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During the last de
ades, several fuzzy logi
 programming systems have beendeveloped, su
h as [2, 3, 5, 14, 12, 27℄, the QLP s
heme of [24℄ and the many-valued logi
 programming language of [25, 26℄, where the 
lassi
al inferen
eme
hanism of SLD�Resolution has been repla
ed by a fuzzy variant whi
h isable to handle partial truth and to reason with un
ertainty. This is also the 
aseof multi-adjoint logi
 programming approa
h MALP [18, 16, 17℄, a powerful andpromising approa
h in the area. In this framework, a program 
an be seen asa set of rules ea
h one annotated by a truth degree and a goal is a query tothe system plus a substitution (initially the empty substitution, denoted by id).Admissible steps (a generalization of the 
lassi
al modus ponens inferen
e rule)are systemati
ally applied on goals in a similar way to 
lassi
al resolution stepsin pure logi
 programming, thus returning a state 
omposed by a 
omputed sub-stitution together with an expression where all atoms have been exploited. Next,during the so 
alled interpretive phase (see [9, 20, 23℄), this expression is inter-preted under a given latti
e, hen
e returning a pair ⟨truth degree; substitution⟩whi
h is the fuzzy 
ounterpart of the 
lassi
al notion of 
omputed answer usedin pure logi
 programming.The main goal of the present paper is to present the bene�ts of introdu
ingdi�erent notions of multi-adjoint latti
es for managing truth degrees even in asingle FLOPER's work-session without 
hanging a given MALP program andgoal. In parti
ular, we are espe
ially interested now in showing the 
ollaterale�e
t of these a
tions regarding debugging 
apabilities (i.e., the generation ofde
larative tra
es inside fuzzy 
omputed answers).The stru
ture of the paper is as follows. In Se
tion 2, we summarize themain features of multi-adjoint logi
 programming, both language syntax andpro
edural semanti
s. Se
tion 3 presents a dis
ussion on multi-adjoint latti
esand their ni
e representation by using standard Prolog 
ode, in order to fa
ilitateits further assimilation inside the FLOPER tool. As des
ribed in Se
tion 4, wepropose too a sophisti
ated kind of latti
es 
apable for taking into a

ount detailson de
larative tra
es, su
h as the sequen
e of 
omputations (regarding programrules, fuzzy 
onne
tives and primitive operators) needed for evaluating a givengoal. Finally, in Se
tion 5 we give our 
on
lusions and some lines of future work.2 Multi-Adjoint Logi
 ProgrammingThis se
tion summarizes the main features of multi-adjoint logi
 programming(see [18, 16, 17℄ for a 
omplete formulation of this framework). In what follows,we will use the abbreviation MALP for referen
ing programs belonging to thissetting.2.1 MALP SyntaxWe work with a �rst order language, ℒ, 
ontaining variables, 
onstants, fun
-tion symbols, predi
ate symbols, and several (arbitrary) 
onne
tives to in
rease2



language expressiveness: impli
ation 
onne
tives (←1,←2, . . .); 
onjun
tive op-erators (denoted by &1,&2, . . .), disjun
tive operators (∨1,∨2, . . .), and hybridoperators (usually denoted by @1,@2, . . .), all of them are grouped under thename of �aggregators�.Aggregation operators are useful to des
ribe/spe
ify user preferen
es. Anaggregation operator, when interpreted as a truth fun
tion, may be an arithmeti
mean, a weighted sum or in general any monotone appli
ation whose argumentsare values of a 
omplete bounded latti
e L. For example, if an aggregator @ isinterpreted as [[@]](x, y, z) = (3x+2y+z)/6, we are giving the highest preferen
eto the �rst argument, then to the se
ond, being the third argument the leastsigni�
ant.Although these 
onne
tives are binary operators, we usually generalize themas fun
tions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truthfun
tion for an n-ary aggregation operator [[@]] : Ln → L is required to bemonotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.Additionally, our language ℒ 
ontains the values of a multi-adjoint latti
e
⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a 
olle
tion of adjoint pairs ⟨←i,&i⟩,where ea
h &i is a 
onjun
tor whi
h is intended to the evaluation of modusponens [18℄. More exa
tly, in this setting the following items must be satis�ed:� ⟨L,⪯⟩ is a bounded latti
e, i.e. it has bottom and top elements, denoted by
⊥ and ⊤, respe
tively.� Ea
h operation &i is in
reasing in both arguments.� Ea
h operation ←i is in
reasing in the �rst argument and de
reasing in these
ond.� If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we havethat: x ⪯ (y ←i z) if and only if (x&i z) ⪯ y.This last 
ondition, 
alled adjoint property, 
ould be 
onsidered the most impor-tant feature of the framework (in 
ontrast with many other approa
hes) whi
hjusti�es most of its properties regarding 
ru
ial results for soundness, 
omplete-ness, appli
ability, et
.In general, L may be the 
arrier of any 
omplete bounded latti
e where a

