces, in our fuzzy
context, the classic construction of least Herbrand model of pure logic pro-
gramming [12, 3], which has been traditionally accepted as the declarative
semantics of logic programs.

In the last years, other adaptations of this concept have been provided,
using model theory too ([32, 25, 28]), in alternative fuzzy logic programming
frameworks different from MALP.

Furthermore, in [8] we have related our notion of least fuzzy model with
the already existing procedural semantics and fix-point semantics, and we
have given revealing examples in which our declarative semantics has still
sense beyond the multi-adjoint case, while the previously mentioned ones
remain undefined.

Definition 3.5 (Least Fuzzy Herbrand Model). Let P be a MALP program
with associated lattice (L,≤). The least fuzzy Herbrand5 model of P is the
interpretation IP = inf{Ij : Ij is model of P}.

5Sometimes we will say only least fuzzy model or least model.
7

The following result justifies that the previous interpretation IP can be
thought really as the least fuzzy Herbrand model.

Theorem 3.6 ([8]). Let P be a MALP program with associated lattice L.
The map IP = inf{Ij : Ij is a model of P} is the least model of P.

In the proof of this result provided in [8], it is essential that the lattice
associated to the program be a multi-adjoint lattice. In this reference it is
possible to contrast the necessity of this hypothesis for Theorem 3.6.

In Figure 2 we illustrate most definitions presented in this section, where
we wish to remark that:

• In the first rule of P, we mix connectives belonging to three different
fuzzy logics, whose truth functions appear in Figure 1, having too that
|L(x, y) , min(x + y, 1).

• Note that since there are no rules defining predicate s, the last step in

the admissible derivation reduces s(Y2) to 0 by applying an
AS3
 step,

which contrasts with crisp logic languages such as Prolog which
would abort the whole derivation. Hence, in our fuzzy setting we can
reach computed answers (at the end of the interpretive phase) even
in the presence of non defined predicates.

• When describing the least fuzzy Herbrand model of P, we omit those
elements of the Herbrand Base interpreted as 0.

4. A MALP Sub-class non Depending on Adjoint Pairs

From now on, we call M> to the set of MALP programs whose rules are
always labeled with the top element > of their associated lattices. We now
speak about >-programs, >-rules and so on. For executing these programs,
we can conceive the following operational semantics which is simpler than
the one seen in the previous section (see Definition 3.1).

Definition 4.1 (>-Admissible Step). Let Q be a goal and let σ be a sub-
stitution. The pair 〈Q; σ〉 is a state. Given a >-program P ∈ M>, a
>-admissible computation is formalized as a state transition system, whose

transition relation
AS>

 is the smallest relation satisfying the following
>-admissible rules:

8

1) 〈Q[A]; σ〉
AS>

 〈(Q[A/B])θ; σθ〉 if θ = mgu({H = A}), 〈H←iB;>〉
in P and B is not empty.

2) 〈Q[A]; σ〉
AS>

 〈(Q[A/>])θ; σθ〉 if θ = mgu({H = A}), and 〈H←i;>〉
in P.

3) 〈Q[A]; σ〉
AS>

 〈(Q[A/⊥]); σ〉 if there is no >-rule in P whose head
unifies with A (this case copes with possible unsuccessful branches).

A >-admissible derivation is a sequence 〈Q; id〉
AS>
 ∗〈Q′; θ〉. We shall use

the symbols
AS1>
 ,

AS2>
 and

AS3>
↪→ to distinguish between computation

steps performed by applying one of the specific admissible rules. Note that
this definition (which is very close to the classical one of SLD-resolution used
in Prolog) differs for Definition 3.1 just in the first case, since it does not
make use on states of the &i conjunction adjoint to the ←i implication
symbol of >-rules.
The following result establishes that, when dealing with >-programs, the
derivations built with admissible (together with subsequent interpretive)
steps as well as those ones based on >-admissible (and interpretive) steps,
lead to the same set of fuzzy computed answers.

Theorem 4.2. Let P ∈M> be a MALP >-program with associated lattice
L, Q a goal, σ a substitution and v ∈ L. Then,

〈Q; id〉
AS
 ∗ · · ·

IS
 ∗〈v;σ〉 w.r.t. P iff 〈Q; id〉

AS>

 ∗ · · ·
IS
 ∗〈v;σ〉 w.r.t. P.

Proof. In our our proof we simply need to show that the effects produced

by
AS
 steps on a generic state of the form 〈Q[A]; σ〉, are replicated by

AS>
 steps and viceversa. We consider three different cases:

1) If 〈H←iB;>〉 ∈ P, where B is not empty and θ = mgu({H = A}),

then 〈Q[A];σ〉
AS1
 〈(Q[A/>&iB])θ;σθ〉 if and only if 〈Q[A];σ〉

AS1>

〈(Q[A/B])θ;σθ〉, since >&iB ≡ B and hence (Q[A/>&iB])θ ≡ (Q[A/B])θ.

2) If 〈H←i;>〉 ∈ P, where θ = mgu({H = A}), then 〈Q[A];σ〉
AS2

〈(Q[A/>])θ;σθ〉 if and only if 〈Q[A];σ〉
AS2>
 〈(Q[A/>])θ;σθ〉.

3) If there is no >-rule in P whose head unifies with A then, 〈Q[A];σ〉
AS3

〈(Q[A/⊥]);σ〉 if and only if 〈Q[A];σ〉
AS3>
↪→ 〈(Q[A/⊥]);σ〉.

