
Proceedings of the 13th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2013
24–27 June, 2013.

Relaxing the Role of Adjoint Pairs
in Multi-adjoint Logic Programming

G. Moreno, J. Penabad and C. Vázquez1

1 University of Castilla-La Mancha, Faculty of Computer Science Engineering
02071, Albacete (Spain),

emails: {Gines.Moreno,Jaime.Penabad,Carlos.Vazquez}@uclm.es

Abstract

Multi-adjoint logic programming, MALP in brief, represents a modern and powerful
approach for fuzzifying pure logic programming, by dealing with truth degrees and
connectives collected from a lattice more complex than the trivial one based on two
simple values true and false. Each MALP program is associated with its own multi-
adjoint lattice, equipped with a complete or partial ordering among the (possibly infinite
set of) elements and a wide set of fuzzy connectives where it is crucial to connect each
implication symbol with a proper conjunction thus conforming constructs of the form
(←i,&i). Initially used for modeling a fuzzy variant of the classical modus ponens
inference rule, the use of the so-called adjoint pairs strongly affects the definitions of
both declarative and operational semantics (as well as their corresponding soundness
and completeness properties) of the MALP framework. In this work we relax this
impact in two stages. Firstly, we show a sub-class of MALP programs for which it is
possible to define simpler versions of models and computational steps non depending
on adjoint pairs. Then, and what is the best, we show a simple technique able to map
every MALP program with other one in this sub-class, thus moving the need for using
adjoint pairs from the semantic core of MALP to a purely syntactic pre-process.

Key words: Multi-adjoint Logic Programming, Adjoint Pairs
MSC 2000: Multi-adjoint Lattice

1 Introduction
⋆

TO DO...

c⃝CMMSE ISBN: 978-84-616-2723-3

Relaxing the Role of Adjoint Pairs in Multi-adjoint Logic Programming

&P(x, y) , x ∗ y ←P (x, y) , min(1, x/y) Product

&G(x, y) , min(x, y) ←G (x, y) ,
{
1 if y ≤ x

x otherwise
Gödel

&L(x, y) , max(0, x+ y − 1) ←L (x, y) , min{x− y + 1, 1} Lukasiewicz

Figure 1: Adjoint pairs in [0, 1] for Lukasiewicz, Gödel and product fuzzy logics

2 MALP Syntax and Operational/Declarative Semantics

In essence, the notion of multi-adjoint lattice considers a carrier set L (whose elements ver-
ify a concrete ordering ≤) equipped with a set of connectives like implications, conjunctions,
disjunctions and other hybrid operators (not always belonging to an standard taxonomy)
with the particularity that for each implication symbol there exists its adjoint conjunction
used for modeling the modus ponens inference rule in a fuzzy logic setting. For instance,
some adjoint pairs -i.e. conjunctors and implications- in the lattice ([0, 1],≤) are presented
in Figure 1, where labels L, G and P mean respectively Lukasiewicz logic, Gödel logic and
product logic (with different capabilities for modeling pessimist, optimist and realistic sce-
narios, respectively).

Definition 2.1. Let (L,≤) be a lattice. A multi-adjoint lattice is a tuple (L,≤,←1,&1, . . . ,←n

,&n) such that:

i) (L,≤) is a complete lattice, namely, ∀S ⊂ L, S ̸= ∅,∃ inf(S), sup(S)1.

ii) (&i,←i) is an adjoint pair in (L,≤), i.e.:

1) &i is non-decreasing in both arguments, for all i, i = 1, . . . , n.

2) ←i is non-decreasing in the first argument and non-increasing in the second one.

3) x ≤ (y ←i z) if and only if (x&iz) ≤ y, for any x, y, z ∈ L (adjoint property).

iii) ⊤&iv = v&i⊤ = v for all v ∈ L, i = 1, . . . , n, where ⊤ = sup(L).