L-expression is a well-formed expression 
omposed by values and 
onne
tives of
L, as well as variable symbols and primitive operators (i.e., arithmeti
 symbolssu
h as ∗,+,min, et
...).In what follows, we assume that the truth fun
tion of any 
onne
tive @ in L isgiven by its 
orresponding 
onne
tive de�nition, that is, an equation of the form
@(x1, . . . , xn) ≜ E, where E is a L-expression not 
ontaining variable symbolsapart from x1, . . . , xn. For instan
e, in what follows we will be mainly 
on
ernedwith the following 
lassi
al set of adjoint pairs (
onjun
tors and impli
ations)in ⟨[0, 1],≤⟩, where labels L, G and P mean respe
tively �ukasiewi
z logi
, Gödelintuitionisti
 logi
 and produ
t logi
 (whi
h di�erent 
apabilities for modelingpessimist, optimist and realisti
 s
enarios, respe
tively):3



&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Produ
t
&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise Gödel
&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} �ukasiewi
zA rule is a formula H ←i ℬ, where H is an atomi
 formula (usually 
alledthe head) and ℬ (whi
h is 
alled the body) is a formula built from atomi
 for-mulas B1, . . . , Bn � n ≥ 0 �, truth values of L, 
onjun
tions, disjun
tions andaggregations. A goal is a body submitted as a query to the system. Roughlyspeaking, a multi-adjoint logi
 program is a set of pairs ⟨ℛ;�⟩ (we often write�ℛ witℎ ��), where ℛ is a rule and � is a truth degree (a value of L) expressingthe 
on�den
e of a programmer in the truth of rule ℛ. By abuse of language,we sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.2.2 MALP Pro
edural Semanti
sThe pro
edural semanti
s of the multi�adjoint logi
 language ℒ 
an be thoughtof as an operational phase (based on admissible steps) followed by an interpre-tive one. In the following, C[A] denotes a formula where A is a sub-expressionwhi
h o

urs in the �possibly empty� 
ontext C[]. Moreover, C[A/A′] means therepla
ement of A by A′ in 
ontext C[], whereas Var(s) refers to the set of dis-tin
t variables o

urring in the synta
ti
 obje
t s, and �[Var(s)] denotes thesubstitution obtained from � by restri
ting its domain to Var(s).De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program
P, an admissible 
omputation is formalized as a state transition system, whosetransition relation →AS ⊆ (ℰ×ℰ) is the smallest relation satisfying the followingadmissible rules (where we always 
onsider that A is the sele
ted atom in Q and
mgu(E) denotes the most general uni�er of an equation set E [13℄):1) ⟨Q[A];�⟩ →AS ⟨(Q[A/v&iℬ])�;��⟩,if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P and ℬ is not empty.2) ⟨Q[A];�⟩ →AS ⟨(Q[A/v])�;��⟩,if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.3) ⟨Q[A];�⟩→AS⟨(Q[A/⊥]);�⟩,if there is no rule in P whose head uni�es with A.Note that 3tℎ 
ase is introdu
ed to 
ope with (possible) unsu

essful admissiblederivations (this kind of step is useful when evaluating, for instan
e, an expres-sion like �∨(p, 0.8)�, whi
h returns a value di�erent from 0 even when there is noprogram rule de�ning p). As usual, rules are taken renamed apart. We shall usethe symbols →AS1, →AS2 and →AS3 to distinguish between 
omputation stepsperformed by applying one of the spe
i�
 admissible rules. Also, the appli
ationof a rule on a step will be annotated as a supers
ript of the →AS symbol.De�nition 2. Let P be a program, Q a goal and �id� the empty substitution.An admissible derivation is a sequen
e ⟨Q; id⟩→AS . . .→AS⟨Q

