
De
larative Tra
es IntoFuzzy Computed Answers ★Pedro J. Mor
illo, Ginés Moreno, Jaime Penabad and Carlos VázquezUniversity of Castilla-La Man
haFa
ulty of Computer S
ien
e Engineering2071, Alba
ete, Spain{pmor
illo,
vazquez}�dsi.u
lm.es{Gines.Moreno,Jaime.Penabad}�u
lm.esAbstra
t. Fuzzy logi
 programming is a growing de
larative paradigmaiming to integrate fuzzy logi
 into logi
 programming. In this setting,the so-
alledMulti-Adjoint Logi
 Programming approa
h, MALP in brief,represents an extremely �exible fuzzy language for whi
h we are devel-oping the FLOPER tool (Fuzzy LOgi
 Programming Environment forResear
h). Currently, the platform is useful for
ompiling (to standardProlog
ode), exe
uting and debugging fuzzy programs in a safe way andit is ready for being extended in the near future with powerful transfor-mation and optimization te
hniques designed in our resear
h group inthe re
ent past. In this paper, we fo
us in a ni
e property of the systemregarding its ability for easily
olle
ting de
larative tra
es at exe
utiontime, without modifying the underlying pro
edural prin
iple. The
leverpoint is the use of latti
es modeling truth degrees (beyond {true, false})enri
hed with
onstru
ts for dire
tly visualizing on fuzzy
omputed an-swers not only the sequen
e of program rules exploited when rea
hingsolutions, but also the set of evaluated fuzzy
onne
tives together withthe sequen
e of primitive (arithmeti
) operators they
all, thus giving adetailed des
ription of their
omputational
omplexities.Key words: Fuzzy Logi
 Programming, De
larative Tra
es, Latti
es1 Introdu
tionLogi
 Programming (LP) [15℄ has been widely used as a formal method for prob-lem solving and knowledge representation in the past. Nevertheless, traditionalLP languages do not in
orporate te
hniques or
onstru
ts to treat expli
itlywith un
ertainty and approximated reasoning. To ful�ll this gap, Fuzzy Logi
Programming has emerged as an interesting and still growing resear
h area try-ing to
onsolidate the e�orts for introdu
ing fuzzy logi
 into logi
 programming.
★ This work was supported by the EU (FEDER), and the Spanish S
ien
e and Innova-tion Ministry (MICINN) under grants TIN 2007-65749 and TIN2011-25846, as wellas by the Castilla-La Man
ha Administration under grant PII1I09-0117-4481.

During the last de
ades, several fuzzy logi
 programming systems have beendeveloped, su
h as [2, 3, 5, 14, 12, 27℄, the QLP s
heme of [24℄ and the many-valued logi
 programming language of [25, 26℄, where the
lassi
al inferen
eme
hanism of SLD�Resolution has been repla
ed by a fuzzy variant whi
h isable to handle partial truth and to reason with un
ertainty. This is also the
aseof multi-adjoint logi
 programming approa
h MALP [18, 16, 17℄, a powerful andpromising approa
h in the area. In this framework, a program
an be seen asa set of rules ea
h one annotated by a truth degree and a goal is a query tothe system plus a substitution (initially the empty substitution, denoted by id).Admissible steps (a generalization of the
lassi
al modus ponens inferen
e rule)are systemati
ally applied on goals in a similar way to
lassi
al resolution stepsin pure logi
 programming, thus returning a state
omposed by a
omputed sub-stitution together with an expression where all atoms have been exploited. Next,during the so
alled interpretive phase (see [9, 20, 23℄), this expression is inter-preted under a given latti
e, hen
e returning a pair ⟨truth degree; substitution⟩whi
h is the fuzzy
ounterpart of the
lassi
al notion of
omputed answer usedin pure logi
 programming.The main goal of the present paper is to present the bene�ts of introdu
ingdi�erent notions of multi-adjoint latti
es for managing truth degrees even in asingle FLOPER's work-session without
hanging a given MALP program andgoal. In parti
ular, we are espe
ially interested now in showing the
ollaterale�e
t of these a
tions regarding debugging
apabilities (i.e., the generation ofde
larative tra
es inside fuzzy
omputed answers).The stru
ture of the paper is as follows. In Se
tion 2, we summarize themain features of multi-adjoint logi
 programming, both language syntax andpro
edural semanti
s. Se
tion 3 presents a dis
ussion on multi-adjoint latti
esand their ni
e representation by using standard Prolog
ode, in order to fa
ilitateits further assimilation inside the FLOPER tool. As des
ribed in Se
tion 4, wepropose too a sophisti
ated kind of latti
es
apable for taking into a

ount detailson de
larative tra
es, su
h as the sequen
e of
omputations (regarding programrules, fuzzy
onne
tives and primitive operators) needed for evaluating a givengoal. Finally, in Se
tion 5 we give our
on
lusions and some lines of future work.2 Multi-Adjoint Logi
 ProgrammingThis se
tion summarizes the main features of multi-adjoint logi
 programming(see [18, 16, 17℄ for a
omplete formulation of this framework). In what follows,we will use the abbreviation MALP for referen
ing programs belonging to thissetting.2.1 MALP SyntaxWe work with a �rst order language, ℒ,
ontaining variables,
onstants, fun
-tion symbols, predi
ate symbols, and several (arbitrary)
onne
tives to in
rease2