This last condition, called adjoint property, is the most important feature of the framework.
In what follows, we present a short summary of the main features of our language (we

refer the reader to [6, 4, 5] for a complete formulation). We work with a first order lan-
guage, L, containing variables, function symbols, predicate symbols, constants, quantifiers
(∀ and ∃), and several (arbitrary) connectives to increase language expressiveness. In our
fuzzy setting, we use implication connectives (←1,←2, . . . ,←m) and also other connectives

1Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and ⊤, respectively.

c⃝CMMSE ISBN: 978-84-616-2723-3

G. Moreno, J. Penabad, C. Vázquez

which are grouped under the name of aggregators or aggregation operators. They are used
to combine/propagate truth values through the rules. The general definition of aggregation
operators subsumes conjunctive operators (denoted by &1,&2, . . . ,&k), disjunctive opera-
tors (∨1,∨2, . . . ,∨l), and average and hybrid operators (usually denoted by @1,@2, . . . ,@n).
Although the connectives &i, ∨i and @i are binary operators, we usually generalize them
as functions with an arbitrary number of arguments. By definition, the truth function
for an n-ary aggregation operator [[@]] : Ln → L is required to be monotone and fulfills
[[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥. Additionally, our language L contains the ele-
ments of a multi-adjoint lattice, (L,≼,←1,&1, . . . ,←n,&n), equipped with a collection of
adjoint pairs (←i,&i), where each &i is a conjunctor intended to the evaluation of modus
ponens. In general, the set of truth values L may be the carrier of any complete lattice.

A rule is a formula H ←i B, where H is an atomic formula (usually called the head) and
B (which is called the body) is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0),
truth values of L and conjunctions, disjunctions and aggregations. Rules with an empty
body are called facts. A goal is a body submitted as a query to the system. Variables in
a rule are assumed to be governed by universal quantifiers. Roughly speaking, a MALP
program is a set of pairs ⟨R; v⟩, where R is a rule and v is a truth degree (a value of L)
expressing the confidence which the user of the system has in the truth of the rule R.

2.1 MALP Operational Semantics

In order to describe the procedural semantics of the MALP language, in the following we
denote by C[A] a formula where A is a sub-expression (usually an atom) which occurs in the
–possibly empty– context C[] whereas C[A/A′] means the replacement of A by A′ in context
C[]. Moreover, Var(s) denotes the set of distinct variables occurring in the syntactic object s,
θ[Var(s)] refers to the substitution obtained from θ by restricting its domain to Var(s) and
mgu(E) denotes the most general unifier of a set of expressions E. In the next definition,
we always consider that A is the selected atom in goal Q and L is the multi-adjoint lattice
associated to P.
Definition 2.2 (Admissible Step). Let Q be a goal and let σ be a substitution. The pair
⟨Q;σ⟩ is a state. Given a program P, an admissible computation is formalized as a state

transition system, whose transition relation
AS is the smallest relation satisfying the fol-

lowing admissible rules:

1) ⟨Q[A];σ⟩ AS ⟨(Q[A/v&iB])θ;σθ⟩ if θ = mgu({H = A}), ⟨H←iB; v⟩ in P and B is
not empty.

2) ⟨Q[A];σ⟩ AS ⟨(Q[A/v])θ;σθ⟩ if θ = mgu({H = A}), and ⟨H←i; v⟩ in P.

3) ⟨Q[A];σ⟩ AS ⟨(Q[A/⊥]);σ⟩ if there is no rule in P whose head unifies with A (this
case copes with possible unsuccessful branches).

c⃝CMMSE ISBN: 978-84-616-2723-3

Relaxing the Role of Adjoint Pairs in Multi-adjoint Logic Programming

An admissible derivation is a sequence ⟨Q; id⟩ AS ∗⟨Q′; θ⟩. As usual, rules are taken renamed

apart. We shall use the symbols
AS1 ,

AS2 and
AS3 to distinguish between computation

steps performed by applying one of the specific admissible rules. The application of a rule

on a step will be annotated as a superscript of the
AS symbol.

If we exploit all atoms of a given goal, by applying admissible steps as much as needed
during the operational phase, then it becomes a formula with no atoms (a L-expression)
which can be then interpreted w.r.t. lattice L as follows.

