
String-based Multi-adjoint Lattices for
Tracing Fuzzy Logic Computations

Pedro J. Morcillo1, Ginés Moreno1, Jaime Penabad1 and Carlos Vázquez1

1 PedroJ.Morcillo@alu.uclm.es Gines.Moreno@uclm.es

Jaime.Penabad@uclm.es Carlos.Vazquez@alu.uclm.es

Faculty of Computer Science Engineering

University of Castilla-La Mancha

02071 Albacete (Spain)

Abstract: Classically, most programming languages use in a predefined way the

notion of “string” as an standard data structure for a comfortable management of

arbitrary sequences of characters. However, in this paper we assign a different role

to this concept: here we are concerned with fuzzy logic programming, a some-

how recent paradigm trying to introduce fuzzy logic into logic programming. In

this setting, the mathematical concept of multi-adjoint lattice has been successfully

exploited into the so-called Multi-adjoint Logic Programming approach, MALP in

brief, for modeling flexible notions of truth-degrees beyond the simpler case of true

and false. Our main goal points out not only our formal proof verifying that string-

based lattices accomplish with the so-called multi-adjoint property (as well as its

Cartesian product with similar structures), but also its correspondence with interest-

ing debugging tasks into the FLOPER system (from “Fuzzy LOgic Programming
Environment for Research”) developed in our research group.

Keywords: Cartesian Product ofMulti-adjoint Lattices; Fuzzy (Multi-adjoint) Logic

Programming; Declarative Debugging

1 Introduction

In essence, the notion of multi-adjoint lattice considers a carrier set L (whose elements ver-

ify a concrete ordering ≤) equipped with a set of connectives like implications, conjunctions,

disjunctions and other hybrid operators (not always belonging to an standard taxonomy) with

the particularity that for each implication symbol there exists its adjoint conjunction used for

modeling the modus ponens inference rule in a fuzzy logic setting. For instance, some adjoint

pairs -i.e. conjunctors and implications- in the lattice ([0,1],≤) are presented in the following

paragraph (from now on, this lattice will be called V along this paper), where labels L, G and P

mean respectively Łukasiewicz logic, Gödel intuitionistic logic and product logic (with different

capabilities for modeling pessimist, optimist and realistic scenarios, respectively):

M.M. Gallardo, M. Villaret, L. Iribarne (Eds.): PROLEʼ2012, pp. 177-191, ISBN:978-84-15487-27-2.
Jornadas SISTEDESʼ2012, Almería 17-19 sept. 2012, Universidad de Almería.

&P(x,y) � x∗ y ←P (x,y) � min(1,x/y) Product

&G(x,y) � min(x,y) ←G (x,y) �
{
1 if y≤ x
x otherwise

Gödel

&L(x,y) � max(0,x+ y−1) ←L (x,y) � min{x− y+1,1} Łukasiewicz

Moreover, in theMALP framework [MOV04], each program has its own associated multi-adjoint

lattice and each program rule (whose syntax, described in detail in Section 3, extends very sig-

nificantly a Prolog clause1) is “weighted” with an element of L, whereas the components in

its body are linked with connectives of the lattice. For instance, in the following propositional

MALP program (where obviously @aver refers to the classical average operator):

p ←P @aver(q,r) with 0.9
q ← with 0.8
r ← with 0.6

the last two rules directly assign truth values 0.8 and 0.6 to propositional symbols q and r, re-
spectively, and the execution of p using the first rule, simply consists in evaluating the expression

“&P(0.9,@aver(0.8,0.6))”, which returns the final truth degree 0.63.
In the following section we describe the shape of the elements, ordering relation and behaviour

of the connectives of newmulti-adjoint lattices obtained by applying the Cartesian product to pre-

vious ones. The main application of such structures into the MALP framework is that it is very

easy to attach to program rules and fuzzy connectives “labels” related not only with truth de-

grees, but also with “augmented information” very useful for designing further debugging tasks

devoted to “document” proof procedures. Our work is inspired by [RR08, RR09], where authors

use the so-called qualification domain of weights W for counting the number of computational

steps performed along derivations: however, our proposed technique surpass such approach by

providing deeper details on the nature of every fuzzy-logic evaluation step.

Moreover, in Section 3 we present the syntax and procedural semantics of the MALP frame-

work, which exploits multi-adjoint lattices for modeling richer notions of truth degrees to be

managed by fuzzy programs. Next, we present the FLOPER tool recently equipped with a graph-

ical interface as shown in Figure 1 [MMPV10, MMPV11c, MMPV11a] (please, visit the web

page http://dectau.uclm.es/floper/), which currently is successfully used for com-

piling (to standard Prolog code), executing and debugging MALP programs in a safe way and

it is ready for being extended in the near future with powerful transformation and optimization

techniques designed in our research group in the recent past [JMP05, GM08].