language expressiveness: impli
ation
onne
tives (←1,←2, . . .);
onjun
tive op-erators (denoted by &1,&2, . . .), disjun
tive operators (∨1,∨2, . . .), and hybridoperators (usually denoted by @1,@2, . . .), all of them are grouped under thename of �aggregators�.Aggregation operators are useful to des
ribe/spe
ify user preferen
es. Anaggregation operator, when interpreted as a truth fun
tion, may be an arithmeti
mean, a weighted sum or in general any monotone appli
ation whose argumentsare values of a
omplete bounded latti
e L. For example, if an aggregator @ isinterpreted as [[@]](x, y, z) = (3x+2y+z)/6, we are giving the highest preferen
eto the �rst argument, then to the se
ond, being the third argument the leastsigni�
ant.Although these
onne
tives are binary operators, we usually generalize themas fun
tions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truthfun
tion for an n-ary aggregation operator [[@]] : Ln → L is required to bemonotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.Additionally, our language ℒ
ontains the values of a multi-adjoint latti
e
⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a
olle
tion of adjoint pairs ⟨←i,&i⟩,where ea
h &i is a
onjun
tor whi
h is intended to the evaluation of modusponens [18℄. More exa
tly, in this setting the following items must be satis�ed:� ⟨L,⪯⟩ is a bounded latti
e, i.e. it has bottom and top elements, denoted by
⊥ and ⊤, respe
tively.� Ea
h operation &i is in
reasing in both arguments.� Ea
h operation ←i is in
reasing in the �rst argument and de
reasing in these
ond.� If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we havethat: x ⪯ (y ←i z) if and only if (x&i z) ⪯ y.This last
ondition,
alled adjoint property,
ould be
onsidered the most impor-tant feature of the framework (in
ontrast with many other approa
hes) whi
hjusti�es most of its properties regarding
ru
ial results for soundness,
omplete-ness, appli
ability, et
.In general, L may be the
arrier of any
omplete bounded latti
e where a

L-expression is a well-formed expression
omposed by values and
onne
tives of
L, as well as variable symbols and primitive operators (i.e., arithmeti
 symbolssu
h as ∗,+,min, et
...).In what follows, we assume that the truth fun
tion of any
onne
tive @ in L isgiven by its
orresponding
onne
tive de�nition, that is, an equation of the form
@(x1, . . . , xn) ≜ E, where E is a L-expression not
ontaining variable symbolsapart from x1, . . . , xn. For instan
e, in what follows we will be mainly
on
ernedwith the following
lassi
al set of adjoint pairs (
onjun
tors and impli
ations)in ⟨[0, 1],≤⟩, where labels L, G and P mean respe
tively �ukasiewi
z logi
, Gödelintuitionisti
 logi
 and produ
t logi
 (whi
h di�erent
apabilities for modelingpessimist, optimist and realisti
 s
enarios, respe
tively):3

&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Produ
t
&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise Gödel
&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} �ukasiewi
zA rule is a formula H ←i ℬ, where H is an atomi
 formula (usually
alledthe head) and ℬ (whi
h is
alled the body) is a formula built from atomi
 for-mulas B1, . . . , Bn � n ≥ 0 �, truth values of L,
onjun
tions, disjun
tions andaggregations. A goal is a body submitted as a query to the system. Roughlyspeaking, a multi-adjoint logi
 program is a set of pairs ⟨ℛ;�⟩ (we often write�ℛ witℎ ��), where ℛ is a rule and � is a truth degree (a value of L) expressingthe
on�den
e of a programmer in the truth of rule ℛ. By abuse of language,we sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.2.2 MALP Pro
edural Semanti
sThe pro
edural semanti
s of the multi�adjoint logi
 language ℒ
an be thoughtof as an operational phase (based on admissible steps) followed by an interpre-tive one. In the following, C[A] denotes a formula where A is a sub-expressionwhi
h o

urs in the �possibly empty�
ontext C[]. Moreover, C[A/A′] means therepla
ement of A by A′ in
ontext C[], whereas Var(s) refers to the set of dis-tin
t variables o

urring in the synta
ti
 obje
t s, and �[Var(s)] denotes thesubstitution obtained from � by restri
ting its domain to Var(s).De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program
P, an admissible
omputation is formalized as a state transition system, whosetransition relation →AS ⊆ (ℰ×ℰ) is the smallest relation satisfying the followingadmissible rules (where we always
onsider that A is the sele
ted atom in Q and
mgu(E) denotes the most general uni�er of an equation set E [13℄):1) ⟨Q[A];�⟩ →AS ⟨(Q[A/v&iℬ])�;��⟩,if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P and ℬ is not empty.2) ⟨Q[A];�⟩ →AS ⟨(Q[A/v])�;��⟩,if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.3) ⟨Q[A];�⟩→AS⟨(Q[A/⊥]);�⟩,if there is no rule in P whose head uni�es with A.Note that 3tℎ
ase is introdu
ed to
ope with (possible) unsu

essful admissiblederivations (this kind of step is useful when evaluating, for instan
e, an expres-sion like �∨(p, 0.8)�, whi
h returns a value di�erent from 0 even when there is noprogram rule de�ning p). As usual, rules are taken renamed apart. We shall usethe symbols →AS1, →AS2 and →AS3 to distinguish between
omputation stepsperformed by applying one of the spe
i�
 admissible rules. Also, the appli
ationof a rule on a step will be annotated as a supers
ript of the →AS symbol.De�nition 2. Let P be a program, Q a goal and �id� the empty substitution.An admissible derivation is a sequen
e ⟨Q; id⟩→AS . . .→AS⟨Q