Definition 2.3 (Interpretive Step and Fuzzy Computed Answer). Let P be a program,
Q a goal and σ a substitution. Assume that [[@]] is the truth function of connective @ in
the lattice (L,≤) associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive computation as a

state transition system, whose transition relation
IS is defined as the least one satisfying:

⟨Q[@(r1, . . . , rn)];σ⟩
IS ⟨Q[@(r1, . . . , rn)/rn+1];σ⟩

An interpretive derivation is a sequence ⟨Q;σ⟩ IS · · · IS ⟨Q′;σ⟩. When Q′ = r ∈ L, the
state ⟨r;σ⟩ is called a fuzzy computed answer (f.c.a.) for that derivation.

Moreover, in the MALP framework [6, 4, 5], each program has its own associated multi-
adjoint lattice and each program rule is “weighted” with an element of L, whereas the
components in its body (i.e., atoms and elements of L) are linked with connectives of the
lattice.

2.2 MALP Declarative Semantics

We formally introduce now the semantic notions of Herbrand interpretation and Herbrand
model, or directly, interpretation and model for short, for a MALP program P, in a similar
way to [6] and [2].

Definition 2.4 (Herbrand Interpretation). A Herbrand interpretation is a map I : BP →
L, where BP is the Herbrand base of the MALP program P and (L,≤) is the multi-adjoint
lattice associated to program P.

I is extended in a natural way to the set of ground formulae of the language. In order
to interpret a non ground formula A (closed, and universally quantified in the case of the
MALP language), it suffices to take I(A) = inf{I(Aξ) : Aξ is a ground instance of A}.
Let H be the set of interpretations whose order is induced from the order of L:

Ij ≤ Ik ⇐⇒ Ij(F) ≤ Ik(F), ∀F ∈ BP

It is trivial to check that (H,≤) inherits the structure of complete lattice from the multi-
adjoint lattice (L,≤).

c⃝CMMSE ISBN: 978-84-616-2723-3

G. Moreno, J. Penabad, C. Vázquez

Definition 2.5 (Herbrand Model). An interpretation I satisfies (or is model of) a rule
⟨H←i B;αi⟩ if, and only if, v ≤ I(H←i B). An interpretation I is a Herbrand model of P
if, and only if, all rules in P are satisfied by I.

In [2] we have defined, for the first time in the literature using model theory, a declarative
semantics for multi-adjoint logic programming in terms of the least fuzzy Herbrand model.
This construction reproduces, in our fuzzy context, the classic construction of least Her-
brand model of pure logic programming [3, 1], which has been traditionally accepted as the
declarative semantics of logic programs.

In the last years, other adaptations of this concept have been provided, using model
theory too ([9, 7, 8]), in alternative fuzzy logic programming frameworks different from
MALP.

Furthermore, in [2] we have related our notion of least fuzzy model with the already
existing procedural semantics and fix-point semantics, and we have given revealing examples
in which our declarative semantics has still sense beyond the multi-adjoint case, while the
previously mentioned ones remain undefined.

Definition 2.6 (Least Fuzzy Herbrand Model). Let P be a MALP program with associated
lattice (L,≤). The interpretation IP = inf{Ij : Ij is model of P} is called least fuzzy
Herbrand2 model of P.

The following result justifies that the previous interpretation IP can be thought really as
the least fuzzy Herbrand model.

Theorem 2.7 ([2]). Let P be a MALP program with associated lattice L. The map IP =
inf{Ij : Ij is a model of P} is the least model of P.

In the proof of this result provided in [2], it is essential that the lattice associated to the
program be a multi-adjoint lattice. In this reference it is possible to contrast the necessity
of this hypothesis for Theorem 2.7.

In Figure 2 we illustrate most definitions presented in this section, where we wish to
remark that:

• In the first rule of P, we mix connectives belonging to three different fuzzy logics,
whose truth functions appear in Figure 1, having too that |L(x, y) , min(x+ y, 1).

