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Abstract. Fuzzy logic programming is a growing declarative paradigm
aiming to integrate fuzzy logic into logic programming. In this setting,
the so-called Multi-Adjoint Logic Programming approach, MALP in brief,
represents an extremely flexible fuzzy language for which we are devel-
oping the FLOPER tool (Fuzzy LOgic Programming Environment for
Research). Currently, the platform is useful for compiling (to standard
Prolog code), executing and debugging fuzzy programs in a safe way and
it is ready for being extended in the near future with powerful transfor-
mation and optimization techniques designed in our research group in
the recent past. In this paper, we focus in a nice property of the system
regarding its ability for easily collecting declarative traces at execution
time, without modifying the underlying procedural principle. The clever
point is the use of lattices modeling truth degrees (beyond {true, false})
enriched with constructs for directly visualizing on fuzzy computed an-
swers not only the sequence of program rules exploited when reaching
solutions, but also the set of evaluated fuzzy connectives together with
the sequence of primitive (arithmetic) operators they call, thus giving a
detailed description of their computational complexities.
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1 Introduction

Logic Programming (LP) [15] has been widely used as a formal method for prob-
lem solving and knowledge representation in the past. Nevertheless, traditional
LP languages do not incorporate techniques or constructs to treat explicitly
with uncertainty and approximated reasoning. To fulfill this gap, Fuzzy Logic
Programming has emerged as an interesting and still growing research area try-
ing to consolidate the efforts for introducing fuzzy logic into logic programming.

* This work was supported by the EU (FEDER), and the Spanish Science and Innova-
tion Ministry (MICINN) under grants TIN 2007-65749 and TIN2011-25846, as well
as by the Castilla-La Mancha Administration under grant PII1109-0117-4481.



During the last decades, several fuzzy logic programming systems have been
developed, such as [2,3,5,14,12,27], the QLP scheme of [24] and the many-
valued logic programming language of [25,26], where the classical inference
mechanism of SLD-Resolution has been replaced by a fuzzy variant which is
able to handle partial truth and to reason with uncertainty. This is also the case
of multi-adjoint logic programming approach MALP [18,16,17], a powerful and
promising approach in the area. In this framework, a program can be seen as
a set of rules each one annotated by a truth degree and a goal is a query to
the system plus a substitution (initially the empty substitution, denoted by id).
Admissible steps (a generalization of the classical modus ponens inference rule)
are systematically applied on goals in a similar way to classical resolution steps
in pure logic programming, thus returning a state composed by a computed sub-
stitution together with an expression where all atoms have been exploited. Next,
during the so called interpretive phase (see [9,20, 23]), this expression is inter-
preted under a given lattice, hence returning a pair (truth degree; substitution)
which is the fuzzy counterpart of the classical notion of computed answer used
in pure logic programming.

The main goal of the present paper is to present the benefits of introducing
different notions of multi-adjoint lattices for managing truth degrees even in a
single FLOPER’s work-session without changing a given MALP program and
goal. In particular, we are especially interested now in showing the collateral
effect of these actions regarding debugging capabilities (i.e., the generation of
declarative traces inside fuzzy computed answers).

The structure of the paper is as follows. In Section 2, we summarize the
main features of multi-adjoint logic programming, both language syntax and
procedural semantics. Section 3 presents a discussion on multi-adjoint lattices
and their nice representation by using standard Prolog code, in order to facilitate
its further assimilation inside the FLOPER tool. As described in Section 4, we
propose too a sophisticated kind of lattices capable for taking into account details
on declarative traces, such as the sequence of computations (regarding program
rules, fuzzy connectives and primitive operators) needed for evaluating a given
goal. Finally, in Section 5 we give our conclusions and some lines of future work.

2 Multi-Adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming
(see [18,16,17] for a complete formulation of this framework). In what follows,
we will use the abbreviation MALP for referencing programs belonging to this
setting.