9

Let us continue now with declarative semantics aspects related with >-
programs.

Definition 4.3 (>-model). An interpretation I >-satisfies (or is >-model
of) a >-rule 〈H←i B;>〉 if, and only if, I(B) ≤ I(H). An interpretation I
is >-model of a >-program P if, and only if, all >-rules in P are >-satisfied
by I.

Definition 4.4 (Least Fuzzy Herbrand >-Model). Let P ∈ M> be a
MALP >-program with associated lattice (L,≤). The interpretation I>P =
inf{Ij : Ij is >-model of P} is the least fuzzy Herbrand >-model of P.

In the following result we prove that the notion of least fuzzy Herbrand
model of a given MALP >-program is just the same construct than its
least fuzzy Herbrand >-model.

Theorem 4.5. The least fuzzy Herbrand model of a MALP >-program
P ∈ M> coincides with its least fuzzy Herbrand >-model, that is, IP = I>P .

Proof. Consider a generic >-rule R : 〈H←iB;>〉 ∈ P and an interpretation
I. In order to prove that I satisfies R if and only if it >-satisfies R, it
suffices by showing that > ≤ I(H←iB) becomes into I(>&iB) ≤ I(H)
thanks to the adjoint property, and then this expression can be simplified
to I(B) ≤ I(H) (since obviousy >&iv = v, for any v ∈ L), as desired. So,
since the set of models for a given >-program P is the same as its set of
>-models, the infimmun of such set is just IP = I>

P
, which concludes our

proof.

It is noteworthy that, in the previous definitions related with >-models
and I>

P
, we don’t require that the lattice associated to MALP >-programs

be a multi-adjoint lattice (in fact, we never use adjoint pairs), as occurred
too when defining the new operational semantics for >-programs. For this
reason, from now on we can simplify the syntax of >-rules, by removing
the label of their implication symbols as well as their weights (or associated
truth degrees), i.e., instead of 〈H←iB;>〉 we will simply write H←B.

5. A Mapping from MALP Programs to M>

The following definition represents a very simple, purely syntactic pre-
process which, by making use of adjoint pairs, is able to link MALP pro-
grams with >-programs.

10

Multi-adjoint logic >-program:

P ′ = PM> =

R′
1 : p(X) ← 0.8 &P (q(X, Y) &G (r(Y) |L s(Y))
R′

2 : q(a, Y) ← 0.9
R′

3 : r(b) ←

>-Admissible derivation:

〈p(X); id〉
AS1>

R′
1

〈0.8 &P (q(X1, Y1) &G (r(Y 1) |L s(Y 1))); {X/X1}〉
AS1>

R′
2

〈0.8 &P (0.9 &G (r(Y 2) |L s(Y 2))); {X/a,X1/a, Y1/Y2}〉
AS2>

R′
3

〈0.8 &P (0.9 &G (1 |L s(Y 2))); {X/a,X1/a, Y1/b, Y2/b}〉
AS3>
↪→

〈0.8 &P (0.9 &G (1 |L 0)); {X/a,X1/a, Y1/b, Y2/b}〉

Figure 3: Illustrative examples of concepts defined in Sections 4 and 5

Definition 5.1. We define a mapping that associates to each MALP pro-
gram P a >-program in M> with the following shape:

PM> = {RM> : R ∈ P}

where for each >-rule R : 〈H ←i B; v〉 ∈ P, the mapping is defined too as:

RM> =

{

H ← v&iB if v 6= >

H ← B otherwise

In Figure 3 we illustrate this definition as well as other concepts introduced
in the previous section. Note that:

• The >-program P ′ coincides with the transformation of the MALP

program P seen in Figure 2, that is P ′ = PM> , since R′
1 = RM>

1 ,
R′

2 = R
M>

2 andR′
3 = R

M>

3 . In this last case, we have simply removed
the weight of the rule (since it is just 1, i.e., the top element of lattice
[0, 1]) and both R1 and R′

1 are facts in P and P ′, respectively.

• On the other hand, note that even when R2 ∈ P is a fact, R′
2 ∈ P

′

is not a fact, since its body is not empty (it is composed by just a
truth degree). For this reason, while the second admissible step of the

11

admissible derivation in Figure 2 is of kind
AS2
 , the corresponding

second >-admissible step of the >-admissible derivation in Figure 3

is not a
AS2>
 but a

AS1>
 step.

• The sequence of states in the admissible derivation of Figure 2 coin-
cides with the sequence of states in the >-admissible of Figure 3, and
after applying exactly the same sequence of interpretive steps drawn
in Figure 2 (for this reason we have omitted it in Figure 3), the same
fuzzy computed answer is reached.

• Note that even when the notion of >-model6 is less involved than the
one of model, the least fuzzy Herbrand >-model of P ′ coincides with
IP in Figure 2, as wanted.

The following result establishes that derivations built with admissible (to-
gether with subsequent interpretive) steps lead to the same set of fuzzy
computed answers than those ones based on >-admissible (and interpre-
tive) steps when dealing with >-programs obtained from previous MALP

programs after being transformed according Definition 5.1.

Theorem 5.2. Let P be a MALP program with associated lattice L, Q a
goal, σ a substitution and v ∈ L. Then,

〈Q; id〉
AS
 ∗ · · ·

IS
 ∗〈v;σ〉 w.r.t. P iff 〈Q; id〉

AS>

 ∗ · · ·
IS
 ∗〈v;σ〉 w.r.t. PM> .