After describing some guidelines for easily managing multi-adjoint lattices expressed bymeans

of Prolog clauses into the FLOPER system, in Section 4 we propose a sophisticated kind of lat-

tices based on the Cartesian product of previous lattices (based on strings) capable for taking into

account details on declarative traces, such as the sequence of computations (regarding program

rules, fuzzy connectives and primitive operators) needed for evaluating a given goal. Finally, in

Section 5 we give our conclusions and provide some lines for future work.

1 We assume familiarity with pure Logic Programming [Llo87, JA07] and its most popular language Prolog.

178 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

Figure 1: Screen-shot of a work session with FLOPER.

2 String-based Multi-adjoint Lattices and Cartesian Product

In this section we focus on the theoretical results which guarantee that a lattice based on strings

is also a multi-adjoint lattice, as well as its Cartesian product with any other multi-adjoint lattice

(this kind of sophisticated lattices can be associated to MALP programs in order to report at exe-

cution time, a detailed description of the computational steps performed for reaching solutions).

We start this section with the formal definition of multi-adjoint lattice.

Definition 1 Let (L,≤) be a lattice. A multi-adjoint lattice is a tuple (L,≤,←1,&1, . . . ,←n

,&n) such that:

i) (L,≤) is a complete lattice, namely, ∀S⊂ L,S �= /0,∃ in f (S),sup(S)2.

ii) (&i,←i) is an adjoint pair in (L,≤), i.e.:

1) &i is increasing in both arguments, for all i, i = 1, . . . ,n.

2) ←i is increasing in the first argument and decreasing in the second, for all i.

3) x≤ (y←i z) if and only if (x&iz)≤ y, for any x,y,z ∈ L (adjoint property).

iii)
&iv = v&i
= v for all v ∈ L, i = 1, . . . ,n, where
= sup(L).

2 Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and
, respectively.

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 179

This last condition, called adjoint property, is the most important feature of the framework.

From now, we are going to focus on the classical notion of Cartesian product applied on these

structures, which necessarily returns objects inheriting the required properties of such lattices.

Theorem 1 If L1, . . . ,Ln are multi-adjoint lattices, then its Cartesian product L = L1×·· ·×Ln

is also a multi-adjoint lattice.

Proof. In order to simplify our sketch but without loss of generality, we only consider two

multi-adjoint lattices (L1,≤1,&1,←1) and (L2,≤2,&2,←2), each one equipped with just a sin-

gle adjoint pair. L = L1× L2 has lattice structure with an order induced in the product from

(L1,≤1) and (L2,≤2) as follows: (x1,y1) ≤ (x2,y2)⇔ x1 ≤1 x2, y1 ≤2 y2. Moreover, being

1 = sup(L1), ⊥1 = in f (L1),
2 = sup(L2) and ⊥2 = in f (L2), we have that (
1,
2) = sup(L)
and (⊥1,⊥2) = in f (L), which implies that the Cartesian product L is a bounded lattice if both

L1 and L2 are also bounded lattices.

Analogously, L1×L2 is a complete lattice if L1 and L2 verify too the same property.

Finally, from the adjoint pairs (&1,←1) and (&2,←2) in L1 and L2, respectively, it is possible

to define the following connectives in L: (x1,y1)&(x2,y2) � (x1&1x2,y1&2y2) and (x1,y1)←
(x2,y2) � (x1←1 x2,y1←2 y2), for which it is easy to justify that they conform an adjoint pair

in L1×L2 (thus satisfying, in particular, the adjoint property).

In a similar way, it is also possible to define new connectives (conjunctions, disjunctions, etc.)

in the Cartesian product L1×L2 from the corresponding pairs of operators defined in both lattices

L1 and L2.

Moreover, if we are interested in knowing more detailed data about the set of program rules

and connective definitions evaluated for obtaining each solution then it will be mandatory to

use a new lattice S based on strings or labels (i.e., sequences of characters) for generating the

Cartesian product V ×S . In order to achieve our purposes, we firstly must show not only that

S is a multi-adjoint lattice, but also that the concatenation operation of strings, usually called

append in many programming languages, plays the role of an adjoint conjunction in such lattice

(this last condition is required by practical aspects which are explained in Section 4).

When trying to solve both problems, we have analyzed several alternatives for establishing

ordering relations among the elements of S , such as the classical lexicographic ordering typ-

ically used for sorting words in dictionaries, or those ones based on prefixes, sub-strings, etc.,

(for instance ’ab’ and ’bc’ are respectively a prefix and a sub-string of ’abcd’). Unfortunately we

have observed that it is never possible to prove that append acts as a t-norm.

However, we have recently conceived an alternative, second way for granting that S is really

a multi-adjoint lattice, which definitely solves our problems. The clever point is to “view” each

string as a natural number by associating to each character its corresponding ASCII code. So, it

is possible to establish a bijective mapping [] with N.