′; �⟩. When Q′ is a4

Multi-adjoint logi
 program P :
ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0.9
ℛ2 : q(a) ← witℎ 0.8
ℛ3 : r(X) ← witℎ 0.7
ℛ4 : s(X) ← witℎ 0.5Admissible derivation:
⟨p(X); id⟩ →AS1

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩Interpretive derivation:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩ →IS

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩ →IS

⟨&P(0.9, 0.6); {X/a}⟩ →IS

⟨0.54; {X/a}⟩.Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).formula not
ontaining atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is
alled an admissible
omputed answer (a.
.a.) for that derivation.Example 1. Let P be the multi-adjoint fuzzy logi
 program des
ribed in Figure1 where the equation de�ning the average aggregator @aver must obviously hasthe form: @aver(x1, x2) ≜ (x1 + x2)/2. Now, we
an generate the admissiblederivation shown in Figure 1 (we underline the sele
ted atom in ea
h step). So,the admissible
omputed answer (a.
.a.) in this
ase is
omposed by the pair:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only refers to bindings related withvariables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.If we exploit all atoms of a given goal, by applying admissible steps as mu
h asneeded during the operational phase, then it be
omes a formula with no atoms (a
L-expression) whi
h
an be then dire
tly interpreted w.r.t. latti
e L by applyingthe following de�nition we initially presented in [9℄:De�nition 3 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth fun
tion of
onne
tive @ in the latti
e5

⟨L,⪯⟩ asso
iated to P, su
h that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive
omputa-tion as a state transition system, whose transition relation →IS ⊆ (ℰ × ℰ) isde�ned as the least one satisfying:
⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩De�nition 4. Let P be a program and ⟨Q;�⟩ an a.
.a., that is, Q is a goal not
ontaining atoms (i.e., a L-expression). An interpretive derivation is a sequen
e

⟨Q;�⟩→IS . . .→IS⟨Q
′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the latti
e asso
i-ated to P, the state ⟨r;�⟩ is
alled a fuzzy
omputed answer (f.
.a.) for thatderivation.Example 2. If we
omplete the previous derivation of Example 1 by applying 3interpretive steps in order to obtain the �nal f.
.a. ⟨0.54; {X/a}⟩, we generatethe interpretive derivation shown in Figure 1.3 Truth-Degrees and Multi-adjoint Latti
es in Pra
ti
eIn [22℄ we des
ribe a very easy way to model truth-degree latti
es for beingin
luded into the FLOPER tool. All relevant
omponents of ea
h latti
e areen
apsulated inside a Prolog �le whi
h must ne
essarily
ontain the de�nitionsof a minimal set of predi
ates de�ning the set of valid elements (in
luding spe
ialmentions to the �top� and �bottom� ones), the full or partial ordering establishedamong them, as well as the repertoire of fuzzy
onne
tives whi
h
an be usedfor their subsequent manipulation. In order to simplify our explanation, assumethat �le �bool.pl� refers to the simplest notion of (a binary) adjoint latti
e, thusimplementing the following set of predi
ates:� member/1 whi
h is satis�ed when being
alled with a parameter representinga valid truth degree. In the
ase of �nite latti
es, it is also re
ommend toimplement members/1 whi
h returns in one go a list
ontaining the wholeset of truth degrees. For instan
e, in the Boolean
ase, both predi
ates
an be simply modeled by the Prolog fa
ts: member(0)., member(1). andmembers([0,1℄).� bot/1 and top/1 obviously answer with the top and bottom element of thelatti
e, respe
tively. Both are implemented into �bool.pl� as bot(0). andtop(1).� leq/2 models the ordering relation among all the possible pairs of truthdegrees, and obviously it is only satis�ed when it is invoked with two elementsverifying that the �rst parameter is equal or smaller than the se
ond one. So,in our example it su�
es with in
luding into �bool.pl� the fa
ts: leq(0,X).and leq(X,1).� Finally, given some fuzzy
onne
tives of the form &label1 (
onjun
tion),