2.1 MALP Syntax

We work with a first order language, £, containing variables, constants, func-
tion symbols, predicate symbols, and several (arbitrary) connectives to increase



language expressiveness: implication connectives (<1, <2, ...); conjunctive op-
erators (denoted by &1, &o,...), disjunctive operators (V1, Va,...), and hybrid
operators (usually denoted by @;,@,,...), all of them are grouped under the
name of “aggregators”.

Aggregation operators are useful to describe/specify user preferences. An
aggregation operator, when interpreted as a truth function, may be an arithmetic
mean, a weighted sum or in general any monotone application whose arguments
are values of a complete bounded lattice L. For example, if an aggregator @ is
interpreted as [Q](z,y, z) = (3z+2y+z)/6, we are giving the highest preference
to the first argument, then to the second, being the third argument the least
significant.

Although these connectives are binary operators, we usually generalize them
as functions with an arbitrary number of arguments. So, we often write
Q(z1,...,oy,) instead of Q(zq,...,Q(zy_1,2y),...). By definition, the truth
function for an n-ary aggregation operator [@] : L™ — L is required to be
monotonous and fulfills [Q](T,..., T) =T, [@](L,...,1) = L.

Additionally, our language £ contains the values of a multi-adjoint lattice
(L, =,41,&1,...,4n, &), equipped with a collection of adjoint pairs («;, &;),
where each &; is a conjunctor which is intended to the evaluation of modus
ponens [18]. More exactly, in this setting the following items must be satisfied:

(L, =) is a bounded lattice, i.e. it has bottom and top elements, denoted by
1 and T, respectively.

— Each operation &; is increasing in both arguments.

Each operation <—; is increasing in the first argument and decreasing in the
second.

If (&;,<;) is an adjoint pair in (L, =) then, for any z,y,z € L, we have
that: © < (y «; z) ifand only if (x&;2) =<y.

This last condition, called adjoint property, could be considered the most impor-
tant feature of the framework (in contrast with many other approaches) which
justifies most of its properties regarding crucial results for soundness, complete-
ness, applicability, etc.

In general, L may be the carrier of any complete bounded lattice where a
L-expression is a well-formed expression composed by values and connectives of
L, as well as variable symbols and primitive operators (i.e., arithmetic symbols
such as *, 4+, min, etc...).

In what follows, we assume that the truth function of any connective @ in L is
given by its corresponding connective definition, that is, an equation of the form
Q(z1,...,7,) = E, where E is a L-expression not containing variable symbols
apart from z1, ..., z,. For instance, in what follows we will be mainly concerned
with the following classical set of adjoint pairs (conjunctors and implications)
in ([0, 1], <), where labels L, G and P mean respectively Lukasiewicz logic, Gddel
intuitionistic logic and product logic (which different capabilities for modeling
pessimist, optimist and realistic scenarios, respectively):



&p(z,y) 2 Ty p (z,y) = min(1,z/y) Product
1 ify<z

x otherwise

&G(x7 y) £ min(x7 y) Al (I, y) = Gadel

&p(w,y) = max(0,z +y — 1) 1 (z,y) Emin{r —y+ 1,1}  Zukasiewicz

A rule is a formula H «; B, where H is an atomic formula (usually called
the head) and B (which is called the body) is a formula built from atomic for-
mulas By, ..., B, —n > 0 —, truth values of L, conjunctions, disjunctions and
aggregations. A goal is a body submitted as a query to the system. Roughly
speaking, a multi-adjoint logic program is a set of pairs (R;«) (we often write
“R with «”), where R is a rule and « is a truth degree (a value of L) expressing
the confidence of a programmer in the truth of rule R. By abuse of language,
we sometimes refer a tuple (R; ) as a “rule”.

2.2 MALP Procedural Semantics

The procedural semantics of the multi-adjoint logic language £ can be thought
of as an operational phase (based on admissible steps) followed by an interpre-
tive one. In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the —possibly empty— context C[]. Moreover, C[A/A’] means the
replacement of A by A’ in context C[], whereas Var(s) refers to the set of dis-
tinct variables occurring in the syntactic object s, and 8[Var(s)] denotes the
substitution obtained from € by restricting its domain to Var(s).