Let be A = {a0, . . . ,an−1} a set, called alphabet, whose elements are symbols. A string s over

A is a finite sequence of elements of this set, that is, s= a1 . . .am, where ai ∈ A, i= 1, . . . ,m. The

set of all strings over A, denoted by S, is defined as S = ∪k∈NAk. The definition of S guarantees

its numerable character, that is, S contains a (numerable) infinite number of strings like a1 . . .am

formed by elements of A. Although the mentioned numerable character is obtained from well

180 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

known results of set theory, in Theorem 2 we will justify it by formalizing a bijection (and its

reverse function) from S to N which will be relevant in the multi-adjoint scope.

Each element of Ak is a string of k elements (with length k) that can be viewed as words; in

this case, S could be interpreted as the set of all words with finite length. This interpretation is

attractive since each formal language with alphabet A is the set of formulae constructed with ele-

ments or words of S that are, also, constrained to the syntactic rules established by that language.

Any language with alphabet A would be, accordingly, a subset of S.
Moreover, in set S we define the concatenation, denoted by ·, as the internal operation

Ap×Aq→ Ap+q

(s, t) �→ s · t
such that, given s = a1 . . .ap, t = b1 . . .bq, then s · t = a1 . . .apb1 . . .bq.

Let be the primitive functions cod : A→ Im(cod) and asc : Im(cod)→ A, such that cod(ai) = i
and asc(i) = ai. It is trivial to proof that cod is the inverse of function asc and reciprocally.

Symbol ′′ represents the empty (with length 0) string. We define the map [] : S→ N through

rules R1 and R2:

R1 : [′′] = 0

R2 : [a1 . . .am] = (cod(a1)+1)nm−1+ · · ·+(cod(am)+1)n0

where ai ∈ A,∀i, and a1 . . .am ∈ S. Rule R2 can be rewritten as:

R∗2 : [s.a] = [s]n+ cod(a)+1

where s.a indicates a string obtained after adding the symbol a at the end of string s, s.a =
a1 . . .am.a = a1 . . .ama.

In order to illustrate this mapping, consider the alphabet {a,b,c} and the string s= cab, where

[cab] = (cod(c)+1)32+(cod(a)+1)3+(cod(b)+1) = 3∗9+1∗3+2= 32.

Theorem 2 The map [], defined by R1 and R2 (or R∗2), is bijective.

Proof. Indeed, it is map since each string s ∈ S is associated with a unique natural number. In

order to proof the bijective character of [], we will demonstrate that its inverse function is the

map <>: N→ S, defined as:

< 0>=′′

< m >=< �(m−1)/n�> .asc((m−1)%n)

where �� :R→N is the floor function, so �(m−1)/n� is the floor of the quotient, and (m−1)%n
is the remainder modulo n (number of elements of A) of the integer m−1.

We will see that compositions (<> ◦[]) : S→ S and ([]◦<>) :N→N coincide with the iden-

tity map (idS and idN, respectively), which justifies that [] is the inverse of <>, and reciprocally.

Firstly, we prove that (<> ◦[])(s) = s,∀s ∈ S.

1. (<> ◦[])(′′) =< [′′]>=< 0>=′′

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 181

2. (<> ◦[])(s.a) =
< [s.a]>=< [s]n+ cod(a)+1>=
< �([s]n+ cod(a)+1−1)/n�> .asc(([s]n+ cod(a)+1−1)%n) =
< �([s]n+ cod(a))/n�> .asc(([s]n+ cod(a))%n) =
< �[s]n/n�> .asc(cod(a)%n) =< �[s]�> .asc(cod(a)) =
< [s]> .a

Hence, < [s.a] >=< [s] > .a, that is, if s = a1 . . .am, then < [a1 . . .ama] >=< [a1 . . .am] > .a =
· · ·=< [′′]> .a1.am.a = s.a = idS(s.a), where idS : S→ S is the identity map of S.

Secondly, we will demonstrate that ([]◦<>)(j) = j,∀ j ∈ N:
1. ([]◦<>)(0) = [< 0>] = [′′] = 0

Since j can be expressed as xn+ y, where x,y ∈ N,0< y≤ n, if j > 0, we have

2. ([]◦<>)(j) =
([]◦<>)(xn+ y) = [< xn+ y >] =
[< �(xn+ y−1)/n�> .asc((xn+ y−1)%n)] =
[< �(xn+ y−1)/n�>]n+ cod(asc((xn+ y−1)%n))+1=
[< �xn/n�>]n+ cod(asc(y−1))+1=
[< x >]n+(y−1)+1=
[< x >]n+ y

Therefore, [< xn+ y >] = [< x >]n+ y,0 < y≤ n. That is, j can be expressed as j = y1nm−1+
· · ·+ym−1n1+y, with y1, . . . ,ym−1 ∈ {1, . . . ,n}, so [< j >] = [< y1nm−1+ · · ·+ym−1n1+y >] =
[< y1nm−2+ · · ·+ ym−1n0 >]n+ y = · · ·= [< 0>]n+ y1nm−1+ · · ·+ ym−1n1+ y = j.

Consequently, if [] is the inverse function of <> (and reciprocally) both are bijective func-

tions, which proves our desired result.

In Example 1 we illustrate these maps with a reduced alphabet, while Example 2 works in a

real-world setting, giving an idea of the usefulness of this approach.