Proof. We distinguish four cases for showing that the effects produced by
AS
 steps on a generic state of the form 〈Q[A]; σ〉, are replicated by

AS>

steps and viceversa.

1) Note that 〈H←iB; v〉 ∈ P, where B is not empty and θ = mgu({H =

A}), if and only if 〈H←v&iB〉 ∈ P
M> , and hence 〈Q[A]; σ〉

AS1

〈(Q[A/v&iB])θ; σθ〉 if and only if 〈Q[A]; σ〉
AS1>
 〈(Q[A/v&iB])θ; σθ〉.

2) Now, 〈H←; v〉 ∈ P, where v 6= >, θ = mgu({H = A}) if and only if

〈H←v〉 ∈ PM> , and hence 〈Q[A]; σ〉
AS2
 〈(Q[A/v])θ; σθ〉 if and only if

〈Q[A]; σ〉
AS1>
 〈(Q[A/v])θ; σθ〉 (note this particular correspondence

between
AS2
 and

AS1>
 steps).

6This concept does not make use of adjoint pairs and weights of program rules.
12

3) Observe that 〈H←;>〉 ∈ P, where θ = mgu({H = A}), if and only if

〈H←〉 ∈ PM>, and hence 〈Q[A]; σ〉
AS2
 〈(Q[A/>])θ; σθ〉 if and only

if 〈Q[A]; σ〉
AS2>
 〈(Q[A/>])θ; σθ〉 (now we have shown the equivalence

between
AS2
 and

AS2>
 steps).

4) Finally, there is no rule in P whose head unifies with A if and
only if there is no rule in PM> whose head unifies with A and so,

〈Q[A];σ〉
AS3
 〈(Q[A/⊥]);σ〉 if and only if 〈Q[A];σ〉

AS3>
↪→ 〈(Q[A/⊥]);σ〉.

In the following result we prove that the notion of least fuzzy Herbrand
model of MALP programs is just the same construct than the least fuzzy
Herbrand >-model of those >-programs obtained by applying the transfor-
mation process described in Definition 5.1.

Theorem 5.3. The least fuzzy Herbrand model of a MALP program P
coincides with the least fuzzy Herbrand >-model of its associated >-program
PM> , that is, IP = I>

PM>
.

Proof. Consider a generic rule R : 〈H←iB; v〉 ∈ P and correspondingly
RM> : H←v&iB ∈ P

M> . Assume an interpretation I such that I sat-
isfies R if and only if I >-satisfies RM> since by the adjoint property
v ≤ I(H←i B) if and only if I(v&i B) ≤ I(H) and hence, the set of models
of P coincides with the set of >-models of PM> and, in particular, the
infimmum of such set is IP as well as I>

PM>
, as wanted.

6. The Wider Class of X-MALP Programs

From now on, X-MALP stands for relaXed Multi-Adjoint Logic Program-
ming. In contrast with multi-adjoint lattices associated toMALP programs
(and also MALP >-programs), in the new X-MALP class, truth degrees
are modeled in a more relaxed kind of lattices (exactly, complete lattices)
non requiring the presence of adjoint pairs, which justifies why MALP is
really a subset of X-MALP (see Figure 4). In general, the syntactic shape
of X-MALP program rules coincides with the one of MALP >-programs,
that is, they are expressions of the form H ←i B, where H is an atomic
formula (the head) and B (the body) is a formula built from atomic formulas
B1, . . . , Bn (n ≥ 0), truth values of the associated lattice and conjunctions,

13

disjunctions and aggregations. Moreover, we also allow weighted rules to
embed MALP rules, but it is important to note that in the new framework,
such weights are purely “syntactic sugar” in the sense that any expression of
the form R : 〈H←iB; v〉 refers to the X-MALP rule R : H←v&iB where,
in the associated lattice, it is only required that the conjunction symbol &i

be defined, but not the whole adjoint pair 〈←i,&i〉 (in fact, the implication
symbol ←i will be never used when defining the semantics of X-MALP, in
contrast with MALP). The following definition shows the general syntax of
X-MALP programs, highlighting the expressive power of this style of fuzzy
logic programming which easily covers other well-established frameworks.

Definition 6.1. A X-MALP program P, with associated complete lattice
(L,≤), is a set of rules A←B verifying:

i) A is an atomic formula (usually called “head”).

ii) B is an arbitrary formula (“body”) built with atoms B1, . . . , Bn, n ≥
0 and any conjunctions, disjunctions, aggregations and truth degrees
(i.e., elements collected from the underlying lattice L).

Moreover, the rules of P will be expressed too by using the syntactic ex-
pression A← f(B1, . . . , Bn), where f is a computable function that is the
result of combining all the connective present in the body (this same syntax
can be explicitly found in [31, 13, 14] and it is also accepted in many other
fuzzy logic programming frameworks). Program rules are interpreted in a
complete lattice (L,≤) which is previously associated to P.

Now, it is mandatory to re-adapt in an obvious way all the definitions
presented in Section 4 for referring now to X-MALP programs instead of
MALP >-programs.