Definition 1 (Admissible Step). Let Q be a goal and let o be a substitution.
The pair (Q; o) is a state and we denote by & the set of states. Given a program
P, an admissible computation is formalized as a state transition system, whose
transition relation — a5 C (€ X E) is the smallest relation satisfying the following
admissible rules (where we always consider that A is the selected atom in Q and
mgu(FE) denotes the most general unifier of an equation set E [15]):

1) (Qlo)  —as  ((QA/v&B])b; ab),
if 0 = mgu({A’ = A}), (A/+;B;v) in P and B is not empty.
2) (QAl;o)  —as  ((Q[A/v])f;00),

if 0 = mgu({A’ = A}) and (A'+;;v) in P.
3) (Q[A];0)—as((Q[A/L]); o),

if there is no rule in P whose head unifies with A.

Note that 3! case is introduced to cope with (possible) unsuccessful admissible
derivations (this kind of step is useful when evaluating, for instance, an expres-
sion like “V(p, 0.8)”, which returns a value different from 0 even when there is no
program rule defining p). As usual, rules are taken renamed apart. We shall use
the symbols — 451, =452 and — 453 to distinguish between computation steps
performed by applying one of the specific admissible rules. Also, the application
of a rule on a step will be annotated as a superscript of the — 45 symbol.

Definition 2. Let P be a program, Q a goal and “id” the empty substitution.
An admissible derivation is a sequence (Q;id)—as ... —>a5(Q’;0). When Q' is a



Multi-adjoint logic program 7P:

Rl : p(X) <p &G(q(X), @aver(T(X), S(X))) with 0.9
Ro: qla) + with 0.8
R3: r(X) <« with 0.7
Ra: s(X)  « with 0.5
Admissible derivation:

(p(X); id) — a5
(&2 (0.9, &a(g(X1), Qaver (r(X 1), s(X1)))); {X/X1}) —ras2"?
(&p (0.9, &c(0.8, Quvex (r(a), s(a)))); {X/a, X1 /a}) —as2”
(&#(0.9, & (0.8, Qayer (0.7, s( M);{X/a, X1/a,X2/a}) —ag2 4
(&#(0.9, & (0.8, Qaver (0.7,0.5))); { X /a, X1/a, X2/a, X3/a})

Interpretive derivation:

(&»(0.9, & (0.8, Qayer (0.7,0.5))); { X /a}) —1s
(&2(0.9, &4(0.8,0.6)); {X/a}) rs
(&¢(0.9,0.6) 0.6); {X/a}) —1s
(0.54; {X/a}).

Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).

formula not containing atoms (i.e., a L-expression), the pair (Q'; o), where o =
O[Var(Q)], is called an admissible computed answer (a.c.a.) for that derivation.

Example 1. Let P be the multi-adjoint fuzzy logic program described in Figure
1 where the equation defining the average aggregator @,,e, must obviously has
the form: Qe (71,72) 2 (71 + 2)/2. Now, we can generate the admissible
derivation shown in Figure 1 (we underline the selected atom in each step). So,
the admissible computed answer (a.c.a.) in this case is composed by the pair:
(&9(0.9, &¢(0.8, Qayer (0.7,0.5))); 0), where 0 only refers to bindings related with
variables in the goal, i.e., 8 = {X/a, X1/a, X2/a, X3/a}[Var(p(X))] = {X/a}.

If we exploit all atoms of a given goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms (a
L-expression) which can be then directly interpreted w.r.t. lattice L by applying
the following definition we initially presented in [9]:

Definition 3 (Interpretive Step). Let P be a program, Q a goal and o a
substitution. Assume that [Q] is the truth function of connective @ in the lattice



(L, =) associated to P, such that, for values ri,...,7y,ny1 € L, we have that
[Q(r1,...,7n) = rny1. Then, we formalize the notion of interpretive computa-
tion as a state transition system, whose transition relation —5s C (€ x &) is
defined as the least one satisfying:

(Qla(r,....,ra)lio) =15 (QA(r1,...,mn)/Tnia]io)

Definition 4. Let P be a program and (Q;0) an a.c.a., that is, Q is a goal not
containing atoms (i.e., a L-expression). An interpretive derivation is a sequence
(Q;0)—=1s...—15(Q';0). When Q' = r € L, being (L,=<) the lattice associ-
ated to P, the state (r;o) is called a fuzzy computed answer (f.c.a.) for that
derivation.