Example 1 Consider the alphabet A = {a,b,c}. Then, the string associated to the number

32 is < 32 >=< �31/3� > .asc(32%3) =< 10 > .asc(1) =< �9/3� > .asc(9%3).b =< 3 >
.asc(0).b =< �2/3�> .asc(2%3).a.b =< 0> .asc(2).a.b =′′ .c.a.b = cab

Example 2 Consider the following strings (using the ASCII code as alphabet): s = sea and

t = son. We will apply the append operation on them and obtain its associated number.

• [s] =
[sea] = (cod(s)−1)1282+(cod(e)−1)128+(cod(a)−1) =
(115−1)1282+(101−1)128+(97−1) =
1880672

• [t] =
[son] = (cod(s)−1)1282+(cod(o)−1)128+(cod(n)−1) =
(115−1)1282+(111−1)128+(110−1) =
1881965

182 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

• [s · t] =
[season] = (cod(s)−1)1285+(cod(e)−1)1284+(cod(a)−1)1283+(cod(s)−1)1282+
(cod(o)−1)128+(cod(n)−1) =
(115−1)1285+(101−1)1284+(97−1)1283+(115−1)1282+(111−1)128+109=
3944056928109

Starting from the reverse usual order (N,≤), we define an ordering relation in S that compares

strings s, t ∈ S by

s≤ t ⇐⇒ [s]≤ [t]

so the supreme element of S is the empty string, ′′. The application of append over strings

sea and son from the Example 2, which is s · t = season, is less than both s and t, that is (by

the definition of S), [s · t] ≤ [s] and [s · t] ≤ [t]. As a result of Theorem 2, we have that S is

bijective with N. Therefore, the completion (see [MMPV11b]) of S, which is S = S∪{in f (S)},
is bijective with the completion of N, (N∪{in f (N)}), expressed also as W [RR08, RR09]. So,

since (W ,≤) = (N∪{in f (N)},≤) is a multi-adjoint lattice, then S inherits the same property3.

After showing that S is a multi-adjoint lattice via the mapping bijection established with the

multi-adjoint lattice W , and before illustrating the benefits that the Cartesian product V ×S ,

among others, might play in several software engineering tasks, it is mandatory to explain in the

following two sections some details of the MALP language and its associated FLOPER tool.

3 Multi-adjoint Logic Programming and FLOPER

This section summarizes the main features of multi-adjoint logic programming as illustrated in

Figure 2 (see [MOV04, JMP09] for a complete formulation of this framework). We work with

a first order language, L , containing variables, constants, function symbols, predicate symbols,

and several (arbitrary) connectives to increase language expressiveness: implication connectives

(denoted by←1,←2, . . .); conjunctive connectives (∧1,∧2, . . .) adjoint conjunctions (&1,&2, . . .),
disjunctive connectives (∨1,∨2, . . .), and hybrid operators called “aggregators” (usually denoted

by @1,@2, . . .). Although these connectives are binary operators, we usually generalize them

as functions with an arbitrary number of arguments. So, we often write @(x1, . . . ,xn) instead of

@(x1, . . . ,@(xn−1,xn), . . .). By definition, the truth function for an n-ary connective [[@]] : Ln→
L is required to be monotonous and fulfills [[@]](
, . . . ,
) =
, [[@]](⊥, . . . ,⊥) =⊥.

Additionally, our language L contains the values of a multi-adjoint lattice

(L,≤,←1,&1, . . . ,←n,&n), equipped with a collection of adjoint pairs (←i,&i) as detailed in

previous sections. In general, L may be the carrier of any complete bounded lattice where a

L-expression is a well-formed expression composed by values and connectives of L, as well as

variable symbols and primitive operators (i.e., arithmetic symbols such as ∗,+,min, etc.). In

what follows, we assume that the truth function of any connective @ in L is given by its corre-

sponding connective definition, that is, an equation of the form @(x1, . . . ,xn) � E, where E is a

L-expression not containing variable symbols apart from x1, . . . ,xn. See for instance, the classical

set of adjoint pairs (conjunctors and implications of Łukasiewicz logic, Gödel intuitionistic logic
and product logic) in ([0,1],≤) defined at the beginning of this paper in Section 1.

3 It is easy to prove that &append is really an adjoint conjunction in lattice S .

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 183

A rule is a formula H ←i B, where H is an atomic formula (usually called the head) and B
(which is called the body) is a formula built from atomic formulas B1, . . . ,Bn — n ≥ 0 —, truth

values of L, conjunctions, disjunctions and other connectives. A goal is a body submitted as a

query to the system. Roughly speaking, a multi-adjoint logic program is a set of pairs 〈R;v〉 (we

often write “R with v”), where R is a rule and v is a truth degree (a value of L) expressing the

confidence of a programmer in the truth of rule R. By abuse of language, we sometimes refer a

tuple 〈R;v〉 as a “rule”.