′; �⟩. When Q′ is a4



Multi-adjoint logi
 program P :
ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0.9
ℛ2 : q(a) ← witℎ 0.8
ℛ3 : r(X) ← witℎ 0.7
ℛ4 : s(X) ← witℎ 0.5Admissible derivation:
⟨p(X); id⟩ →AS1

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩Interpretive derivation:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩ →IS

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩ →IS

⟨&P(0.9, 0.6); {X/a}⟩ →IS

⟨0.54; {X/a}⟩.Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).formula not 
ontaining atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is 
alled an admissible 
omputed answer (a.
.a.) for that derivation.Example 1. Let P be the multi-adjoint fuzzy logi
 program des
ribed in Figure1 where the equation de�ning the average aggregator @aver must obviously hasthe form: @aver(x1, x2) ≜ (x1 + x2)/2. Now, we 
an generate the admissiblederivation shown in Figure 1 (we underline the sele
ted atom in ea
h step). So,the admissible 
omputed answer (a.
.a.) in this 
ase is 
omposed by the pair:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only refers to bindings related withvariables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.If we exploit all atoms of a given goal, by applying admissible steps as mu
h asneeded during the operational phase, then it be
omes a formula with no atoms (a
L-expression) whi
h 
an be then dire
tly interpreted w.r.t. latti
e L by applyingthe following de�nition we initially presented in [9℄:De�nition 3 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth fun
tion of 
onne
tive @ in the latti
e5



⟨L,⪯⟩ asso
iated to P, su
h that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive 
omputa-tion as a state transition system, whose transition relation →IS ⊆ (ℰ × ℰ) isde�ned as the least one satisfying:
⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩De�nition 4. Let P be a program and ⟨Q;�⟩ an a.
.a., that is, Q is a goal not
ontaining atoms (i.e., a L-expression). An interpretive derivation is a sequen
e

⟨Q;�⟩→IS . . .→IS⟨Q
′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the latti
e asso
i-ated to P, the state ⟨r;�⟩ is 
alled a fuzzy 
omputed answer (f.
.a.) for thatderivation.Example 2. If we 
omplete the previous derivation of Example 1 by applying 3interpretive steps in order to obtain the �nal f.
.a. ⟨0.54; {X/a}⟩, we generatethe interpretive derivation shown in Figure 1.3 Truth-Degrees and Multi-adjoint Latti
es in Pra
ti
eIn [22℄ we des
ribe a very easy way to model truth-degree latti
es for beingin
luded into the FLOPER tool. All relevant 
omponents of ea
h latti
e areen
apsulated inside a Prolog �le whi
h must ne
essarily 
ontain the de�nitionsof a minimal set of predi
ates de�ning the set of valid elements (in
luding spe
ialmentions to the �top� and �bottom� ones), the full or partial ordering establishedamong them, as well as the repertoire of fuzzy 
onne
tives whi
h 
an be usedfor their subsequent manipulation. In order to simplify our explanation, assumethat �le �bool.pl� refers to the simplest notion of (a binary) adjoint latti
e, thusimplementing the following set of predi
ates:� member/1 whi
h is satis�ed when being 
alled with a parameter representinga valid truth degree. In the 
ase of �nite latti
es, it is also re
ommend toimplement members/1 whi
h returns in one go a list 
ontaining the wholeset of truth degrees. For instan
e, in the Boolean 
ase, both predi
ates
an be simply modeled by the Prolog fa
ts: member(0)., member(1). andmembers([0,1℄).� bot/1 and top/1 obviously answer with the top and bottom element of thelatti
e, respe
tively. Both are implemented into �bool.pl� as bot(0). andtop(1).� leq/2 models the ordering relation among all the possible pairs of truthdegrees, and obviously it is only satis�ed when it is invoked with two elementsverifying that the �rst parameter is equal or smaller than the se
ond one. So,in our example it su�
es with in
luding into �bool.pl� the fa
ts: leq(0,X).and leq(X,1).� Finally, given some fuzzy 
onne
tives of the form &label1 (
onjun
tion),