Definition 6.2 (Admissible Step for X-MALP programs). Let Q be a
goal and let σ be a substitution. The pair 〈Q; σ〉 is a state. Given a
X-MALPprogram P, an admissible computation is formalized as a state

transition system, whose transition relation
AS
↪→ is the smallest relation

satisfying the following admissible rules:

1) 〈Q[A]; σ〉
AS
↪→ 〈(Q[A/B])θ; σθ〉 if θ = mgu({H = A}), 〈H←iB;>〉

in P and B is not empty.

2) 〈Q[A]; σ〉
AS
↪→ 〈(Q[A/>])θ; σθ〉 if θ = mgu({H = A}), and 〈H←i;>〉

in P.
14

Figure 4: Comparing MALP programs, MALP >-programs and X-MALP programs

3) 〈Q[A]; σ〉
AS
↪→ 〈(Q[A/⊥]); σ〉 if there is no rule in P whose head uni-

fies with A (this case copes with possible unsuccessful branches).

Similarly to the MALP case, if we exploit all atoms of a given goal, by
applying admissible steps as much as needed during the operational phase,
then it becomes a formula with no atoms which can be then interpreted
w.r.t. complete lattice L for obtaining the set of fuzzy computed answers
according Definition 3.2.

In the following, we formally introduce the semantic notion of Herbrand
model for X-MALP programs, similarly to how we have proceeded in the
MALP case. We will base our declarative semantics only on fuzzy Herbrand
interpretations similarly to what it is considered, among others, in [32].

Definition 6.3 (Herbrand Interpretation). A Herbrand interpretation is a
map I : BP → L, where BP is the Herbrand base of the X-MALP program
P and (L,≤) is the complete lattice associated to P.

I is extended in a natural way to the set of ground formulae of the lan-
guage. In order to interpret a non ground formula A (closed, and univer-
sally quantified in the case of the X-MALP language), it suffices to take

15

I(A) = inf{I(Aξ) : Aξ is a ground instance of A}. Let H be the set of
Herbrand interpretations whose order is induced from the order of L

Ij ≤ Ik ⇐⇒ Ij(F) ≤ Ik(F), ∀F ∈ BP

It is trivial to check that (H,≤) inherits the structure of complete lattice
from (L,≤).

Definition 6.4 (Herbrand Model of a X-MALP program). An Herbrand
interpretation I satisfies (or is Herbrand model of) a X-MALP rule H←B
if, and only if, I(B) ≤ I(H). An Herbrand interpretation I is Herbrand
model of a X-MALP program P if, and only if, all rules in P are satisfied
by I.

Definition 6.5 (Least Fuzzy Herbrand Model of a X-MALP program).
Let P be a X-MALP program with associated (complete) lattice (L,≤).
The least fuzzy Herbrand model of P is the interpretation IP = inf{Ij :
Ij is Herbrand model of P}.

The following result justifies why the previous interpretation IP can be
really thought as the least fuzzy Herbrand model. It is very important to
contrast it with its homologous one for MALP programs (Theorem 3.6),
since in the proof of the new result adapted to X-MALP obviously does
not rely on adjoint pairs.

Theorem 6.6. Let P be a X-MALP program with associated (complete)
lattice L. The mapping IP = inf{Ij : Ij is a model of P} is the least Her-
brand model of P.

Proof. In the following, we denote byM the set of Herbrand model inter-
pretations of P, that is, M = {Ij : Ij is a Herbrand model of P}. Note
that M is not empty, being as the Herbrand interpretation I = sup(H),
defined on each A ∈ BP by I(A) = sup(L), is a Herbrand model (of all
rules) of P.

Then, given that IP = inf(M), IP is a Herbrand interpretation: since
(H,≤) is a complete lattice, there exists the infimum of the subsetM and
it is a member of H.

We prove now that IP is a Herbrand model of P, that is, it satisfies all
rules of P.

Indeed, let R : H←B be a rule of P. Since IP is the infimum of M,
IP ≤ Ij , for each model Ij of P. Therefore, IP(A) ≤ Ij(A) for each atom

16

A. Moreover, given that Ij is a Herbrand model of P, Ij satisfies each rule
R, that is, Ij(B) ≤ Ij(H).

Making use of the definition of infimum, we have:

IP(B) = inf{Ij(B) : Ij is Herbrand model of P} ≤
inf{Ij(H) : Ij is Herbrand model of P} = IP(H)

Consequently, IP satisfies rule R and (since it analogously satisfies all rules
in P) it is a Herbrand model of P, as we expected. Finally, since IP =
inf(M), using again the definition of infimum, IP ≤ Ij , ∀j, so IP is the
least Herbrand model of P, which concludes the proof.

The declarative semantics representing the least Herbrand model IP extends
the corresponding one of MALP defined in [8] in the kindest way: if L
is a multi-adjoint lattice, the previous model IP coincides with the one
corresponding to this framework. Analogously, IP extends the concept of
least model of logic programming expressed in [12]; when looking for a
complete similarity between both concepts it is possible to use the set-
theoretic formulation of IP in the Proposition 6.8 below.

In the following example, inspired by the MALP program in [8], we
obtain the least Herbrand model of a X-MALP program.

Example 6.7. Let (&G,←G) be a pair of connectives following the Gödel’s
intuitionistic logic, that is, the truth functions for &G and ←G are:

&̇G(x, y) = inf{x, y} and ←̇G(y, x) =

{

>, if x ≤ y
y, otherwise

For the lattice (L,≤) with Hasse diagram below, these two connectives do not
conform an adjoint pair since, in particular, note that although α&̇δ ≤ β,
it is not fulfilled that α ≤ β←̇δ.