∨label2 (disjun
tion) or @label3 (aggregation) with arities n1, n2 and n3 re-spe
tively, we must provide
lauses de�ning the
onne
tive predi
ates6

member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite latti
e)bot(0). top(1). leq(X,Y) :- X=<Y.and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z) :- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).agr_aver2(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),agr_aver(Z1,Z2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2.Multi-adjoint latti
e modeling truth degrees in the real interval [0,1℄ (�num.pl�).�and_label1/(n1+1)�, �or_label2/(n2+1)� and �agr_label3/(n3+1)�, where theextra argument of ea
h predi
ate is intended to
ontain the result a
hievedafter the evaluation of the proper
onne
tive. For instan
e, in the Boolean
ase, the following two fa
ts model in a very easy way the behaviour of the
lassi
al
onjun
tion operation: and_bool(0,_,0). and_bool(1,X,X).The reader
an easily
he
k that the use of latti
e �bool.pl� when working withMALP programs whose rules have the form:�A ←bool &bool(B1, . . . , Bn) witℎ 1�.... being A and Bi typi
al atoms1, su

essfully mimi
s the behaviour of
lassi
alProlog programs where
lauses a

omplish with the shape �A : − B1, . . . , Bn�.As a novelty in the fuzzy setting, when evaluating goals a

ording to the pro
e-dural semanti
s des
ribed in Se
tion 2, ea
h output will
ontain the
orrespond-ing Prolog's substitution (i.e., the
risp notion of
omputed answer obtained bymeans of
lassi
al SLD-resolution) together with the maximum truth degree 1.On the other hand and following the Prolog style regulated by the previousguidelines, in �le �num.lat� we have in
luded the
lauses shown in Figure 2.Here, we have modeled the more �exible latti
e (that we will mainly use in ourexamples, beyond the boolean
ase) whi
h enables the possibility of workingwith truth degrees in the in�nite spa
e (note that this
ondition disables theimplementation of the
onsulting predi
ate �members/1�) of the real numbersbetween 0 and 1, allowing too the possibility of using
onjun
tion and disjun
tionoperators re
asted from the three typi
al fuzzy logi
s proposals des
ribed before1 Here we also assume that several versions of the
lassi
al
onjun
tion operation havebeen implemented with di�erent arities.7

(i.e., the �ukasiewi
z, Gödel and produ
t logi
s), as well as a useful des
riptionfor the hybrid aggregator average.Note also that we have in
luded de�nitions for auxiliary predi
ates, whosenames always begin with the pre�x �pri_�. All of them are intended to des
ribeprimitive/arithmeti
 operators (in our
ase +, −, ∗, /, min and max) in aProlog style, for being appropriately
alled from the bodies of
lauses de�ningpredi
ates with higher levels of expressivity (this is the
ase for instan
e, of thethree kinds of fuzzy
onne
tives we are
onsidering:
onjuntions, disjun
tionsand agreggations).Sin
e till now we have
onsidered two
lassi
al, fully ordered latti
es (with a�nite and in�nite number of elements,
olle
ted in �les �bool.pl� and �num.pl�,respe
tively), we wish now to introdu
e a di�erent
ase
oping with a very simplelatti
e where not always any pair of truth degrees are
omparable. So,
onsiderthe following partially ordered multi-adjoint latti
e in the diagram below forwhi
h the
onjun
tion and impli
ation
onne
tives based on the Gödel intuis-tionisti
 logi
 des
ribed in Se
tion 2
onform an adjoint pair.... but with theparti
ularity now that, in the general
ase, the Gödel 's
onjun
tion must beexpressed as &G(x, y) ≜ inf(x, y), where it is important to note that we mustrepla
e the use of �min� by �inf � in the
onne
tive de�nition.
⊤

� �

⊥

member(bottom). member(alpha).member(beta). member(top).members([bottom,alpha,beta,top℄).leq(bottom,X). leq(alpha,alpha). leq(alpha,top).leq(beta,beta). leq(beta,top). leq(X,top).and_godel(X,Y,Z) :- pri_inf(X,Y,Z).pri_inf(bottom,X,bottom):-!.pri_inf(alpha,X,alpha):-leq(alpha,X),!.pri_inf(beta,X,beta):-leq(beta,X),!.pri_inf(top,X,X):-!.pri_inf(X,Y,bottom).To this end, observe in the Prolog
ode a

ompanying the �gure above that wehave introdu
ed �ve
lauses de�ning the new primitive operator �pri_inf/3�whi
h is intended to return the in�mum of two elements. Related with this fa
t,we must point out the following aspe
ts:� Note that sin
e truth degrees � and � (or their
orresponding representationsas Prolog terms �alpha� and �beta� used for instan
e in the de�nition(s)of �members(s)/1�) are in
omparable then, any
all to goals of the form�?- leq(alpha,beta).� or �?- leq(beta,alpha).� will always fail.8

� Fortunately, a goal of the form �?- pri_inf(alpha,beta,X).�, or alterna-tively �?- pri_inf(beta,alpha,X).�, instead of failing, su