• Note that since there are no rules defining predicate s, the last step in the admissible

derivation reduces s(Y2) to 0 by applying an
AS3 step, which contrasts with crisp

logic languages such as Prolog which would abort the whole derivation. Hence,
in our fuzzy setting we can reach computed answers (at the end of the interpretive
phase) even in the presence of non defined predicates.

2Sometimes we will say only least fuzzy model or least model.

c⃝CMMSE ISBN: 978-84-616-2723-3

Relaxing the Role of Adjoint Pairs in Multi-adjoint Logic Programming

Multi-adjoint logic program:

P =

R1 : ⟨p(X) ←P q(X,Y) &G (r(Y) |L s(Y)) ; 0.8⟩
R2 : ⟨q(a, Y) ← ; 0.9⟩
R3 : ⟨r(b) ← ; 1⟩

Admissible derivation:

⟨p(X); id⟩ AS1 R1

⟨0.8 &P (q(X1, Y1) &G (r(Y 1) |L s(Y 1))); {X/X1}⟩
AS2 R2

⟨0.8 &P (0.9 &G (r(Y 2) |L s(Y 2))); {X/a,X1/a, Y1/Y2}⟩
AS2 R3

⟨0.8 &P (0.9 &G (1 |L s(Y 2))); {X/a,X1/a, Y1/b, Y2/b}⟩
AS3

⟨0.8 &P (0.9 &G (1 |L 0)); {X/a,X1/a, Y1/b, Y2/b}⟩

Interpretive derivation:

⟨0.8 &P (0.9 &G (1 |L 0)); {X/a}⟩ IS
⟨0.8 &P (0.9 &G 1); {X/a}⟩ IS
⟨0.8 &P 0.9; {X/a}⟩ IS
⟨0.72; {X/a}⟩ — f.c.a. means “p(X) is proved with

truth degree 0.72 when X = a”.

Least fuzzy Herbrand model:

IP(p(a)) = 0.72, IP(q(a, a)) = IP(q(a, b)) = 0.9, IP(r(b)) = 1.

Figure 2: Illustrative examples of MALP syntax and semantics

• When describing the least fuzzy Herbrand model of P, we omit those elements of the
Herbrand Base interpreted as 0.

3 A MALP Sub-class non Depending on Adjoint Pairs

From now on, we call M⊤ to the set of MALP programs whose rules are always labeled
with the top element ⊤ of their associated lattices. We now speak about ⊤-programs, ⊤-
rules and so on. For executing these programs, we can conceive the following operational
semantics which is simpler than the one seen in the previous section (see Definition 2.2).

c⃝CMMSE ISBN: 978-84-616-2723-3

G. Moreno, J. Penabad, C. Vázquez

Definition 3.1 (⊤-Admissible Step). Let Q be a goal and let σ be a substitution. The pair
⟨Q;σ⟩ is a state. Given a ⊤-program P ∈M⊤, a ⊤-admissible computation is formalized as

a state transition system, whose transition relation
AS⊤
 is the smallest relation satisfying

the following ⊤-admissible rules:

1) ⟨Q[A];σ⟩ AS⊤
 ⟨(Q[A/B])θ;σθ⟩ if θ = mgu({H = A}), ⟨H←iB;⊤⟩ in P and B is

not empty.

2) ⟨Q[A];σ⟩ AS⊤
 ⟨(Q[A/⊤])θ;σθ⟩ if θ = mgu({H = A}), and ⟨H←i;⊤⟩ in P.

3) ⟨Q[A];σ⟩ AS⊤
 ⟨(Q[A/⊥]);σ⟩ if there is no ⊤-rule in P whose head unifies with A

(this case copes with possible unsuccessful branches).

A ⊤-admissible derivation is a sequence ⟨Q; id⟩ AS⊤
 ∗⟨Q′; θ⟩. We shall use the symbols

AS1⊤ ,
AS2⊤ and

AS3⊤ to distinguish between computation steps performed by applying
one of the specific admissible rules. Note that this definition (which is very close to the
classical one of SLD-resolution used in Prolog) differs for Definition 2.2 just in the first
case, since it does not make use on states of the &i conjunction adjoint to the←i implication
symbol of ⊤-rules.