Ezxample 2. If we complete the previous derivation of Example 1 by applying 3
interpretive steps in order to obtain the final f.c.a. (0.54; {X/a}), we generate
the interpretive derivation shown in Figure 1.

3 Truth-Degrees and Multi-adjoint Lattices in Practice

In [22] we describe a very easy way to model truth-degree lattices for being
included into the FLOPER tool. All relevant components of each lattice are
encapsulated inside a Prolog file which must necessarily contain the definitions
of a minimal set of predicates defining the set of valid elements (including special
mentions to the “top” and “bottom” ones), the full or partial ordering established
among them, as well as the repertoire of fuzzy connectives which can be used
for their subsequent manipulation. In order to simplify our explanation, assume
that file “bool.pl” refers to the simplest notion of (a binary) adjoint lattice, thus
implementing the following set of predicates:

— member/1 which is satisfied when being called with a parameter representing
a valid truth degree. In the case of finite lattices, it is also recommend to
implement members/1 which returns in one go a list containing the whole
set of truth degrees. For instance, in the Boolean case, both predicates
can be simply modeled by the Prolog facts: member (0) ., member (1) . and
members ([0,1]).

— bot/1 and top/1 obviously answer with the top and bottom element of the
lattice, respectively. Both are implemented into “bool.pl” as bot (0). and
top(1).

— leq/2 models the ordering relation among all the possible pairs of truth
degrees, and obviously it is only satisfied when it is invoked with two elements
verifying that the first parameter is equal or smaller than the second one. So,
in our example it suffices with including into “bool.pl” the facts: 1eq(0,X) .
and leq(X,1).

— Finally, given some fuzzy connectives of the form &upe;, (conjunction),
Viabel, (disjunction) or @Qqpe;, (aggregation) with arities ny, na and ng re-
spectively, we must provide clauses defining the connective predicates



member (X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattice)

bot (0). top(1). leq(X,Y) :- X=<Y.
and_luka(X,Y,Z) :- pri_add(X,Y,U1l),pri_sub(U1,1,U2),pri_max(0,U2,Z).
and_godel (X,Y,Z) :- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1) ,pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :- pri_prod(X,Y,U1l),pri_add(X,Y,U2),pri_sub(U2,U1,Z).
agr_aver (X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

agr_aver2(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),agr_aver(Z1,Z2,Z).
pri_add(X,Y,Z) - Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_prod(X,Y,Z) - Z is X x Y. pri_div(X,Y,Z) :- Z is X/Y.

Fig. 2. Multi-adjoint lattice modeling truth degrees in the real interval [0,1] (“num.pl”).

“and_label / (n1+1)”, “or_labely/ (na+1)” and “agr _labels/ (ng+1)”, where the
extra argument of each predicate is intended to contain the result achieved
after the evaluation of the proper connective. For instance, in the Boolean
case, the following two facts model in a very easy way the behaviour of the
classical conjunction operation: and_bool(0,_,0). and_bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl” when working with
MALP programs whose rules have the form:
“A <—bool &bool(Bh ceey Bn) with 17

.... being A and B; typical atoms', successfully mimics the behaviour of classical
Prolog programs where clauses accomplish with the shape “A : — Byp,..., B,”
As a novelty in the fuzzy setting, when evaluating goals according to the proce-
dural semantics described in Section 2, each output will contain the correspond-
ing Prolog’s substitution (i.e., the crisp notion of computed answer obtained by
means of classical SLD-resolution) together with the maximum truth degree 1.

On the other hand and following the Prolog style regulated by the previous
guidelines, in file “num.lat” we have included the clauses shown in Figure 2.
Here, we have modeled the more flexible lattice (that we will mainly use in our
examples, beyond the boolean case) which enables the possibility of working
with truth degrees in the infinite space (note that this condition disables the
implementation of the consulting predicate “members/1”) of the real numbers
between 0 and 1, allowing too the possibility of using conjunction and disjunction
operators recasted from the three typical fuzzy logics proposals described before

! Here we also assume that several versions of the classical conjunction operation have
been implemented with different arities.