>

γ δ

α β

⊥

I1 I2 I3 I4 I5 I6 I7 I8 I9

p ⊥ α β γ δ > α γ >

q δ δ δ δ δ δ > > >

17

Thus, the program P = {R1,R2} with R1 : 〈p←G q;α〉 and R2 : 〈q←G ; δ〉
is not valid in multi-adjoint framework since it is supported on a non multi-
adjoint lattice. Consider now the X-MALP program P ′ = {R′

1,R
′
2}, where

R′
1 : p←α&Gq and R′

2 : q←δ, which in essence is equivalent to the MALP

program P. The table of the figure summarizes the set M = {I1, . . . , I9}
of all Herbrand models of P ′. Let us explain in detail how we have obtained
such table. Note that, by definition of Herbrand model, each Ij is a Herbrand
model of rule R′

2 if, and only if, δ ≤ Ij(q), which implies that Ij(q) admits
the set of values δ,> ∈ L. Moreover, Ij is a Herbrand model of R′

1 if,
and only if, Ij(α&G q) ≤ Ij(p), that is, α&̇GIj(q) ≤ Ij(p). Then, once
fixed Ij(q) to each one of the previous truth degrees, we add the condition
α&̇GIj(q) ≤ Ij(p), which determines the set of valid values for Ij(p) and,
consequently, establishes the final set of Herbrand models Ij ∈M. Finally,
it is easy to see that M has an infimum element (the interpretation IP ′

such that, IP ′(p) = ⊥ and IP ′(q) = δ), so that IP ′ ∈ M, namely, IP ′ it is
the least Herbrand model of P ′.

The previous concepts of Herbrand interpretation and Herbrand model can
be expressed in a set-theoretic way, where an interpretation of P, instead
of a mapping I : BP → L, is conceived as its unique corresponding binary
relation RI ⊂ BP × L. In what follows, we try to give an elemental result
justifying this fact. Under this point of view, since each Herbrand model of
P can be seen as a set of pairs (subset of BP ×L), the least fuzzy Herbrand
model admits a second characterization which enjoys a nice property also
reported in [12] for the weaker case of the least Herbrand model of pure
logic programs. This new characterization is established in terms of the
following theorem, which is immediate to prove and where we consider that
∩Ij = {(Ai;α) : (Ai, αi) ∈ Ij , ∀j, α = inf{αi} ∈ L}.

Proposición 6.8. Let P be a X-MALP program with associated lattice
(L,≤). Let I be a Herbrand interpretation of P, that is, a mapping I :
BP → L. Then, I determines a unique binary relation RI ⊂ BP × L.

Proof. Note that the mapping I is determined by its set of images, and the
relation RI is a set of pairs of type (A, I(A)), A ∈ BP . Therefore, mapping
I can be seen as a binary relation, that is, as a certain set of ordered pairs
whose first component is a ground formula of the Herbrand base and whose
second component is an element of the lattice L.

By the previous proposition, it is possible to give a Herbrand interpretation
I by means of its formulation based on set theory RI , that we will denote

18

also by I whenever it is not necessary to emphasize this one. Then, taking
each Herbrand model of P as a set (a subset of BP×L), that is, Ij = {(A, α) :
A ∈ BP , α ∈ L}, the least fuzzy Herbrand model can be characterized also
by the following result.

Theorem 6.9. The least fuzzy Herbrand model of a program P is the inter-
section of all Herbrand models of P, i.e., JP = ∩Ij, where Ij is a Herbrand
model of P for all j.

7. X-MALP Fix-point Semantics

In this section, we provide a fix-point characterization of the least fuzzy
Herbrand model of a X-MALP logic program, extending the corresponding
fix-point operator of [16]. Also, we concrete the fix-points of this operator
over some particular examples.

By definition, in a complete lattice (L,≤), a function f : L → L is
monotone if, and only if, ∀x, y ∈ L, x ≤ y ⇒ f(x) ≤ f(y). A fix-point in f
is an element x ∈ L such that f(x) = x. The basic result for the study of fix-
points of functions over lattices is the following theorem of Knaster-Tarski
(see [29]). Other theorems of fix-point can be seen in [9, 26].

Theorem 7.1. Let f be a monotonic function over a complete lattice (L,≤).
Then, f has a fix-point.

Also, the set of fix-points of f is a complete lattice, so it is possible to con-
sider the least fix-point of f . It is obtained iterating f over ⊥ ∈ L, that is, it
is the supremum of the non decreasing succession x0, . . . , xi, xi+1, . . . , xλ, . . .
verifying that for each i ≥ 0, x0 = ⊥, xi+1 = f(xi), while for a certain index
λ, yλ = sup{yi : f(yi) = yi, i > λ}.

In [15, 16] the operator TP , defined by [30] is extended for the multi-
adjoint language. The following definition provides a fix-point operator for
the X-MALP language that extends the one of the MALP framework and
represents the (fix-point) semantics of a X-MALP program P, taken as
the least fix-point of TP . We also justify in Theorem 7.11 the equivalence
between this construction and the notion of least fuzzy Herbrand model in
Definition 6.5.