The procedural semantics of the multi–adjoint logic language L can be thought of as an op-

erational phase (based on admissible steps) followed by an interpretive one. In the following,

C [A] denotes a formula where A is a sub-expression which occurs in the –possibly empty– con-

text C []. Moreover, C [A/A′] means the replacement of A by A′ in context C [], whereas V ar(s)
refers to the set of distinct variables occurring in the syntactic object s, and θ [V ar(s)] denotes
the substitution obtained from θ by restricting its domain to V ar(s).

Definition 2 (Admissible Step) Let Q be a goal and let σ be a substitution. The pair 〈Q;σ〉 is
a state and we denote by E the set of states. Given a program P , an admissible computation is

formalized as a state transition system, whose transition relation→AS ⊆ (E ×E) is the smallest

relation satisfying the following admissible rules (where we always consider that A is the selected

atom in Q and mgu(E) denotes the most general unifier of an equation set E):

1) 〈Q[A];σ〉 →AS 〈(Q[A/v&iB])θ ;σθ〉, if θ = mgu({H = A}) and 〈H←iB;v〉 in P .

2) 〈Q[A];σ〉 →AS 〈(Q[A/v])θ ;σθ〉, if θ = mgu({H = A}) and 〈H←;v〉 in P .

As usual, rules are taken renamed apart. We shall use the symbols→AS1 and→AS2 to distinguish

between computation steps performed by applying one of the specific admissible rules. Also, the

application of a rule on a step will be annotated as a superscript of the→AS symbol.

Definition 3 Let P be a program, Q a goal and id the empty substitution. An admissible
derivation is a sequence 〈Q; id〉→AS · · ·→AS〈Q′;θ〉. When Q′ is a formula not containing atoms

(i.e., a L-expression), the pair 〈Q′;σ〉, where σ = θ [V ar(Q)], is called an admissible computed
answer (a.c.a.) for that derivation.

If we exploit all atoms of a given goal, by applying admissible steps as much as needed during

the operational phase, then it becomes a formula with no atoms (a L-expression) which can be

then directly interpreted w.r.t. lattice L as follows.

Definition 4 (Interpretive Step) Let P be a program, Q a goal and σ a substitution. Assume

that [[@]] is the truth function of connective @ in the lattice (L,≤) associated to P , such that, for

values r1, . . . ,rn,rn+1 ∈ L, we have that [[@]](r1, . . . ,rn) = rn+1. Then, we formalize the notion of

interpretive computation as a state transition system, whose transition relation→IS ⊆ (E ×E) is
defined as the least one satisfying: 〈Q[@(r1, . . . ,rn)];σ〉 →IS 〈Q[@(r1, . . . ,rn)/rn+1];σ〉. An

interpretive derivation is a sequence 〈Q;σ〉→IS · · ·→IS〈Q′;σ〉. If Q′ = r ∈ L, being (L,≤) the
lattice associated to P , then 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that derivation.

From now on, we proceed with more practical aspects regarding multi-adjoint lattices and im-

plementation issues. The parser of our FLOPER tool [MMPV10, MMPV11c] has been imple-

184 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

Multi-adjoint logic program:

P =

⎧⎪⎪⎨
⎪⎪⎩

R1 : 〈p(X) ←P &G(q(X),@aver(r(X),s(X))) ;0.9〉
R2 : 〈q(a) ← ;0.8〉
R3 : 〈r(X) ← ;0.7〉
R4 : 〈s(X) ← ;0.5〉

Admissible derivation:

〈p(X); id〉 →AS1
R1

〈&P(0.9,&G(q(X1),@aver(r(X1),s(X1))));{X/X1}〉 →AS2
R2

〈&P(0.9,&G(0.8,@aver(r(a),s(a))));{X/a,X1/a}〉 →AS2
R3

〈&P(0.9,&G(0.8,@aver(0.7,s(a))));{X/a,X1/a,X2/a}〉 →AS2
R4

〈&P(0.9,&G(0.8,@aver(0.7,0.5)));{X/a,X1/a,X2/a,X3/a}〉
Interpretive derivation:

〈&P(0.9,&G(0.8,@aver(0.7,0.5)));{X/a}〉 →IS

〈&P(0.9,&G(0.8,0.6));{X/a}〉 →IS

〈&P(0.9,0.6);{X/a}〉 →IS

〈0.54;{X/a}〉 p(a) has truth degree 0.54

Figure 2: MALP program P with admissible/interpretive derivations for goal p(X).

mented by using the Prolog language. Once the application is loaded inside a Prolog interpreter,

it shows a menu which includes options for loading/compiling, parsing, listing and saving MALP

programs, as well as for executing/debugging fuzzy goals. Moreover, in [MMPV10] we explain

that FLOPER has been recently equipped with new options, called “lat” and “show”, for al-
lowing the possibility of respectively changing and displaying the multi-adjoint lattice associated

to a given program.