(i.e., the Lukasiewicz, Gédel and product logics), as well as a useful description
for the hybrid aggregator average.

Note also that we have included definitions for auxiliary predicates, whose
names always begin with the prefix “pri_”. All of them are intended to describe
primitive/arithmetic operators (in our case +, —, *, /, min and max) in a
Prolog style, for being appropriately called from the bodies of clauses defining
predicates with higher levels of expressivity (this is the case for instance, of the
three kinds of fuzzy connectives we are considering: conjuntions, disjunctions
and agreggations).

Since till now we have considered two classical, fully ordered lattices (with a
finite and infinite number of elements, collected in files “bool.pl” and “num.pl”,
respectively), we wish now to introduce a different case coping with a very simple
lattice where not always any pair of truth degrees are comparable. So, consider
the following partially ordered multi-adjoint lattice in the diagram below for
which the conjunction and implication connectives based on the Gddel intuis-
tionistic logic described in Section 2 conform an adjoint pair.... but with the
particularity now that, in the general case, the Gddel’s conjunction must be
expressed as &g(x,y) £ inf(x,y), where it is important to note that we must
replace the use of “min” by “inf” in the connective definition.

member (bottom). member(alpha).
member (beta) . member (top) .

members ([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha). leq(alpha,top).
leq(beta,beta). leq(beta,top). leq(X,top).

and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf (bottom,X,bottom):-!.
pri_inf (alpha,X,alpha):-leq(alpha,X),!.
pri_inf(beta,X,beta):-leq(beta,X),!.
pri_inf (top,X,X):-!.

1 pri_inf(X,Y,bottom).

To this end, observe in the Prolog code accompanying the figure above that we
have introduced five clauses defining the new primitive operator “pri_inf/3”
which is intended to return the infimum of two elements. Related with this fact,
we must point out the following aspects:

— Note that since truth degrees o and 8 (or their corresponding representations
as Prolog terms “alpha” and “beta” used for instance in the definition(s)
of “members(s)/1”) are incomparable then, any call to goals of the form
“?- leq(alpha,beta).” or “?- leq(beta,alpha).” will always fail.



— Fortunately, a goal of the form “?- pri_inf (alpha,beta,X).”, or alterna-
tively “?- pri_inf (beta,alpha,X).”, instead of failing, successfully pro-
duces the desired result “X=bottom”.

— Note anyway that the implementation of the “pri_inf/1” predicate is manda-
tory for coding the general definition of “and_godel/3”.

4 Declarative Traces into f.c.a.’s using FLOPER

As detailed in [1, 19, 22, 23], our parser has been implemented by using the clas-
sical DCG’s (Definite Clause Grammars) resource of the Prolog language, since
it is a convenient notation for expressing grammar rules. Once the application
is loaded inside a Prolog interpreter (in our case, Sicstus Prolog v.3.12.5), it
shows a menu which includes options for loading, parsing, listing and saving
fuzzy programs, as well as for executing fuzzy goals.

All these actions are based in the translation of the fuzzy code into standard
Prolog code. The key point is to extend each atom with an extra argument,
called truth variable of the form “ TV;”, which is intended to contain the truth
degree obtained after the subsequent evaluation of the atom. For instance, the
first clause in our target program is translated into:

p(X,_TVO) :- q(X,_TV1),
r(X,_TV2),
s(X,_TV3),
agr_aver (_TV2,_TV3,_TV4),
and_godel(_TV1,_TV4,_TV5),
and_prod(0.9,_TV5,_TVO).