essfully pro-du
es the desired result �X=bottom�.� Note anyway that the implementation of the �pri_inf/1� predi
ate is manda-tory for
oding the general de�nition of �and_godel/3�.4 De
larative Tra
es into f.
.a.'s using FLOPERAs detailed in [1, 19, 22, 23℄, our parser has been implemented by using the
las-si
al DCG's (De�nite Clause Grammars) resour
e of the Prolog language, sin
eit is a
onvenient notation for expressing grammar rules. On
e the appli
ationis loaded inside a Prolog interpreter (in our
ase, Si
stus Prolog v.3.12.5), itshows a menu whi
h in
ludes options for loading, parsing, listing and savingfuzzy programs, as well as for exe
uting fuzzy goals.All these a
tions are based in the translation of the fuzzy
ode into standardProlog
ode. The key point is to extend ea
h atom with an extra argument,
alled truth variable of the form �_TVi�, whi
h is intended to
ontain the truthdegree obtained after the subsequent evaluation of the atom. For instan
e, the�rst
lause in our target program is translated into:p(X,_TV0) :- q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).Moreover, the se
ond
lause in our target program in Figure 1, be
omes thepure Prolog fa
t �q(a,0.8)� while a fuzzy goal like �p(X)�, is translated intothe pure Prolog goal: �p(X,Truth_degree)� (note that the last truth degreevariable is not anonymous now) for whi
h the Prolog interpreter returns thedesired fuzzy
omputed answer [Truth_degree = 0.54, X = a]. The previous setof options su�
es for running fuzzy programs (the �run�
hoi
e also uses the
lauses
ontained in �num.pl�, whi
h represent the default latti
e): all internal
omputations (in
luding
ompiling and exe
uting) are pure Prolog derivationswhereas inputs (fuzzy programs and goals) and outputs (fuzzy
omputed an-swers) have always a fuzzy taste, thus produ
ing the illusion on the �nal user ofbeing working with a purely fuzzy logi
 programming tool.On the other hand, in [22℄ we explain that FLOPER has been re
entlyequipped with new options,
alled �lat� and �show�, for allowing the possibilityof respe
tively
hanging and displaying the multi-adjoint latti
e asso
iated to agiven program. Assume that �new_num.pl�
ontains the same Prolog
ode than�num.pl� with the ex
eption of the de�nition regarding the average aggregator).Now, instead of
omputing the average of two truth degrees, let us
onsider a new9

version whi
h
omputes the average between the results a
hieved after applyingto both elements the disjun
tions operators des
ribed by Gödel and �ukasiewi
z,that is: @aver(x1, x2) ≜ (∨G(x1, x2)+∨L(x1, x2))∗ 0.5. The
orresponding Prolog
lause modeling su
h de�nition into the �new_num.pl� �le
ould be:agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),pri_add(Z1,Z2,Z3),pri_prod(Z3,0.5,Z).and now, by sele
ting again the �run� option (without
hanging the program andgoal), the system would display the new solution: [Truth_degree = 0.72, X = a].Let us
onsider now the so
alled domain of weight valuesW used in the QLP(Quali�ed Logi
 Programming) framework of [24℄, whose elements are intendedto represent proof
osts, measured as the weighted depth of proof trees (although
lose to MALP, the QLP s
heme allows a lesser repertoire of
onne
tives in thebody of program rules). In essen
e, W
an be seen as latti
e ⟨ℝ ∪∞,≥⟩, where
≥ is the reverse of the usual numeri
al ordering (with ∞ ≥ d for any d ∈ ℝ) andthus, the bottom elements is ∞ and the top element is 0 (and not vi
e versa).By using again the �lat� option of FLOPER, we
an asso
iate this latti
e
W to the program seen before after
hanging the �weights� of ea
h program ruleto 1 (the underlying idea is that �the use of ea
h program rule in a derivationimplies the appli
ation of one admissible step�). Moreover, sin
e in this latti
ethe arithmeti
 operation �+� plays the role of a
onjun
tion (t-norm)
onne
tive,we assume the de�nitions of the set of
onne
tives appearing in the programmapped to �+� (i.e. &P(x, y) ≜ x+ y, &G(x, y) ≜ x+ y and @aver(x, y) ≜ x+ y).Now, for goal �p(X)� we
ould generate an admissible derivation similar to theone seen in Figure 1, but ending now with ⟨&P(1,&G(1,@aver(1, 1))); {X/a}⟩And sin
e: &P(1,&G(1,@aver(1, 1))) = +(1,+(1,+(1, 1))) = 4, the �nal fuzzy
omputed answer or f.
.a. ⟨4; {X/a}⟩ indi
ates that goal �p(X)� holds when Xis a, as proved after applying 4 admissible steps, as wanted.Moreover, we
an also
on
eive a more powerful latti
e expressed as the
artesian produ
t of the one seen in Figure 2 (real numbers in the interval [0, 1])and W . Now, ea
h element has two
omponents,
oping with truth degrees and
ost measures. In order to be loaded into FLOPER, we must de�ne in Prologthe new latti
e, whose elements
ould be expressed, for instan
e, as data termsof the form �info(Fuzzy_Truth_Degree,Cost_Number_Steps)�. Moreover, the
lauses de�ning some predi
ates required for managing them are:member(info(X,Y)) :- number(X), 0=<X, X=<1, number(Y), Y=<0.leq(info(X1,Y1),info(X2,Y2)) :- X1=<X2, Y1>=Y2. top(info(1,0)).and_godel(info(X1,Y1),info(X2,Y2),info(X3,Y3)) :- pri_min(X1,X2,X3),pri_add(Y1,Y2,Y3).Finally, if the weights assigned to the rules of our running example be�info(0.9,1)� for ℛ1, �info(0.8,1)� for ℛ2, �info(0.7,1)� for ℛ3 and�info(0.5,1)� for ℛ4, then, for goal �p(X)� we would obtain the desired f.
.a.
⟨info(0.54, 4); {X/a}⟩with the obvious meaning that we need 4 admissible stepsto prove that the query is true at a 56 % degree when X is a�.10