∨label2 (disjun
tion) or @label3 (aggregation) with arities n1, n2 and n3 re-spe
tively, we must provide 
lauses de�ning the 
onne
tive predi
ates6



member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite latti
e)bot(0). top(1). leq(X,Y) :- X=<Y.and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z) :- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).agr_aver2(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),agr_aver(Z1,Z2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2.Multi-adjoint latti
e modeling truth degrees in the real interval [0,1℄ (�num.pl�).�and_label1/(n1+1)�, �or_label2/(n2+1)� and �agr_label3/(n3+1)�, where theextra argument of ea
h predi
ate is intended to 
ontain the result a
hievedafter the evaluation of the proper 
onne
tive. For instan
e, in the Boolean
ase, the following two fa
ts model in a very easy way the behaviour of the
lassi
al 
onjun
tion operation: and_bool(0,_,0). and_bool(1,X,X).The reader 
an easily 
he
k that the use of latti
e �bool.pl� when working withMALP programs whose rules have the form:�A ←bool &bool(B1, . . . , Bn) witℎ 1�.... being A and Bi typi
al atoms1, su

essfully mimi
s the behaviour of 
lassi
alProlog programs where 
lauses a

omplish with the shape �A : − B1, . . . , Bn�.As a novelty in the fuzzy setting, when evaluating goals a

ording to the pro
e-dural semanti
s des
ribed in Se
tion 2, ea
h output will 
ontain the 
orrespond-ing Prolog's substitution (i.e., the 
risp notion of 
omputed answer obtained bymeans of 
lassi
al SLD-resolution) together with the maximum truth degree 1.On the other hand and following the Prolog style regulated by the previousguidelines, in �le �num.lat� we have in
luded the 
lauses shown in Figure 2.Here, we have modeled the more �exible latti
e (that we will mainly use in ourexamples, beyond the boolean 
ase) whi
h enables the possibility of workingwith truth degrees in the in�nite spa
e (note that this 
ondition disables theimplementation of the 
onsulting predi
ate �members/1�) of the real numbersbetween 0 and 1, allowing too the possibility of using 
onjun
tion and disjun
tionoperators re
asted from the three typi
al fuzzy logi
s proposals des
ribed before1 Here we also assume that several versions of the 
lassi
al 
onjun
tion operation havebeen implemented with di�erent arities.7



(i.e., the �ukasiewi
z, Gödel and produ
t logi
s), as well as a useful des
riptionfor the hybrid aggregator average.Note also that we have in
luded de�nitions for auxiliary predi
ates, whosenames always begin with the pre�x �pri_�. All of them are intended to des
ribeprimitive/arithmeti
 operators (in our 
ase +, −, ∗, /, min and max) in aProlog style, for being appropriately 
alled from the bodies of 
lauses de�ningpredi
ates with higher levels of expressivity (this is the 
ase for instan
e, of thethree kinds of fuzzy 
onne
tives we are 
onsidering: 
onjuntions, disjun
tionsand agreggations).Sin
e till now we have 
onsidered two 
lassi
al, fully ordered latti
es (with a�nite and in�nite number of elements, 
olle
ted in �les �bool.pl� and �num.pl�,respe
tively), we wish now to introdu
e a di�erent 
ase 
oping with a very simplelatti
e where not always any pair of truth degrees are 
omparable. So, 
onsiderthe following partially ordered multi-adjoint latti
e in the diagram below forwhi
h the 
onjun
tion and impli
ation 
onne
tives based on the Gödel intuis-tionisti
 logi
 des
ribed in Se
tion 2 
onform an adjoint pair.... but with theparti
ularity now that, in the general 
ase, the Gödel 's 
onjun
tion must beexpressed as &G(x, y) ≜ inf(x, y), where it is important to note that we mustrepla
e the use of �min� by �inf � in the 
onne
tive de�nition.
⊤