Moreover, the second clause in our target program in Figure 1, becomes the
pure Prolog fact “q(a,0.8)” while a fuzzy goal like “p(X)”, is translated into
the pure Prolog goal: “p(X,Truth_degree)” (note that the last truth degree
variable is not anonymous now) for which the Prolog interpreter returns the
desired fuzzy computed answer [Truth degree = 0.54,X = a]. The previous set
of options suffices for running fuzzy programs (the “run” choice also uses the
clauses contained in “num.pl”, which represent the default lattice): all internal
computations (including compiling and executing) are pure Prolog derivations
whereas inputs (fuzzy programs and goals) and outputs (fuzzy computed an-
swers) have always a fuzzy taste, thus producing the illusion on the final user of
being working with a purely fuzzy logic programming tool.

On the other hand, in [22] we explain that FLOPER has been recently
equipped with new options, called “lat” and “show”, for allowing the possibility
of respectively changing and displaying the multi-adjoint lattice associated to a
given program. Assume that “new num.pl” contains the same Prolog code than
“num.pl” with the exception of the definition regarding the average aggregator).
Now, instead of computing the average of two truth degrees, let us consider a new



version which computes the average between the results achieved after applying
to both elements the disjunctions operators described by Gédel and Lukasiewicz,
that is: Quyer (71, 22) 2 (Vo(x1, 22) + Vi(x1,22)) *0.5. The corresponding Prolog
clause modeling such definition into the “new num.pl” file could be:

agr_aver (X,Y,Z) :- or_godel (X,Y,Z1),
or_luka(X,Y,Z2),
pri_add(z1,22,7Z3),
pri_prod(Z3,0.5,Z).

and now, by selecting again the “run” option (without changing the program and
goal), the system would display the new solution: [Truth degree = 0.72,X = a].

Let us consider now the so called domain of weight values VV used in the QLP
(Qualified Logic Programming) framework of [24], whose elements are intended
to represent proof costs, measured as the weighted depth of proof trees (although
close to MALP, the QLP scheme allows a lesser repertoire of connectives in the
body of program rules). In essence, W can be seen as lattice (R U oo, >), where
> is the reverse of the usual numerical ordering (with co > d for any d € R) and
thus, the bottom elements is co and the top element is 0 (and not vice versa).

By using again the “lat” option of FLOPER, we can associate this lattice
W to the program seen before after changing the “weights” of each program rule
to 1 (the underlying idea is that “the use of each program rule in a derivation
implies the application of one admissible step”). Moreover, since in this lattice
the arithmetic operation “+” plays the role of a conjunction (¢-norm) connective,
we assume the definitions of the set of connectives appearing in the program
mapped to “+7 (i.e. &p(x,y) £ 2 +y, &e(z,y) 2 2 +y and Quuer(2,y) £ 2 + 7).
Now, for goal “p(X)” we could generate an admissible derivation similar to the
one seen in Figure 1, but ending now with (&p(1, &¢(1, Qayer(1,1))); {X/a})
And since: &p(1, &¢(1, Qayer(1,1))) = +(1,4+(1,+(1,1))) = 4, the final fuzzy
computed answer or f.c.a. (4;{X/a}) indicates that goal “p(X)” holds when X
is a, as proved after applying 4 admissible steps, as wanted.

Moreover, we can also conceive a more powerful lattice expressed as the
cartesian product of the one seen in Figure 2 (real numbers in the interval [0, 1])
and W. Now, each element has two components, coping with truth degrees and
cost measures. In order to be loaded into FLOPER, we must define in Prolog
the new lattice, whose elements could be expressed, for instance, as data terms
of the form “info (Fuzzy_Truth_Degree,Cost_Number_Steps)”. Moreover, the
clauses defining some predicates required for managing them are:

member (info(X,Y)) :- number(X), 0=<X, X=<1, number(Y), Y=<0.

leq(info(X1,Y1),info(X2,Y2)) :- X1=<X2, Y1>=Y2. top(info(1,0)).

and_godel (info(X1,Y1),info(X2,Y2),info(X3,Y3)) :- pri_min(X1,X2,X3),
pri_add(Y1,Y2,Y3).