member(info(X,_)):-number(X),0=<X,X=<1. bot(info(0,_)).top(info(1,_)). leq(info(X1,_),info(X2,_)):- X1 =< X2.and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).or_godel(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_max(X1,Y1,Z1,DatMAX),pri_app(X2,Y2,Dat1),pri_app(Dat1,'|GODEL.',Dat2),pri_app(Dat2,DatMAX,Z2).or_luka(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_add(X1,Y1,U1,DatADD),pri_min(U1,1,Z1,DatMIN),pri_app(X2,Y2,Dat1),pri_app(Dat1,'|LUKA.',Dat2),pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatMIN,Z2).agr_aver(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_add(X1,Y1,Aux,DatADD),pri_div(Aux,2,Z1,DatDIV),pri_app(X2,Y2,Dat1),pri_app(Dat1,'�AVER.',Dat2),pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatDIV,Z2).agr_aver2(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-or_godel(info(X1,''),info(Y1,''),Za),or_luka(info(X1,''),info(Y1,''),Zb),agr_aver(Za,Zb,info(Z1,Dat3)),pri_app(X2,Y2,Dat1),pri_app(Dat1,'�AVER2.',Dat2),pri_app(Dat2,Dat3,Z2).pri_add(X,Y,Z,'#ADD.') :- Z is X+Y. pri_sub(X,Y,Z,'#SUB.') :- Z is X-Y.pri_prod(X,Y,Z,'#PROD.'):-Z is X * Y. pri_div(X,Y,Z,'#DIV.') :- Z is X/Y.pri_min(X,Y,Z,'#MIN.') :- (X=<Y,Z=X;X>Y,Z=Y).pri_max(X,Y,Z,'#MAX.') :- (X=<Y,Z=Y;X>Y,Z=X).pri_app(X,Y,Z) :- name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).append([℄,X,X). append([X|Xs℄,Y,[X|Zs℄):-append(Xs,Y,Zs).Fig. 3. Multi-adjoint latti
e modeling truth degrees with labels.One step beyond, in what follows we are going to design a mu
h more
omplexlatti
e to
ope with de
larative tra
es. Its elements must have two
omponents,taking into a

ount truth degrees and �labels�
olle
ting information about theprogram rules, fuzzy
onne
tives and primitive operators used when exe
utingprograms. In order to be loaded into FLOPER, we need to de�ne again the newlatti
e as a Prolog program, whose elements will be expressed now as data termsof the form �info(Fuzzy_Truth_Degree, Label)� as shown in Figure 3 (notethat the
omplex version of the average
onne
tive is
alled here agr_aver2 andinvokes the simple version agr_aver).Here, we see that when implementing for instan
e the
onjun
tion operatorof the Produ
t Logi
, in the se
ond
omponent of our extended notion of �truthdegree�, we have appended the labels of its arguments with the label '&PROD.'(see
lauses de�ning and_prod, pri_app and append). Of
ourse, in the fuzzyprogram to be run, we must also take into a

ount the use of labels asso
iated11

to the program rules. For instan
e, in set of rules of our example (where we usethe
omplex version of average, i.e., �aver2 in the �rst rule) must have the form:p(X) <prod &godel(q(X),�aver2(r(X),s(X))) with info(0.9,'RULE1.').q(a) with info(0.8,'RULE2.').r(X) with info(0.7,'RULE3.').s(X) with info(0.5,'RULE4.').Now, the reader
an easily tests that, after exe
uting goal p(X), we obtainthe desired fuzzy
omputed answers whi
h in
ludes the desired de
larative tra
eregarding program-rules/
onne
tive-
alls/primitive-operators evaluated till �nd-ing the �nal solution:>> run.[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.�AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.�AVER.#ADD.#DIV.&GODEL.#MIN.&PROD.#PROD.), X=a℄In this fuzzy
omputed answer we obtain both the truth value (0.72) and sub-stitution (X = a) asso
iated to our goal, but also the sequen
e of program rulesexploited when applying admissible steps as well as the proper fuzzy
onne
-tives evaluated during the interpretive phase, also detailing the set of primitiveoperators (of the form #label) they
all.Strongly related with this, in [20℄ we proposed a variant of the original notionof interpretive step (see De�nition 3) whi
h was able to distinguish
alls to fuzzy
onne
tives (
onjun
tions, disjun
tions and aggregations) and
omputations de-voted to the evaluation of primitive operators, thus providing
ost measuresabout the
omplexity of
onne
tives. Su
h new notion,
alled small interpretivestep, has been re
ently implemented into FLOPER, as des
ribed in [23℄, in orderto generate �evaluation trees� like the one shown in Figure 4. However,
omparedwith our present approa
h where we don't need any additional modi�
ation ofthe underlying exe
ution ma
hinery, the implementation of [23℄ required strong
hanges in the
ore of the systems, in
luding a new representation of the fuzzy
ode mu
h more involved than the one based in the
ompilation to Prolog
odedes
ribed at the beginning of this se
tion.The resear
h line on
ost measures mentioned above was motivated aftereviden
ing in our fuzzy fold/unfold framework des
ribed in [4, 8℄ that it is pos-sible to improve the �shape� of a set of program rules but with the �risk� ofautomati
ally generating a set of arti�
ial
onne
tives (see the de�nition of theaggregation transformation des
ribed in [4℄) whi
h ne
essarily invoke other
on-ne
tives, thus produ
ing nested de�nitions of aggregators. For this reason, it isvery important to �
alibrate� the
omplexities of these new
onne
tives (i.e., tovisualize the number of dire
t/indire
t
alls they perform to other
onne
tivesand/or primitive operators) in order to dete
t if the whole transformation pro-
ess really returns improved sets of program rules and
onne
tive de�nitions. Inthis sense, the present work
an be seen as a �rst stage to a
hieve this goal.12