� �

⊥

member(bottom). member(alpha).member(beta). member(top).members([bottom,alpha,beta,top℄).leq(bottom,X). leq(alpha,alpha). leq(alpha,top).leq(beta,beta). leq(beta,top). leq(X,top).and_godel(X,Y,Z) :- pri_inf(X,Y,Z).pri_inf(bottom,X,bottom):-!.pri_inf(alpha,X,alpha):-leq(alpha,X),!.pri_inf(beta,X,beta):-leq(beta,X),!.pri_inf(top,X,X):-!.pri_inf(X,Y,bottom).To this end, observe in the Prolog 
ode a

ompanying the �gure above that wehave introdu
ed �ve 
lauses de�ning the new primitive operator �pri_inf/3�whi
h is intended to return the in�mum of two elements. Related with this fa
t,we must point out the following aspe
ts:� Note that sin
e truth degrees � and � (or their 
orresponding representationsas Prolog terms �alpha� and �beta� used for instan
e in the de�nition(s)of �members(s)/1�) are in
omparable then, any 
all to goals of the form�?- leq(alpha,beta).� or �?- leq(beta,alpha).� will always fail.8



� Fortunately, a goal of the form �?- pri_inf(alpha,beta,X).�, or alterna-tively �?- pri_inf(beta,alpha,X).�, instead of failing, su

essfully pro-du
es the desired result �X=bottom�.� Note anyway that the implementation of the �pri_inf/1� predi
ate is manda-tory for 
oding the general de�nition of �and_godel/3�.4 De
larative Tra
es into f.
.a.'s using FLOPERAs detailed in [1, 19, 22, 23℄, our parser has been implemented by using the 
las-si
al DCG's (De�nite Clause Grammars) resour
e of the Prolog language, sin
eit is a 
onvenient notation for expressing grammar rules. On
e the appli
ationis loaded inside a Prolog interpreter (in our 
ase, Si
stus Prolog v.3.12.5), itshows a menu whi
h in
ludes options for loading, parsing, listing and savingfuzzy programs, as well as for exe
uting fuzzy goals.All these a
tions are based in the translation of the fuzzy 
ode into standardProlog 
ode. The key point is to extend ea
h atom with an extra argument,
alled truth variable of the form �_TVi�, whi
h is intended to 
ontain the truthdegree obtained after the subsequent evaluation of the atom. For instan
e, the�rst 
lause in our target program is translated into:p(X,_TV0) :- q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).Moreover, the se
ond 
lause in our target program in Figure 1, be
omes thepure Prolog fa
t �q(a,0.8)� while a fuzzy goal like �p(X)�, is translated intothe pure Prolog goal: �p(X,Truth_degree)� (note that the last truth degreevariable is not anonymous now) for whi
h the Prolog interpreter returns thedesired fuzzy 
omputed answer [Truth_degree = 0.54, X = a]. The previous setof options su�
es for running fuzzy programs (the �run� 
hoi
e also uses the
lauses 
ontained in �num.pl�, whi
h represent the default latti
e): all internal
omputations (in
luding 
ompiling and exe
uting) are pure Prolog derivationswhereas inputs (fuzzy programs and goals) and outputs (fuzzy 
omputed an-swers) have always a fuzzy taste, thus produ
ing the illusion on the �nal user ofbeing working with a purely fuzzy logi
 programming tool.On the other hand, in [22℄ we explain that FLOPER has been re
entlyequipped with new options, 
alled �lat� and �show�, for allowing the possibilityof respe
tively 
hanging and displaying the multi-adjoint latti
e asso
iated to agiven program. Assume that �new_num.pl� 
ontains the same Prolog 
ode than�num.pl� with the ex
eption of the de�nition regarding the average aggregator).Now, instead of 
omputing the average of two truth degrees, let us 
onsider a new9