Definition 7.2. Let P be a X-MALP program with associated complete
lattice (L,≤) and I a Herbrand interpretation. Then, the TP operator is a

19

mapping in the set of Herbrand interpretations such that, for any ground
atom A

TP(I)(A) = sup{I(Bθ) : H←i B ∈ P, A = Hθ}

Because (L,≤) is complete, TP is well defined and TP(I)(A) ∈ L. The fol-
lowing theorems guaranty, for X-MALP programming, some classic results
from logic programming for the fix-point operator and that also extend the
corresponding ones of the MALP framework.

Particularly, it is easy to prove that the previous operator TP extends
the fix-point operator of [16] in the most satisfactory way: if program P is
MALP our fix-point operator coincides with the one given by Medina et
all.

Theorem 7.3. The operator TP is monotonic.

Proof. TP is the morphism TP : (H,≤)→ (H,≤) such that over each I ∈ H
determines the mapping in the Herbrand base TP(I) : BP → BP defined
by TP(I)(A) = sup{I(Bθ) : H←i B ∈ P, A = Hθ}. Then, given the
Herbrand interpretations I1, I2 ∈ H, if we suppose that I1 ≤ I2, since the
supremum preserves the order of the lattice (L,≤) associated to P, then
TP(I1) ≤ TP(I2), that is, the required monotonicity of TP .

Definition 7.4. Let (L,≤) be a complete lattice and f : L→ L a mapping.
f is continuous if, and only if, it preserves the supremum of directed sets7,
that is, for each directed set X ⊂ L, f(sup(X)) = sup{f(x) : x ∈ X} holds.
Also, the map f : Ln → L is said to be continuous if it is continuous in
each variable.

The next lemma is instrumental; its proof is straightforward: it is enough
to proceed by induction in the number of atomic formulas in the body of
the rules.

Lema 7.5. Let P be a X-MALP program and B the body of an arbitrary
rule of P. If all the truth functions of the connectives of B are continuous,
sup(X)(B) = sup{I(B) : I ∈ X} holds for all directed set X ⊂ H.

7By definition, X ⊂ (L,≤) is a directed set if for all subset {x1, . . . , xn} ⊂ X ,
sup{x1, . . . , xn} ∈ X .

20

The theorem below guaranties the continuity of the fix-point operator under
the expected hypothesis. The given sufficient condition is also a necessary
condition for achieving such result.

Theorem 7.6. Let P be a X-MALP program. If all the truth functions of
the connectives in the bodies of the rules of P are continuous, then the TP

operator is continuous.

Proof. Let X be a directed set of the complete lattice, (H,≤), of Herbrand
interpretations of P. Let us prove that TP(sup(X)) = sup{TP(I); indeed,
for each A ∈ BP ,

TP(sup(X))(A) = sup{sup(X)(B) : H←i B ∈ P, A = Hθ}
= sup{sup{I(B) : H←i B ∈ P, A = Hθ, I ∈ X}}
= sup{TP(I)(A) : I ∈ X}

simply by making use of Lemma 7.5.

Below, we prove the next result for which TP allows to characterize the
interpretations that are Herbrand model of P. Previously, we enunciate the
following basic lemma.

Lema 7.7. Let (L,≤) be a complete lattice. For any subsets A,B of L it
is verified that if A ⊂ B, then inf(B) ≤ inf(A).

Proof. It is enough to consider the definition of infimum and the complete
character of the lattice (L,≤).

Note that, thanks to the previous lemma, I(Aθ) ≥ I(A), for all substitution
θ, for all Herbrand interpretation I, whenever the set of ground instances
of the formula Aθ is included in the set of ground instances of A.

Theorem 7.8. A Herbrand interpretation I is a Herbrand model of a X-

MALP program P if, and only if, TP(I) ≤ I.

Proof. Let I be a Herbrand model of P and let us see that TP(I) ≤ I. If
H←B is a rule of P, by definition of model and by the Lemma 7.7 it follows
that I(Bθ) ≤ I(H) ≤ I(Hθ) = I(A), and, then, TP(I)(A) ≤ I(A) by the
definition of supremum, as we expected.

Reciprocally, suppose now that TP(I) ≤ I and let us prove that I is
a Herbrand model of P, that is, a Herbrand model of an arbitrary rule

21

R : H←B ∈ P. Fixed this rule, let A ∈ BP such that Hθ = A8. Since,
by hypothesis, TP(I)(A) = sup{I(Bθ) : H←B ∈ P, A = Hθ} ≤ I(A), it
follows that I(B) ≤ I(Bθ) ≤ sup{I(Bθ) : H←i B ∈ P, A = Hθ} ≤ I(A),
so I is a Herbrand model of R.

So, for each Herbrand model I of P we have TP(I)(A) = sup{I(Bθ) :
H←B ∈ P, A = Hθ} ≤ I(A) and, also, the equality TP(I)(A) = I(A) is
not reached in general, as it happens in the case of pure logic programming;
we can suggest that the more we iterate the operator TP over an atom, best
is the upper bound obtained for the corresponding correct answer.

On the other hand, in both the pure logic programming and the X-

MALP logic programming there can exist more than one fix-point. The
next example illustrates this fact for the classical case.

Example 7.9. Let P be the logic program with the single clause p(a)←p(a).
The Herbrand base of P is the set BP = {p(a)} and the subsets of the
Herbrand base I1 = ∅, I2 = {p(a)} are the only Herbrand models of P.
Both are fix-points of the (fix-point) operator defined in [12].