The following result establishes that, when dealing with ⊤-programs, the derivations
built with admissible (together with subsequent interpretive) steps as well as those ones
based on ⊤-admissible (and interpretive) steps, lead to the same set of fuzzy computed
answers.

Theorem 3.2. Let P ∈M⊤ be a MALP ⊤-program with associated lattice L, Q a goal, σ
a substitution and v ∈ L. Then,

⟨Q; id⟩ AS ∗ · · · IS ∗⟨v;σ⟩ w.r.t. P if and only if ⟨Q; id⟩ AS⊤
 ∗ · · · IS ∗⟨v;σ⟩ w.r.t. P.

Proof. In our our proof we simply need to show that the effects produced by
AS steps

on a generic state of the form ⟨Q[A];σ⟩, are replicated by
AS⊤
 steps and viceversa. We

consider three different cases:

1) If ⟨H←iB;⊤⟩ ∈ P, where B is not empty and θ = mgu({H = A}), then ⟨Q[A];σ⟩ AS1
⟨(Q[A/⊤&iB])θ;σθ⟩ if and only if ⟨Q[A];σ⟩ AS1⊤ ⟨(Q[A/B])θ;σθ⟩, since ⊤&iB ≡ B
and hence (Q[A/⊤&iB])θ ≡ (Q[A/B])θ.

2) If ⟨H←i;⊤⟩ ∈ P, where θ = mgu({H = A}), then ⟨Q[A];σ⟩ AS2 ⟨(Q[A/⊤])θ;σθ⟩ if
and only if ⟨Q[A];σ⟩ AS2⊤ ⟨(Q[A/⊤])θ;σθ⟩.

c⃝CMMSE ISBN: 978-84-616-2723-3

Relaxing the Role of Adjoint Pairs in Multi-adjoint Logic Programming

3) if there is no ⊤-rule in P whose head unifies with A then, ⟨Q[A];σ⟩ AS3 ⟨(Q[A/⊥]);σ⟩
if and only if ⟨Q[A];σ⟩ AS3⊤ ⟨(Q[A/⊥]);σ⟩.

Let us continue now with declarative semantics aspects related with ⊤-programs.

Definition 3.3 (⊤-model). An interpretation I ⊤-satisfies (or is ⊤-model of) a ⊤-rule
⟨H←i B;⊤⟩ if, and only if, I(B) ≤ I(H). An interpretation I is ⊤-model of a ⊤-program
P if, and only if, all ⊤-rules in P are ⊤-satisfied by I.

Definition 3.4 (Least Fuzzy Herbrand ⊤-Model). Let P be a MALP ⊤-program with
associated lattice (L,≤). The interpretation I⊤P = inf{Ij : Ij is ⊤-model of P} is the least
fuzzy Herbrand ⊤-model of P.

In the following result we prove that the notion of least fuzzy Herbrand model of a given
MALP ⊤-program is just the same construct than its least fuzzy Herbrand ⊤-model.

Theorem 3.5. The least fuzzy Herbrand model of a MALP ⊤-program P coincides with
its least fuzzy Herbrand ⊤-model, that is, IP = I⊤P .

⋆
Proof. TO DO...

It is noteworthy that, in the proof of this result, we don’t require that lattice associated to
⊤-programs be a multi-adjoint lattice (in fact, we never use adjoint pairs), as occurred too
when defining the new operational semantics for ⊤-programs. For this reason, from now on
we can simplify the syntax of ⊤-rules, by removing the label of their implication symbols as
well as their weights (or associated truth degrees), i.e., instead of ⟨H←iB;⊤⟩ we will simply
write H←B.

4 A Mapping from MALP Programs to M⊤

The following definition represents a very simple, purely syntactic pre-process which, by
making use of adjoint pairs, is able to link MALP programs with ⊤-programs.