version whi
h 
omputes the average between the results a
hieved after applyingto both elements the disjun
tions operators des
ribed by Gödel and �ukasiewi
z,that is: @aver(x1, x2) ≜ (∨G(x1, x2)+∨L(x1, x2))∗ 0.5. The 
orresponding Prolog
lause modeling su
h de�nition into the �new_num.pl� �le 
ould be:agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),pri_add(Z1,Z2,Z3),pri_prod(Z3,0.5,Z).and now, by sele
ting again the �run� option (without 
hanging the program andgoal), the system would display the new solution: [Truth_degree = 0.72, X = a].Let us 
onsider now the so 
alled domain of weight valuesW used in the QLP(Quali�ed Logi
 Programming) framework of [24℄, whose elements are intendedto represent proof 
osts, measured as the weighted depth of proof trees (although
lose to MALP, the QLP s
heme allows a lesser repertoire of 
onne
tives in thebody of program rules). In essen
e, W 
an be seen as latti
e ⟨ℝ ∪∞,≥⟩, where
≥ is the reverse of the usual numeri
al ordering (with ∞ ≥ d for any d ∈ ℝ) andthus, the bottom elements is ∞ and the top element is 0 (and not vi
e versa).By using again the �lat� option of FLOPER, we 
an asso
iate this latti
e
W to the program seen before after 
hanging the �weights� of ea
h program ruleto 1 (the underlying idea is that �the use of ea
h program rule in a derivationimplies the appli
ation of one admissible step�). Moreover, sin
e in this latti
ethe arithmeti
 operation �+� plays the role of a 
onjun
tion (t-norm) 
onne
tive,we assume the de�nitions of the set of 
onne
tives appearing in the programmapped to �+� (i.e. &P(x, y) ≜ x+ y, &G(x, y) ≜ x+ y and @aver(x, y) ≜ x+ y).Now, for goal �p(X)� we 
ould generate an admissible derivation similar to theone seen in Figure 1, but ending now with ⟨&P(1,&G(1,@aver(1, 1))); {X/a}⟩And sin
e: &P(1,&G(1,@aver(1, 1))) = +(1,+(1,+(1, 1))) = 4, the �nal fuzzy
omputed answer or f.
.a. ⟨4; {X/a}⟩ indi
ates that goal �p(X)� holds when Xis a, as proved after applying 4 admissible steps, as wanted.Moreover, we 
an also 
on
eive a more powerful latti
e expressed as the
artesian produ
t of the one seen in Figure 2 (real numbers in the interval [0, 1])and W . Now, ea
h element has two 
omponents, 
oping with truth degrees and
ost measures. In order to be loaded into FLOPER, we must de�ne in Prologthe new latti
e, whose elements 
ould be expressed, for instan
e, as data termsof the form �info(Fuzzy_Truth_Degree,Cost_Number_Steps)�. Moreover, the
lauses de�ning some predi
ates required for managing them are:member(info(X,Y)) :- number(X), 0=<X, X=<1, number(Y), Y=<0.leq(info(X1,Y1),info(X2,Y2)) :- X1=<X2, Y1>=Y2. top(info(1,0)).and_godel(info(X1,Y1),info(X2,Y2),info(X3,Y3)) :- pri_min(X1,X2,X3),pri_add(Y1,Y2,Y3).Finally, if the weights assigned to the rules of our running example be�info(0.9,1)� for ℛ1, �info(0.8,1)� for ℛ2, �info(0.7,1)� for ℛ3 and�info(0.5,1)� for ℛ4, then, for goal �p(X)� we would obtain the desired f.
.a.
⟨info(0.54, 4); {X/a}⟩with the obvious meaning that we need 4 admissible stepsto prove that the query is true at a 56 % degree when X is a�.10