In the X-MALP context we could take the same example, whenever any
definite logic program can be expressed as a X-MALP program. In order
to consider a more specific case we provide also the next example.

Example 7.10. Let P be a X-MALP program consisting in just one rule
p(a)←0.5&Gp(a) using the interval ([0, 1],≤) as associated lattice, and where
the truth function of the connective &G is given by &̇G(x, y) = inf{x, y}.
Then, the interpretations I1, I2 defined by I1(p(a)) = 0, I2(p(a)) = 0.5
verify

TP(I1)(p(a)) = sup{0.5&̇I1(p(a))} = sup{0.5&̇0} = 0 = I1(p(a))

TP(I2)(p(a)) = sup{0.5&̇I2(p(a))} = sup{0.5&̇0.5} = 0.5 = I2(p(a))

and, then, both are fix-point of the operator TP , resulting I1 the least fix-
point. Also, it is easy to concrete that operator TP has infinite fix-points: all
the Herbrand interpretations I defined by I(p(a)) = z, where z ∈ [0, 0.5].

As we present now, the declarative semantics by least fuzzy Herbrand model
is equivalent to the fix-point semantics for X-MALP programming.

8The existence of this atom is guaranteed by the definition of the Herbrand universe
and Herbrand base of P .

22

Theorem 7.11. Given a X-MALP program P, IP is the least fuzzy Her-
brand model JP of P if, and only if, is the least fix-point of TP .

Proof. By Theorem 6.6, IP is the least fuzzy Herbrand model of P if, and
only if, IP = inf{Ij : Ij is a Herbrand model of P} and by Theorem 7.8,
IP = inf{Ij : TP(Ij) ≤ Ij}. Moreover, since TP is monotone in the complete
lattice L (see Theorem 7.3), there exists the least fix-point of TP which
coincides with inf{Ij : TP(Ij) ≤ Ij} (see [12]). Hence, IP is the least
fix-point of the TP operator.

This last result states that the declarative semantics of a X-MALPprogram
P can be obtained by transfinitely iterating TP from the least interpretation.
Note that TP may not be continuous, in which case –and differently from
the pure logic programming– an uncountable infinite number of iterations
may be required to reach the fix-point.

8. Conclusions and Future Work

The high expressive power (and even the sense of its name) of the MALP

language, very often relies on the possibility of using multiple adjoint pairs
when coding programs. Although we have shown that the adjoint property
plays an important role when defining and proving the properties ofMALP,
it somehow restricts (at least under a theoretical point of view) the class of
lattices for being safely used in fuzzy programs.

In this paper we have collected from our previous work in [23], a semantics-
preserving transformation which makes use of adjoint pairs in order to pro-
duce MALP programs with a very simple shape, which will no longer de-
pend on adjoint constraints, thus opening the door for future developments
intended to increase the range of fuzzy logic programs beyond MALP.

From here, we have built on top of MALP the so-called “relaXed Multi-
Adjoint Logic Programming” framework, X-MALP in brief, where the de-
pendence of adjoint pairs is definitively dropped out. This wider class of
fuzzy logic programs relying under simple complete (not necessarily multi-
adjoint) lattices, has been formally described in a detailed and illustrated
way, by showing its syntax as well as its operational and declarative seman-
tics. In this last sense, we have provided a model-theoretic and fix-point
characterizations (proving too their equivalences) of fuzzy Herbrand model
for X-MALP programs.

For the immediate future, its is mandatory to establish the soundness
and completeness properties of the enriched framework for which we plan

23

to take profit of our previous experiences in the MALP setting regarding
some improved formulations of the notion of reductant described in [7, 17].

References

[1] J. M. Almendros-Jiménez, A. Luna, and G. Moreno. A Flexible XPath-based Query
Language Implemented with Fuzzy Logic Programming. In N. Bassiliades et al.,
editor, Proc. of 5th International Symposium on Rules: Research Based, Industry
Focused, RuleML’11. Barcelona, July 19-21, pages 186–193. Lecture Notes in Com-
puter Science 6826. Springer Verlag, 2011.

[2] J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Annotating Fuzzy Chance
Degrees when Debugging Xpath Queries. In Advances in Computational Intelligence.
Proc. of the 12th International Work-Conference on Artificial Neural Networks,
IWANN’13, Tenerife, Spain, June 12-14, pages 300–311. Lecture Notes in Computer
Science 7903, Part II. Springer Verlag, 2013.

[3] K. R. Apt. From Logic Programming to Prolog. International Series in Computer
Science, Prentice Hall, 1997.

[4] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril-Fuzzy and Evidential Rea-
soning in Artificial Intelligence. John Wiley & Sons, Inc., 1995.

[5] S. Guadarrama, S. Muñoz, and C. Vaucheret. Fuzzy Prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems, Elsevier, 144(1):127–150,
2004.

[6] P. Julián, J. Medina, P. J. Morcillo, G. Moreno, and M. Ojeda-Aciego. An unfolding-
based preprocess for reinforcing thresholds in fuzzy tabulation. In Advances in
Computational Intelligence. Proc. of the 12th International Work-Conference on
Artificial Neural Networks, IWANN’13, Tenerife, Spain, June 12-14, pages 647–
655. Lecture Notes in Computer Science 7903, Part I. Springer Verlag, 2013.