Finally, if the weights assigned to the rules of our running example be
“info(0.9,1)” for Ry, “info(0.8,1)” for Ro, “info(0.7,1)” for Rz and
“info(0.5,1)” for Ry, then, for goal “p(X)” we would obtain the desired f.c.a.
(info(0.54,4); {X/a}) with the obvious meaning that we need 4 admissible steps
to prove that the query is true at a 56 % degree when X is a”.
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member (info (X,_)) : -number (X) ,0=<X,X=<1. bot (info(0,_)).
top(info(1,.)). leq(info(X1,_),info(X2,_)):- X1 =< X2.

and_prod(info(X1,X2),info(Y¥1,Y2),info(Z1,Z2)) :-
pri_prod(X1,Y1,Z1,DatPROD) ,pri_app(X2,Y2,Datl),
pri_app(Datil,’&PROD.’,Dat2) ,pri_app(Dat2,DatPROD,Z2) .
or_godel (info(X1,X2) ,info(Y1,Y2),info(Z1,Z22)):-
pri_max(X1,Y1,Z1,DatMAX) ,pri_app(X2,Y2,Datl),
pri_app(Datl,’|GODEL.’,Dat2),pri_app(Dat2,DatMAX,Z2).
or_luka(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
pri_add(X1,Y1,U1,DatADD),pri_min(U1,1,Z1,DatMIN),
pri_app(X2,Y2,Datl) ,pri_app(Datl,’ |LUKA.’,Dat2),
pri_app(Dat2,DatADD,Dat3) ,pri_app(Dat3,DatMIN,Z2) .
agr_aver (info(X1,X2),info(Y1,Y2),info(Z1,Z22)):-
pri_add(X1,Y1,Aux,DatADD) ,pri_div(Aux,2,Z1,DatDIV),
pri_app(X2,Y2,Datl) ,pri_app(Datl,’@AVER.’,Dat2),
pri_app(Dat2,DatADD,Dat3) ,pri_app(Dat3,DatDIV,Z2).
agr_aver2(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
or_godel (info(X1,”’),info(Y1,’’),Za),
or_luka(info(X1,’’),info(Y1,°?),Zb),
agr_aver(Za,Zb,info(Z1,Dat3)) ,pri_app(X2,Y2,Datl),
pri_app(Datl,’@AVER2.’,Dat2) ,pri_app(Dat2,Dat3,Z2).

pri_add(X,Y,Z,’#ADD.’) - Z is X+Y. pri_sub(X,Y,Z,’#SUB.’) - Z is X-Y.
pri_prod(X,Y,Z,’#PR0OD.’):-Z is X * Y. pri_div(X,Y,Z,’#DIV.’) :- Z is X/Y.

pri_min(X,Y,Z,’#MIN.’) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_max(X,Y,Z, #MAX.?) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_app(X,Y,Z) :- name (X,L1) ,name(Y,L2) ,append(L1,L2,L3) ,name(Z,L3).
append ([],X,X). append ([X|Xs],Y, [X|Zs]) : -append (Xs,Y,Zs) .

Fig. 3. Multi-adjoint lattice modeling truth degrees with labels.

One step beyond, in what follows we are going to design a much more complex
lattice to cope with declarative traces. Its elements must have two components,
taking into account truth degrees and “labels” collecting information about the
program rules, fuzzy connectives and primitive operators used when executing
programs. In order to be loaded into FLOPER, we need to define again the new
lattice as a Prolog program, whose elements will be expressed now as data terms
of the form “info(Fuzzy_Truth_Degree, Label)” as shown in Figure 3 (note
that the complex version of the average connective is called here agr aver2 and
invokes the simple version agr aver).

Here, we see that when implementing for instance the conjunction operator
of the Product Logic, in the second component of our extended notion of “truth
degree”’, we have appended the labels of its arguments with the label >&PROD.’
(see clauses defining and_prod, pri_app and append). Of course, in the fuzzy
program to be run, we must also take into account the use of labels associated
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to the program rules. For instance, in set of rules of our example (where we use
the complex version of average, i.e., @aver?2 in the first rule) must have the form:

p(X) <prod &godel(q(X),0Qaver2(r(X),s(X))) with info(0.9,’RULEL.’).
q(a) with info(0.8,’RULE2.7).
r(X) with info(0.7,’RULE3.?).
s(X) with  info(0.5,’RULE4.’).