Fig. 4. Building a graphi
al interfa
e for FLOPER.5 Con
lusions and Future WorkThe experien
e a
quired in our resear
h group regarding the design of te
hniquesand methods based on fuzzy logi
 in
lose relationship with the so-
alled multi-adjoint logi
 programming approa
h ([9, 4, 8, 10, 11, 6, 7, 20, 21℄), has motivatedour interest for putting in pra
ti
e all our developments around the design ofthe FLOPER environment [19, 23, 22℄. Our philosophy is to friendly
onne
tthis fuzzy framework with Prolog programmers: our system, apart for beingimplemented in Prolog, also translates the fuzzy
ode to
lassi
al
lauses (intwo di�erent representations) and, what is more, in this paper we have alsoshown that a wide range of latti
es modeling powerful and �exible notions oftruth degrees also admit a ni
e rule-based
hara
terizations into Prolog. Themain purpose of this work has been the illustration of an interesting kind oflatti
es where truth-degrees are a

ompanied with labels, having the ability ofaugmenting fuzzy
omputed answers with de
larative tra
es (i.e., by listing thesequen
e of program rules,
onne
tive
alls and primitive operators used for�nding solutions) without requiring additional
ost.Apart for our ongoing e�orts devoted to providing FLOPER with a graphi
alinterfa
e as illustrated in Figure 42, nowadays we are espe
ially interested in ex-2 Here we show an unfolding tree eviden
ing an in�nite bran
h where states are
oloredin yellow and program rules exploited in admissible steps are en
losed in
ir
les.13

tending the tool with testing te
hniques for automati
ally
he
king that latti
esmodeled a

ording the Prolog-based method established in this paper, verify therequirements of our fuzzy setting (with spe
ial mention to the adjoint property).For the future, we plan to implementing all the manipulation tasks developedin our group on fold/unfold transformations [4, 8℄, partial evaluation [11℄ andthresholded tabulation [7℄. Moreover, we
ontinue working in the development ofour �rst real-world appli
ation (written in MALP and
ompiled with FLOPER)whi
h is devoted to manipulate XML do
uments via fuzzy extension of the popu-lar XPath language (please, visit url http://www.dsi.u
lm.es/investiga
ion/de
t/FuzzyXPath.htm).Referen
es1. J.M. Abietar, P.J. Mor
illo, and G. Moreno. Designing a software tool for fuzzylogi
 programming. In T.E. Simos and G. Maroulis, editors, Pro
. of the Inter-national Conferen
e of Computational Methods in S
ien
es and Engineering IC-CMSE'07, Volume 2 (Computation in Modern S
ien
e and Engineering), pages1117�1120. Ameri
an Institute of Physi
s (distributed by Springer), 2007.2. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and EvidentialReasoning in Arti�
ial Intelligen
e. John Wiley & Sons, In
., 1995.3. S. Guadarrama, S. Muñoz, and C. Vau
heret. Fuzzy Prolog: A new approa
h usingsoft
onstraints propagation. Fuzzy Sets and Systems, 144(1):127�150, 2004.4. J.A. Guerrero and G. Moreno. Optimizing fuzzy logi
 programs by unfolding,aggregation and folding. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 219:19�34, 2008.5. M. Ishizuka and N. Kanai. Prolog-ELF In
orporating Fuzzy Logi
. In Aravind K.Joshi, editor, Pro
eedings of the 9th Int. Joint Conferen
e on Arti�
ial Intelligen
e,IJCAI'85, pages 701�703. Morgan Kaufmann, 1985.6. P. Julián, J. Medina, G. Moreno, and M. Ojeda. Thresholded tabulation in a fuzzylogi
 setting. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 248:115�130, 2009.7. P. Julián, J. Medina, G. Moreno, and M. Ojeda. E�
ient thresholded tabulationfor fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundationsof Reasoning under Un
ertainty), 249:125�141, 2010.8. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjointApproa
h. Fuzzy Sets and Systems, 154:16�33, 2005.9. P. Julián, G. Moreno, and J. Penabad. Operational/Interpretive Unfoldingof Multi-adjoint Logi
 Programs. Journal of Universal Computer S
ien
e,12(11):1679�1699, 2006.10. P. Julián, G. Moreno, and J. Penabad. Measuring the interpretive
ost in fuzzylogi

omputations. In Fran
es
o Masulli, Sushmita Mitra, and Gabriella Pasi,editors, Pro
. of Appli
ations of Fuzzy Sets Theory, 7th International Workshopon Fuzzy Logi
 and Appli
ations, WILF 2007, Camogli, Italy, July 7-10, pages28�36. Springer Verlag, LNAI 4578, 2007.11. P. Julián, G. Moreno, and J. Penabad. An Improved Redu
tant Cal
ulus usingFuzzy Partial Evaluation Te
hniques. Fuzzy Sets and Systems, 160:162�181, 2009.doi: 10.1016/j.fss.2008.05.006.12. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logi
 program-ming and its appli
ations. Journal of Logi
 Programming, 12:335�367, 1992.14