A very easy way to model truth-degree lattices for being included into the FLOPER tool is

also described in [MMPV10], according the following guidelines. All relevant components of

each lattice are encapsulated inside a Prolog file which must necessarily contain the definitions

of a minimal set of predicates defining the set of valid elements (including special mentions to

the “top” and “bottom” ones), the full or partial ordering established among them, as well

as the repertoire of fuzzy connectives which can be used for their subsequent manipulation. In

order to simplify our explanation, assume that file “bool.pl” refers to the simplest notion of (a

binary) adjoint lattice, thus implementing the following set of predicates:

• member/1 which is satisfied when being called with a parameter representing a valid truth

degree. For instance, in the Boolean case, this predicate can be simply modeled by the Prolog

facts member(0). and member(1).
• bot/1 and top/1 obviously answer with the top and bottom element of the lattice, respec-

tively. Both are implemented into “bool.pl” as bot(0). and top(1).

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 185

member(X) :- number(X),0=<X,X=<1. bot(0).
leq(X,Y) :- X=<Y. top(1).

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).
and_godel(X,Y,Z):- pri_min(X,Y,Z).
and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).
or_godel(X,Y,Z) :- pri_max(X,Y,Z).
or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),

pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).
agr_aver2(X,Y,Z):- or_godel(X,Y,Z1),or_luka(X,Y,Z2),

agr_aver(Z1,Z2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 3: Prolog code for representing the multi-adjoint lattice V .

• leq/2 models the ordering relation among all the possible pairs of truth degrees, and obvi-

ously it is only satisfied when it is invoked with two elements verifying that the first parameter is

equal or smaller than the second one. So, in our example it suffices with including into “bool.pl”

the facts leq(0,X). and leq(X,1).
• Finally, if we have some fuzzy connectives of the form &label1 (conjunction), ∨label2 (dis-

junction) or @label3 (aggregation) with arities n1, n2 and n3 respectively, we must provide clauses

defining the connective predicates “and label1/(n1+1)”, “or label2/(n2+1)” and

“agr label3/(n3+1)”, where the extra argument of each predicate is intended to contain the

result achieved after the evaluation of the proper connective. For instance, in the Boolean case,

the following two facts model in a very easy way the behaviour of the classical conjunction

operation: and bool(0, ,0). and bool(1,X,X).
The reader can easily check that the use of lattice “bool.pl” when working with MALP pro-

grams whose rules have the form: “H ←bool &bool(B1, . . . ,Bn) with 1”, being H and Bi

typical atoms, successfully mimics the behaviour of classical Prolog programs where clauses

accomplish with the shape “H :− B1, . . . ,Bn”. As a novelty in the fuzzy setting, when evaluat-

ing goals according to the procedural semantics described in Section 3, each output will contain

the corresponding Prolog’s substitution (i.e., the crisp notion of computed answer obtained by

means of classical SLD-resolution) together with the maximum truth degree 1.

As shown in Figure 3, it is also possible to describe by means of Prolog clauses the more

flexible lattice V for working with truth degrees in the infinite space of the real numbers between

0 and 1, allowing too the possibility of using conjunction and disjunction operators recasted from

the three typical fuzzy logics proposals described before, as well as two useful descriptions for

the hybrid aggregator average.

186 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

4 Declarative Traces via Cartesian Product of Lattices

As detailed in [MMPV10, MMPV11c], our parser has been implemented by using the classical

DCG’s (Definite Clause Grammars) resource of the Prolog language, since it is a convenient

notation for expressing grammar rules. As already commented in the previous section, once the

application is loaded inside any Prolog interpreter, it shows a menu which includes options for

loading, parsing, listing and saving fuzzy programs, as well as for executing fuzzy goals. All

these actions are based in the translation of the fuzzy code into standard Prolog code. The key

point is to extend each atom with an extra argument, called truth variable of the form “ TVi”,

which is intended to contain the truth degree obtained after the subsequent evaluation of the

atom. For instance, the first clause in our target program is translated into:

p(X,_TV0) :- q(X,_TV1), r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),
and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).

Moreover, the second clause in our target program in Figure 2, becomes into the pure Prolog fact

“q(a,0.8)” while a fuzzy goal like “p(X)”, is translated into the pure Prolog goal: “p(X,
Truth degree)” (note that the last truth degree variable is not anonymous now) for which the

Prolog interpreter returns the desired fuzzy computed answer [Truth degree= 0.54,X= a].
The previous set of options suffices for running fuzzy programs (the “run” choice also uses

the clauses contained in “num.pl”, which represent the default lattice) where all internal compu-

tations (including compiling and executing) are pure Prolog derivations whereas inputs (fuzzy

programs and goals) and outputs (fuzzy computed answers) have always a fuzzy taste, thus pro-

ducing the illusion on the final user of being working with a purely fuzzy logic programming

tool.

member(info(X,Y)):-number(X),0=<X,X=<1,atom(Y). top(info(1,’’)).

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-
pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),
pri_app(Dat1,’&PROD.’,Dat2),pri_app(Dat2,DatPROD,Z2).

pri_prod(X,Y,Z,’#PROD.’):-Z is X * Y.

pri_app(X,Y,Z) :-name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).

append([],X,X). append([X|Xs],Y,[X|Zs]):-append(Xs,Y,Zs).
.....