Definition 4.1. We define a mapping that associates to each MALP program P a
⊤-program in M⊤ with the following shape:

PM⊤ = {RM⊤ : R ∈ P}
where for each ⊤-rule R : ⟨H ←i B; v⟩ ∈ P, the mapping is defined too as:

RM⊤ =

{
H ← v&iB if v ̸= ⊤
H ← B otherwise

c⃝CMMSE ISBN: 978-84-616-2723-3

G. Moreno, J. Penabad, C. Vázquez

Multi-adjoint logic ⊤-program:

P ′ = PM⊤ =

R′

1 : p(X) ← 0.8 &P (q(X,Y) &G (r(Y) |L s(Y))
R′

2 : q(a, Y) ← 0.9
R′

3 : r(b) ←

⊤-Admissible derivation:

⟨p(X); id⟩ AS1⊤
R′

1

⟨0.8 &P (q(X1, Y1) &G (r(Y 1) |L s(Y 1))); {X/X1}⟩
AS1⊤

R′
2

⟨0.8 &P (0.9 &G (r(Y 2) |L s(Y 2))); {X/a,X1/a, Y1/Y2}⟩
AS2⊤

R′
3

⟨0.8 &P (0.9 &G (1 |L s(Y 2))); {X/a,X1/a, Y1/b, Y2/b}⟩
AS3⊤

⟨0.8 &P (0.9 &G (1 |L 0)); {X/a,X1/a, Y1/b, Y2/b}⟩

Figure 3: Illustrative examples of concepts defined in Sections 3 and 4

In Figure 3 we illustrate this definition as well as other concepts introduced in the previous
section. Note that:

• The ⊤-program P ′ coincides with the transformation of the MALP program P seen
in Figure 2, that is P ′ = PM⊤ , since R′

1 = RM⊤
1 , R′

2 = RM⊤
2 and R′

3 = RM⊤
3 . In

this last case, we have simply removed the weight of the rule (since it is just 1, i.e., the
top element of lattice [0, 1]) and both R1 and R′

1 are facts in P and P ′, respectively.

• On the other hand, note that even when R2 ∈ P is a fact, R′
2 ∈ P ′ is not a fact, since

its body is not empty (it is composed by just a truth degree). For this reason, while

the second admissible step of the admissible derivation in Figure 2 is of kind
AS2 ,

the corresponding second ⊤-admissible step of the ⊤-admissible derivation in Figure

3 is not a
AS2⊤ but a

AS1⊤ step.

• The sequence of states in the admissible derivation of Figure 2 coincides with the
sequence of states in the ⊤-admissible of Figure 3, and after applying exactly the same
sequence of interpretive steps drawn in Figure 2 (for this reason we have omitted it
in Figure 3), the same fuzzy computed answer is reached.

• Note that even when the notion of ⊤-model3 is less involved than the one of model,
the least fuzzy Herbrand ⊤-model of P ′ coincides with IP in Figure 2, as wanted.

3This concept does not make use of adjoint pairs and weights of program rules.

c⃝CMMSE ISBN: 978-84-616-2723-3

Relaxing the Role of Adjoint Pairs in Multi-adjoint Logic Programming

The following result establishes that derivations built with admissible (together with sub-
sequent interpretive) steps lead to the same set of fuzzy computed answers than those ones
based on ⊤-admissible (and interpretive) steps when dealing with ⊤-programs obtained
from previous MALP programs after being transformed according Definition 4.1.

Theorem 4.2. Let P be a MALP program with associated lattice L, Q a goal, σ a substi-
tution and v ∈ L. Then,

⟨Q; id⟩ AS ∗ · · · IS ∗⟨v;σ⟩ w.r.t. P if and only if ⟨Q; id⟩ AS⊤
 ∗ · · · IS ∗⟨v;σ⟩ w.r.t. PM⊤ .

Proof. We distinguish four cases for showing that the effects produced by
AS steps on a

generic state of the form ⟨Q[A];σ⟩, are replicated by
AS⊤
 steps and viceversa.