13. J. L. Lassez, M. J. Maher, and K. Marriott. Uni�
ation Revisited. In J. Minker,editor, Foundations of Dedu
tive Databases and Logi
 Programming, pages 587�625. Morgan Kaufmann, Los Altos, Ca., 1988.14. D. Li and D. Liu. A fuzzy Prolog database system. John Wiley & Sons, In
., 1990.15. J.W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, Berlin, 1987.Se
ond edition.16. J. Medina, M. Ojeda-A
iego, and P. Vojtá². Multi-adjoint logi
 programming with
ontinuous semanti
s. Pro
. of Logi
 Programming and Non-Monotoni
 Reasoning,LPNMR'01, Springer-Verlag, LNAI, 2173:351�364, 2001.17. J. Medina, M. Ojeda-A
iego, and P. Vojtá². A pro
edural semanti
s for multi-adjoint logi
 programing. Progress in Arti�
ial Intelligen
e, EPIA'01, Springer-Verlag, LNAI, 2258(1):290�297, 2001.18. J. Medina, M. Ojeda-A
iego, and P. Vojtá². Similarity-based Uni�
ation: a multi-adjoint approa
h. Fuzzy Sets and Systems, 146:43�62, 2004.19. P.J. Mor
illo and G. Moreno. Programming with Fuzzy Logi
 Rules by usingthe FLOPER Tool. In Ni
k Bassiliades, Guido Governatori, and Adrian Pas
hke,editors, Pro
. of the 2nd. International Symposium on Rule Representation, In-ter
hange and Reasoning on the Web, RuleML 2008, Orlando, FL, USA, O
tober30-31, pages 119�126. Springer Verlag, LNCS 3521, 2008.20. P.J. Mor
illo and G. Moreno. Modeling interpretive steps in fuzzy logi

ompu-tations. In Vito Di Gesù, Sankar K. Pal, and Alfredo Petrosino, editors, Pro
.of the 8th International Workshop on Fuzzy Logi
 and Appli
ations, WILF 2009.Palermo, Italy, June 9-12, pages 44�51. Springer Verlag, LNAI 5571, 2009.21. P.J. Mor
illo and G. Moreno. On
ost estimations for exe
uting fuzzy logi
 pro-grams. In Hamid R. Arabnia, David de la Fuente, and José Angel Olivas, editors,Pro
eedings of the 11th International Conferen
e on Arti�
ial Intelligen
e, ICAI2009, July 13-16, Las Vegas (Nevada), USA, pages 217�223. CSREA Press, 2009.22. P.J. Mor
illo, G. Moreno, J. Penabad, and C. Vázquez. A Pra
ti
al Management ofFuzzy Truth Degrees using FLOPER. In M. Dean et al., editor, Pro
. of the 4th.International Symposium on Rule Inter
hange and Appli
ations, RuleML 2010,Washington, USA, O
tober 21�23, pages 20�34. Springer Verlag, LNCS 6403, 2010.23. P.J. Mor
illo, G. Moreno, J. Penabad, and C. Vázquez. Modeling interpretive stepsinto the FLOPER environment. In H.R. Arabnia et al., editor, Pro
eedings of the12th International Conferen
e on Arti�
ial Intelligen
e, ICAI 2010, July 12-15,Las Vegas (Nevada), USA, pages 16�22. CSREA Press, 2010.24. M. Rodríguez-Artalejo and C. Romero-Díaz. Quantitative logi
 programming re-visited. In J. Garrigue and M. Hermenegildo, editors, Fun
tional and Logi
 Pro-gramming (FLOPS'08), pages 272�288. Springer LNCS 4989, 2008.25. U. Stra

ia. Query answering in normal logi
 programs under un
ertainty. In 8thEuropean Conferen
es on Symboli
 and Quantitative Approa
hes to Reasoning withUn
ertainty (ECSQARU-05), number 3571 in Le
ture Notes in Computer S
ien
e,pages 687�700, Bar
elona, Spain, 2005. Springer Verlag.26. U. Stra

ia. Managing un
ertainty and vagueness in des
ription logi
s, logi
 pro-grams and des
ription logi
 programs. In Reasoning Web, 4th International Sum-mer S
hool, Tutorial Le
tures, number 5224 in Le
ture Notes in Computer S
ien
e,pages 54�103. Springer Verlag, 2008.27. P. Vojtá². Fuzzy Logi
 Programming. Fuzzy Sets and Systems, 124(1):361�370,2001. 15