Figure 4: Lattice modeled in Prolog for representing the Cartesian product V ×S .

On the other hand, in the previous section we have explained that FLOPER is equipped with

two new options, called “lat” and “show”, for allowing the possibility of respectively changing

and displaying the multi-adjoint lattice associated to a given program. Assume now that, instead

of computing the average of two truth degrees, we prefer to compute the average between the

results achieved after applying to both elements the disjunctions operators described by Gödel

and Łukasiewicz, that is: @aver2(x1,x2)�@aver(∨G(x1,x2),∨L(x1,x2)). See the corresponding

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 187

Prolog clause modeling such definition listed in Figure 3. Now, by selecting again the “run”

option, the system would display the new solution: [Truth degree= 0.72,X= a].
In what follows, we plan to exploit a much more powerful lattice to cope with more involved

debugging details based on declarative traces beyond the simpler task described in [RR08, RR09]

of counting the number of program rules used during the query-answering procedure (some

guidelines can be found in our precedent works [MMPV11c, MMPV11a]). The elements of our

intended lattice must contain two components, thus belonging to the Cartesian product V ×S
seen in Section 2, in order capture not only truth degrees, but also “labels” collecting informa-

tion about the program rules, fuzzy connectives and primitive operators used for solving goals

when executing programs. In order to be loaded into FLOPER, we need to define again the

new lattice as a Prolog program, whose elements will be expressed now as data terms of the

form “info(Fuzzy Truth Degree, Label)” as shown in Figure 4 (we simply show an

incomplete but representative set of predicates).

Here, we see that when implementing for instance the conjunction operator of the Product

Logic, in the second component of our extended notion of “truth degree”, we have appended the

labels of its arguments with the label ’&PROD.’ (see clauses defining and prod, pri app
and append). Of course, in the fuzzy program to be run, we must also take into account the use

of labels associated to the program rules. For instance, the set of rules in our example (where we

use the complex version of average, i.e., @aver2 in the first rule) must have the form:

p(X) <prod &godel(q(X),@aver2(r(X),s(X))) with info(0.9,’RULE1.’).
q(a) with info(0.8,’RULE2.’).
r(X) with info(0.7,’RULE3.’).
s(X) with info(0.5,’RULE4.’).

Now the reader can easily check that, after executing goal p(X), we obtain the desired fuzzy

computed answer which includes a nice declarative trace collecting the exact sequence of

“program-rules, fuzzy-connectives and primitive-operators” evaluated till finding the final so-

lution, which has the following shape by using FLOPER:

>> run.
[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.

@AVER2.|GODEL.#MAX.|LUKA.
#ADD.#MIN.@AVER.#ADD.#DIV.
&GODEL.#MIN.&PROD.#PROD.), X=a]

In this fuzzy computed answer we obtain both the truth value (i.e., 0.72) and substitution (that is,

X = a) associated to our goal, but also the sequence of program rules exploited when applying

admissible steps (RULE1, RULE2, RULE3 and RULE4, in this order) as well as the list of fuzzy

connectives evaluated during the interpretive phase, also detailing the set of primitive operators

(of the form #label) that they call: in our case, note that we have firstly evaluated aggregator

@AVER2 (which calls to connectives |GODEL - defined in terms of the primitive operator #MAX
-, |LUKA - which invokes the arithmetic operations #ADD and #MIN - and @AVER - expressed

with the use of the primitive operators #ADD and #DIV -), then we need to evaluate the conjunc-

tion &GODEL (solved again via the arithmetic symbol #MIN) and the final exploited connective

is &PROD (described in terms of the primitive operator #PROD).

188 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

〈p(X); id〉 →AS1
R1

〈&P(info(0.9,‘RULE1.’),&G(q(X1),@aver2(r(X1),s(X1))));{X/X1}〉 →AS2
R2

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’),@aver2(r(a),s(a)))));{X/a}〉 →AS2
R3

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’),

@aver2(info(0.7,‘RULE3.’),s(a)))));{X/a}〉 →AS2
R4

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’),

@aver2(info(0.7,‘RULE3.’), info(0.5,‘RULE4.’))));{X/a}〉 →IS

〈&P(info(0.9,‘RULE1.’),&G(info(0.8,‘RULE2.’), info(0.85,∗)));{X/a}〉 →IS

〈&P(info(0.9,‘RULE1.’), info(0.8,∗∗));{X/a}〉 →IS

〈info(0.72,‘RULE1.RULE2.RULE3.RULE4.@AVER2.|GODEL.#MAX.|LUKA.
#ADD.#MIN.@AVER.#ADD.#DIV.&GODEL.#MIN.&PROD.#PROD.’);{X/a}〉.

where we have used the following symbols with their corresponding meanings:
∗ ‘RULE3.RULE4.@AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.@AVER.#ADD.#DIV.’
∗∗ ‘RULE2.RULE3.RULE4.@AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.@AVER.#ADD.