member(info(X,_)):-number(X),0=<X,X=<1. bot(info(0,_)).top(info(1,_)). leq(info(X1,_),info(X2,_)):- X1 =< X2.and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).or_godel(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_max(X1,Y1,Z1,DatMAX),pri_app(X2,Y2,Dat1),pri_app(Dat1,'|GODEL.',Dat2),pri_app(Dat2,DatMAX,Z2).or_luka(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_add(X1,Y1,U1,DatADD),pri_min(U1,1,Z1,DatMIN),pri_app(X2,Y2,Dat1),pri_app(Dat1,'|LUKA.',Dat2),pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatMIN,Z2).agr_aver(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_add(X1,Y1,Aux,DatADD),pri_div(Aux,2,Z1,DatDIV),pri_app(X2,Y2,Dat1),pri_app(Dat1,'�AVER.',Dat2),pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatDIV,Z2).agr_aver2(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-or_godel(info(X1,''),info(Y1,''),Za),or_luka(info(X1,''),info(Y1,''),Zb),agr_aver(Za,Zb,info(Z1,Dat3)),pri_app(X2,Y2,Dat1),pri_app(Dat1,'�AVER2.',Dat2),pri_app(Dat2,Dat3,Z2).pri_add(X,Y,Z,'#ADD.') :- Z is X+Y. pri_sub(X,Y,Z,'#SUB.') :- Z is X-Y.pri_prod(X,Y,Z,'#PROD.'):-Z is X * Y. pri_div(X,Y,Z,'#DIV.') :- Z is X/Y.pri_min(X,Y,Z,'#MIN.') :- (X=<Y,Z=X;X>Y,Z=Y).pri_max(X,Y,Z,'#MAX.') :- (X=<Y,Z=Y;X>Y,Z=X).pri_app(X,Y,Z) :- name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).append([℄,X,X). append([X|Xs℄,Y,[X|Zs℄):-append(Xs,Y,Zs).Fig. 3. Multi-adjoint latti
e modeling truth degrees with labels.One step beyond, in what follows we are going to design a mu
h more 
omplexlatti
e to 
ope with de
larative tra
es. Its elements must have two 
omponents,taking into a

ount truth degrees and �labels� 
olle
ting information about theprogram rules, fuzzy 
onne
tives and primitive operators used when exe
utingprograms. In order to be loaded into FLOPER, we need to de�ne again the newlatti
e as a Prolog program, whose elements will be expressed now as data termsof the form �info(Fuzzy_Truth_Degree, Label)� as shown in Figure 3 (notethat the 
omplex version of the average 
onne
tive is 
alled here agr_aver2 andinvokes the simple version agr_aver).Here, we see that when implementing for instan
e the 
onjun
tion operatorof the Produ
t Logi
, in the se
ond 
omponent of our extended notion of �truthdegree�, we have appended the labels of its arguments with the label '&PROD.'(see 
lauses de�ning and_prod, pri_app and append). Of 
ourse, in the fuzzyprogram to be run, we must also take into a