1) Note that ⟨H←iB; v⟩ ∈ P, where B is not empty and θ = mgu({H = A}), if and
only if ⟨H←v&iB⟩ ∈ PM⊤ , and hence ⟨Q[A];σ⟩ AS1 ⟨(Q[A/v&iB])θ;σθ⟩ if and only

if ⟨Q[A];σ⟩ AS1⊤ ⟨(Q[A/v&iB])θ;σθ⟩.

2) Now, ⟨H←; v⟩ ∈ P, where v ̸= ⊤ and θ = mgu({H = A}), if and only if ⟨H←v⟩ ∈
PM⊤ , and hence ⟨Q[A];σ⟩ AS2 ⟨(Q[A/v])θ;σθ⟩ if and only if ⟨Q[A];σ⟩ AS1⊤
⟨(Q[A/v])θ;σθ⟩ (note this particular correspondence between AS2 and

AS1⊤ steps).

3) Observe that ⟨H←;⊤⟩ ∈ P, where θ = mgu({H = A}), if and only if ⟨H←⟩ ∈ PM⊤ ,

and hence ⟨Q[A];σ⟩ AS2 ⟨(Q[A/⊤])θ;σθ⟩ if and only if ⟨Q[A];σ⟩ AS2⊤
⟨(Q[A/⊤])θ;σθ⟩ (now we have shown the equivalence between

AS2 and
AS2⊤ steps).

4) Finally, there is no rule in P whose head unifies with A if and only if there is no rule

in PM⊤ whose head unifies with A and so, ⟨Q[A];σ⟩ AS3 ⟨(Q[A/⊥]);σ⟩ if and only if

⟨Q[A];σ⟩ AS3⊤ ⟨(Q[A/⊥]);σ⟩.

In the following result we prove that the notion of least fuzzy Herbrand model of MALP
programs is just the same construct than the least fuzzy Herbrand ⊤-model of those ⊤-
programs obtained by applying the transformation process described in Definition 4.1.

Theorem 4.3. The least fuzzy Herbrand model of a MALP program P coincides with the
least fuzzy Herbrand ⊤-model of its associated ⊤-program PM⊤, that is, IP = I⊤PM⊤ .

⋆
Proof. TO DO...

c⃝CMMSE ISBN: 978-84-616-2723-3

G. Moreno, J. Penabad, C. Vázquez

5 Conclusions and Future Work
⋆

TO DO...

References

[1] K. R. Apt. From Logic Programming to Prolog. International Series in Computer Science,
Prentice Hall, 1997.

[2] P. Julián, G. Moreno, and J. Penabad. On the declarative semantics of multi-adjoint
logic programs. In Proc. of the 10th International Work-Conference on Artificial Neural
Networks, IWANN’09, pages 253–260. Springer, Lecture Notes in Computer Science
5517, 2009.

[3] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

[4] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming with
continuous semantics. Proc. of Logic Programming and Non-Monotonic Reasoning, LP-
NMR’01, Lecture Notes in Artificial Intelligence, 2173:351–364, 2001.

[5] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-adjoint
logic programing. Progress in Artificial Intelligence, EPIA’01, Springer-Verlag, Lecture
Notes in Artificial Intelligence, 2258(1):290–297, 2001.

[6] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based Unification: a multi-adjoint
approach. Fuzzy Sets and Systems, 146:43–62, 2004.

[7] M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Fuzzy Sets and
Systems, 275:389–426, 2002.

[8] U. Straccia, M. Ojeda-Aciego, and C. V. Damásio. On fixed-points of multivalued
functions on complete lattices and their application to generalized logic programs. SIAM
Journal on Computing, 38(5):1881–1911, 2009.

[9] P. Vojtáš and L. Pauĺık. Soundness and completeness of non-classical extended SLD-
resolution. In R. Dyckhoff et al, editor, Proc. of ELP’96 Leipzig, pages 289–301. Lecture
Notes in Computer Science 1050, Springer Verlag, 1996.

c⃝CMMSE ISBN: 978-84-616-2723-3