Now, the reader can easily tests that, after executing goal p(X), we obtain
the desired fuzzy computed answers which includes the desired declarative trace
regarding program-rules/connective-calls/primitive-operators evaluated till find-
ing the final solution:

>> run.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.
QAVER2. | GODEL. #MAX . | LUKA.
#ADD . #MIN.QAVER.#ADD.#DIV.
&GODEL . #MIN.&PROD. #PROD.), X=al

In this fuzzy computed answer we obtain both the truth value (0.72) and sub-
stitution (X = a) associated to our goal, but also the sequence of program rules
exploited when applying admissible steps as well as the proper fuzzy connec-
tives evaluated during the interpretive phase, also detailing the set of primitive
operators (of the form #label) they call.

Strongly related with this, in [20] we proposed a variant of the original notion
of interpretive step (see Definition 3) which was able to distinguish calls to fuzzy
connectives (conjunctions, disjunctions and aggregations) and computations de-
voted to the evaluation of primitive operators, thus providing cost measures
about the complexity of connectives. Such new notion, called small interpretive
step, has been recently implemented into FLOPER, as described in [23], in order
to generate “evaluation trees” like the one shown in Figure 4. However, compared
with our present approach where we don’t need any additional modification of
the underlying execution machinery, the implementation of [23] required strong
changes in the core of the systems, including a new representation of the fuzzy
code much more involved than the one based in the compilation to Prolog code
described at the beginning of this section.

The research line on cost measures mentioned above was motivated after
evidencing in our fuzzy fold/unfold framework described in [4, 8] that it is pos-
sible to improve the “shape” of a set of program rules but with the “risk” of
automatically generating a set of artificial connectives (see the definition of the
aggregation transformation described in [4]) which necessarily invoke other con-
nectives, thus producing nested definitions of aggregators. For this reason, it is
very important to “calibrate” the complexities of these new connectives (i.e., to
visualize the number of direct/indirect calls they perform to other connectives
and/or primitive operators) in order to detect if the whole transformation pro-
cess really returns improved sets of program rules and connective definitions. In
this sense, the present work can be seen as a first stage to achieve this goal.
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Fig. 4. Building a graphical interface for FLOPER.

5 Conclusions and Future Work

The experience acquired in our research group regarding the design of techniques
and methods based on fuzzy logic in close relationship with the so-called multi-
adjoint logic programming approach ([9,4,8,10,11,6,7,20,21]), has motivated
our interest for putting in practice all our developments around the design of
the FLOPER environment [19,23,22]. Our philosophy is to friendly connect
this fuzzy framework with Prolog programmers: our system, apart for being
implemented in Prolog, also translates the fuzzy code to classical clauses (in
two different representations) and, what is more, in this paper we have also
shown that a wide range of lattices modeling powerful and flexible notions of
truth degrees also admit a nice rule-based characterizations into Prolog. The
main purpose of this work has been the illustration of an interesting kind of
lattices where truth-degrees are accompanied with labels, having the ability of
augmenting fuzzy computed answers with declarative traces (i.e., by listing the
sequence of program rules, connective calls and primitive operators used for
finding solutions) without requiring additional cost.

Apart for our ongoing efforts devoted to providing FLOPER with a graphical
interface as illustrated in Figure 42, nowadays we are especially interested in ex-

? Here we show an unfolding tree evidencing an infinite branch where states are colored
in yellow and program rules exploited in admissible steps are enclosed in circles.
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tending the tool with testing techniques for automatically checking that lattices
modeled according the Prolog-based method established in this paper, verify the
requirements of our fuzzy setting (with special mention to the adjoint property).
For the future, we plan to implementing all the manipulation tasks developed
in our group on fold/unfold transformations [4, 8], partial evaluation [11] and
thresholded tabulation [7]. Moreover, we continue working in the development of
our first real-world application (written in MALP and compiled with FLOPER)
which is devoted to manipulate XML documents via fuzzy extension of the popu-
lar XPath language (please, visit url http://www.dsi.uclm.es/investigacion
/dect/FuzzyXPath.htm ).
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