[7] P. Julián, G. Moreno, and J. Penabad. An Improved Reductant Calculus using
Fuzzy Partial Evaluation Techniques. Fuzzy Sets and Systems, 160:162–181, 2009.

[8] P. Julián, G. Moreno, and J. Penabad. On the declarative semantics of multi-adjoint
logic programs. In Proc. of the 10th International Work-Conference on Artificial
Neural Networks, IWANN’09, pages 253–260. Lecture Notes in Computer Science
5517. Springer Verlag, 2009.

[9] M. A. Khamsi and D. Misane. Fixed point theorems in logic programming. Annals
of Mathematics and Artificial Intelligence, 21:231–243, 1997.

[10] M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12:335–367, 1992.

[11] R. C. T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the ACM,
19(1):119–129, 1972.

[12] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
[13] Y. Loyer and U. Straccia. The well-founded semantics in normal logic programs

with uncertainty. In Proc. of the 6th International Symposium on Functional and
Logic Programming, FLOPS’02, pages 152–166, London, UK, 2002. Springer-Verlag.

[14] Y. Loyer and U. Straccia. Approximate well-founded semantics, query answering
and generalized normal logic programs over lattices. Annals of Mathematics and
Artificial Intelligence, 55(3-4):389–417, 2009.

24

[15] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming with
continuous semantics. In Proc. of Logic Programming and Non-Monotonic Rea-
soning, LPNMR’01, Lecture Notes in Artificial Intelligence, volume 2173, pages
351–364. Springer Verlag, 2001.

[16] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based Unification: a multi-
adjoint approach. Fuzzy Sets and Systems, 146:43–62, 2004.

[17] P. J. Morcillo and G. Moreno. Improving completeness in multi-adjoint logic com-
putations via general reductants. In Proc. of 2011 IEEE Symposium on Foundations
of Computational Intelligence, April 11-15, Paris, pages 138–145. IEEE, 2011.

[18] P. J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. A Practical Management of
Fuzzy Truth Degrees using FLOPER. In M. Dean et al., editor, Proc. of 4th Inter-
national Symposium on Rule Interchange and Applications, RuleML’10. Washing-
ton, USA, October 21-23, pages 119–126. Lecture Notes in Computer Science 6403.
Springer Verlag, 2010.

[19] P. J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez. Dedekind-MacNeille com-
pletion and cartesian product of multi-adjoint lattices. International Journal of
Computer Mathematics, 89(13-14):1742–1752, 2012.

[20] G. Moreno, P. J. Morcillo, J. Penabad, and C. Vázquez. String-based multi-adjoint
lattices for tracing fuzzy logic computations. Electronic Communications of the
European Association of Software Science and Technology (EASST), 55:1–17, 2012.

[21] G. Moreno, J. Penabad, and C. Vázquez. On fuzzy correct answers and logical con-
sequences in multi-adjoint logic programming. In J. Vigo-Aguiar, editor, Proc. of
12th International Conference on Mathematical Methods in Science and Engineer-
ing, CMMSE’12. La Manga, Spain, July 2-5, volume III, pages 864–875, 2012.

[22] G. Moreno, J. Penabad, and C. Vázquez. SSE: Similarity-based strict equality for
multi-adjoint logic programs. In J. Vigo-Aguiar, editor, Proc. of 12th International
Conference on Mathematical Methods in Science and Engineering, CMMSE’12. La
Manga, Spain, July 2-5, volume III, pages 876–887, 2012.

[23] G. Moreno, J. Penabad, and C. Vázquez. Relaxing the role of adjoint pairs in multi-
adjoint logic programming. In I. Hamilton and J. Vigo-Aguiar, editors, Proc. of 13th
International Conference on Mathematical Methods in Science and Engineering,
CMMSE’13. Cabo de Gata, Almeŕıa, Spain, June 24-27, volume III, pages 1156–
1167, 2013.

[24] S. Muñoz, V. P. Ceruelo, and H. Strass. Rfuzzy: Syntax, semantics and imple-
mentation details of a simple and expressive fuzzy tool over prolog. Information
Sciences, 181(10):1951–1970, 2011.

[25] M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Fuzzy Sets
and Systems, 275:389–426, 2002.

[26] A. Stouti. A fuzzy version of tarski’s fixpoint theorem. Archivum Mathematicum,
40(3):273–279, 2004.

[27] U. Straccia. Managing uncertainty and vagueness in description logics, logic pro-
grams and description logic programs. In Reasoning Web, 4th International Summer
School, Tutorial Lectures, Lecture Notes in Computer Science 5224, pages 54–103.
Springer Verlag, 2008.

[28] U. Straccia, M. Ojeda-Aciego, and C. V. Damásio. On fixed-points of multivalued
functions on complete lattices and their application to generalized logic programs.

25

SIAM Journal on Computing, 38(5):1881–1911, 2009.
[29] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal

of Mathematics, 5:285–309, 1955.
[30] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a pro-

gramming language. Journal of the ACM, 23(4):733–742, 1976.
[31] P. Vojtáš. Fuzzy Logic Programming. Fuzzy Sets and Systems, Elsevier, 124(1):361–

370, 2001.
[32] P. Vojtáš and L. Pauĺık. Soundness and completeness of non-classical extended SLD-

resolution. In R. Dyckhoff et al, editor, Proc. of ELP’96 Leipzig, pages 289–301.
Lecture Notes in Computer Science 1050, Springer Verlag, 1996.

26