#DIV.&GODEL.#MIN.’

Figure 5: Derivation for solving p(X) by using lattice V ×S .

Figures 5 and 6 show the complete derivation built to reach the desired fuzzy computed answer

according the procedural semantics described in Section 3.

5 Conclusions and Future Work

This paper has been mainly concerned with theoretical and practical issues focusing into the

MALP framework (which could be seen as a very enriched fuzzy extension of Prolog), regarding

the use of a string-based multi-adjoint lattice called S . In a more precise way, we have proved

and illustrated that the Cartesian product of S with any other multi-adjoint lattice, is useful to

obtain a new, more powerful lattice which can be used for obtaining, at a very low costs, declar-

ative traces on fuzzy computed answers when executing MALP programs inside the FLOPER

tool developed in our research group.

We nowadays continue by exploring new uses of such kind of sophisticated lattices in other

domains. For instance, we advance in [ALM11, ALM12] that the Cartesian product of V with

a lattice modeling lists with a similar shape to S , is very useful for coding with MALP rules a

fuzzy variant of the well-known XPath language for the flexible management of XML documents

retrieved from the web (our first real-world application using the FLOPER tool can be freely

downloaded and tested on-line from http://dectau.uclm.es/fuzzyXPath/).

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 189

Figure 6: Evaluation tree depicted by FLOPER associated to derivation shown in Figure 5.

Bibliography

[ALM11] J. Almendros-Jiménez, A. Luna, G. Moreno. A Flexible XPath-based Query Lan-

guage Implemented with Fuzzy Logic Programming. In Proc. 5th Intl. Symp. on
Rules, RuleML’11. Pp. 186–193. Springer Verlag, Lecture Notes in Computer Sci-

ence 6826, 2011.

[ALM12] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzy Logic Programming for

Implementing a Flexible XPath-based Query Language. Electr. Notes Theor. Com-

190 Pedro J. Morcillo, Gines Moreno, Jaime Penabad and Carlos Vázquez

put. Sci., Elsevier 282:3–18, 2012.

[GM08] J. Guerrero, G. Moreno. Optimizing Fuzzy Logic Programs by Unfolding, Aggre-

gation and Folding. Electr. Notes Theor. Comput. Sci., Elsevier 219:19–34, 2008.

[JA07] P. Julián, M. Alpuente. Programación Lógica. Teorı́a y Práctica. Pearson Edu-

cación, S.A., Madrid, 2007.

[JMP05] P. Julián, G. Moreno, J. Penabad. On Fuzzy Unfolding. AMulti-adjoint Approach.

Fuzzy Sets and Systems, Elsevier 154:16–33, 2005.

[JMP09] P. Julián, G. Moreno, J. Penabad. On the Declarative Semantics of Multi-Adjoint

Logic Programs. In Proc. 10th Intl. Conf. on Artif. Neural Networks, IWANN’09.
Pp. 253–260. Springer, Lecture Notes in Computer Science 5517, 2009.

[Llo87] J. Lloyd. Foundations of Logic Programming. Second edition. Springer-Verlag,

Berlin, 1987.

[MMPV10] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. A Practical Management of

Fuzzy Truth Degrees using FLOPER. In Proc. 4th Intl. Symp. on Rule Interchange
and Applications, RuleML’10. Pp. 119–126. Springer Verlag, Lecture Notes in

Computer Science 6403, 2010.

[MMPV11a] P. J. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Declarative Traces into Fuzzy

Computed Answers. In Proc. 5th Intl. Symp. on Rules, RuleML’11. Pp. 170–185.
Springer Verlag, Lecture Notes in Computer Science 6826, 2011.

[MMPV11b] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Dedekind-Macneille Completion

and Multi-Adjoint Lattices. In Proc. 11th Intl. Conf. on Mathematical Methods in
Science and Engineering, CMMSE’11 . Pp. 846–857. Vol. II, 2011.

[MMPV11c] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Fuzzy Computed Answers Col-

lecting Proof Information. In Proc. 11th Intl. Conf. on Artif. Neural Networks,
IWANN’11. Pp. 445–452. Springer Verlag, Lecture Notes in Computer Science

6692, 2011.

[MOV04] J. Medina, M. Ojeda-Aciego, P. Vojtáš. Similarity-based Unification: a multi-

adjoint approach. Fuzzy Sets and Systems 146:43–62, 2004.

[RR08] M. Rodrı́guez-Artalejo, C. A. Romero-Dı́az. Quantitative logic programming re-

visited. In Proc. Functional and Logic Programming, FLOPS’08. Pp. 272–288.
Springer, Lecture Notes in Computer Science 4989, 2008.

[RR09] M. Rodrı́guez-Artalejo, C. A. Romero-Dı́az. Qualified Logic Programming with

Bivalued Predicates. Elec. Notes in Theor. Comp. Sci., Elsevier 248:67–82, 2009.

String-based Multi-adjoint Lattices for Tracing Fuzzy Logic Computations 191