ount the use of labels asso
iated11



to the program rules. For instan
e, in set of rules of our example (where we usethe 
omplex version of average, i.e., �aver2 in the �rst rule) must have the form:p(X) <prod &godel(q(X),�aver2(r(X),s(X))) with info(0.9,'RULE1.').q(a) with info(0.8,'RULE2.').r(X) with info(0.7,'RULE3.').s(X) with info(0.5,'RULE4.').Now, the reader 
an easily tests that, after exe
uting goal p(X), we obtainthe desired fuzzy 
omputed answers whi
h in
ludes the desired de
larative tra
eregarding program-rules/
onne
tive-
alls/primitive-operators evaluated till �nd-ing the �nal solution:>> run.[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.�AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.�AVER.#ADD.#DIV.&GODEL.#MIN.&PROD.#PROD.), X=a℄In this fuzzy 
omputed answer we obtain both the truth value (0.72) and sub-stitution (X = a) asso
iated to our goal, but also the sequen
e of program rulesexploited when applying admissible steps as well as the proper fuzzy 
onne
-tives evaluated during the interpretive phase, also detailing the set of primitiveoperators (of the form #label) they 
all.Strongly related with this, in [20℄ we proposed a variant of the original notionof interpretive step (see De�nition 3) whi
h was able to distinguish 
alls to fuzzy
onne
tives (
onjun
tions, disjun
tions and aggregations) and 
omputations de-voted to the evaluation of primitive operators, thus providing 
ost measuresabout the 
omplexity of 
onne
tives. Su
h new notion, 
alled small interpretivestep, has been re
ently implemented into FLOPER, as des
ribed in [23℄, in orderto generate �evaluation trees� like the one shown in Figure 4. However, 
omparedwith our present approa
h where we don't need any additional modi�
ation ofthe underlying exe
ution ma
hinery, the implementation of [23℄ required strong
hanges in the 
ore of the systems, in
luding a new representation of the fuzzy
ode mu
h more involved than the one based in the 
ompilation to Prolog 
odedes
ribed at the beginning of this se
tion.The resear
h line on 
ost measures mentioned above was motivated aftereviden
ing in our fuzzy fold/unfold framework des
ribed in [4, 8℄ that it is pos-sible to improve the �shape� of a set of program rules but with the �risk� ofautomati
ally generating a set of arti�
ial 
onne
tives (see the de�nition of theaggregation transformation des
ribed in [4℄) whi
h ne
essarily invoke other 
on-ne
tives, thus produ
ing nested de�nitions of aggregators. For this reason, it isvery important to �
alibrate� the 
omplexities of these new 
onne
tives (i.e., tovisualize the number of dire
t/indire
t 
alls they perform to other 
onne
tivesand/or primitive operators) in order to dete
t if the whole transformation pro-
ess really returns improved sets of program rules and 
onne
tive de�nitions. Inthis sense, the present work 
an be seen as a �rst stage to a
hieve this goal.12



Fig. 4. Building a graphi
al interfa
e for FLOPER.5 Con
lusions and Future WorkThe experien
e a
quired in our resear
h group regarding the design of te
hniquesand methods based on fuzzy logi
 in 
lose relationship with the so-
alled multi-adjoint logi
 programming approa
h ([9, 4, 8, 10, 11, 6, 7, 20, 21℄), has motivatedour interest for putting in pra
ti
e all our developments around the design ofthe FLOPER environment [19, 23, 22℄. Our philosophy is to friendly 
onne
tthis fuzzy framework with Prolog programmers: our system, apart for beingimplemented in Prolog, also translates the fuzzy 
ode to 
lassi
al 
lauses (intwo di�erent representations) and, what is more, in this paper we have alsoshown that a wide range of latti
es modeling powerful and �exible notions oftruth degrees also admit a ni
e rule-based 
hara
terizations into Prolog. Themain purpose of this work has been the illustration of an interesting kind oflatti
es where truth-degrees are a

ompanied with labels, having the ability ofaugmenting fuzzy 
omputed answers with de
larative tra
es (i.e., by listing thesequen
e of program rules, 
onne
tive 
alls and primitive operators used for�nding solutions) without requiring additional 
ost.Apart for our ongoing e�orts devoted to providing FLOPER with a graphi
alinterfa
e as illustrated in Figure 42, nowadays we are espe
ially interested in ex-2 Here we show an unfolding tree eviden
ing an in�nite bran
h where states are 
oloredin yellow and program rules exploited in admissible steps are en
losed in 
ir
les.13



tending the tool with testing te
hniques for automati
ally 
he
king that latti
esmodeled a

ording the Prolog-based method established in this paper, verify therequirements of our fuzzy setting (with spe
ial mention to the adjoint property).For the future, we plan to implementing all the manipulation tasks developedin our group on fold/unfold transformations [4, 8℄, partial evaluation [11℄ andthresholded tabulation [7℄. Moreover, we 
ontinue working in the development ofour �rst real-world appli
ation (written in MALP and 
ompiled with FLOPER)whi
h is devoted to manipulate XML do
uments via fuzzy extension of the popu-lar XPath language (please, visit url http://www.dsi.u
lm.es/investiga
ion/de
t/FuzzyXPath.htm ).Referen
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