
Delarative Traes IntoFuzzy Computed Answers ★Pedro J. Morillo, Ginés Moreno, Jaime Penabad and Carlos VázquezUniversity of Castilla-La ManhaFaulty of Computer Siene Engineering2071, Albaete, Spain{pmorillo,vazquez}�dsi.ulm.es{Gines.Moreno,Jaime.Penabad}�ulm.esAbstrat. Fuzzy logi programming is a growing delarative paradigmaiming to integrate fuzzy logi into logi programming. In this setting,the so-alledMulti-Adjoint Logi Programming approah, MALP in brief,represents an extremely �exible fuzzy language for whih we are devel-oping the FLOPER tool (Fuzzy LOgi Programming Environment forResearh). Currently, the platform is useful for ompiling (to standardProlog ode), exeuting and debugging fuzzy programs in a safe way andit is ready for being extended in the near future with powerful transfor-mation and optimization tehniques designed in our researh group inthe reent past. In this paper, we fous in a nie property of the systemregarding its ability for easily olleting delarative traes at exeutiontime, without modifying the underlying proedural priniple. The leverpoint is the use of latties modeling truth degrees (beyond {true, false})enrihed with onstruts for diretly visualizing on fuzzy omputed an-swers not only the sequene of program rules exploited when reahingsolutions, but also the set of evaluated fuzzy onnetives together withthe sequene of primitive (arithmeti) operators they all, thus giving adetailed desription of their omputational omplexities.Key words: Fuzzy Logi Programming, Delarative Traes, Latties1 IntrodutionLogi Programming (LP) [15℄ has been widely used as a formal method for prob-lem solving and knowledge representation in the past. Nevertheless, traditionalLP languages do not inorporate tehniques or onstruts to treat expliitlywith unertainty and approximated reasoning. To ful�ll this gap, Fuzzy LogiProgramming has emerged as an interesting and still growing researh area try-ing to onsolidate the e�orts for introduing fuzzy logi into logi programming.
★ This work was supported by the EU (FEDER), and the Spanish Siene and Innova-tion Ministry (MICINN) under grants TIN 2007-65749 and TIN2011-25846, as wellas by the Castilla-La Manha Administration under grant PII1I09-0117-4481.

During the last deades, several fuzzy logi programming systems have beendeveloped, suh as [2, 3, 5, 14, 12, 27℄, the QLP sheme of [24℄ and the many-valued logi programming language of [25, 26℄, where the lassial inferenemehanism of SLD�Resolution has been replaed by a fuzzy variant whih isable to handle partial truth and to reason with unertainty. This is also the aseof multi-adjoint logi programming approah MALP [18, 16, 17℄, a powerful andpromising approah in the area. In this framework, a program an be seen asa set of rules eah one annotated by a truth degree and a goal is a query tothe system plus a substitution (initially the empty substitution, denoted by id).Admissible steps (a generalization of the lassial modus ponens inferene rule)are systematially applied on goals in a similar way to lassial resolution stepsin pure logi programming, thus returning a state omposed by a omputed sub-stitution together with an expression where all atoms have been exploited. Next,during the so alled interpretive phase (see [9, 20, 23℄), this expression is inter-preted under a given lattie, hene returning a pair ⟨truth degree; substitution⟩whih is the fuzzy ounterpart of the lassial notion of omputed answer usedin pure logi programming.The main goal of the present paper is to present the bene�ts of introduingdi�erent notions of multi-adjoint latties for managing truth degrees even in asingle FLOPER's work-session without hanging a given MALP program andgoal. In partiular, we are espeially interested now in showing the ollaterale�et of these ations regarding debugging apabilities (i.e., the generation ofdelarative traes inside fuzzy omputed answers).The struture of the paper is as follows. In Setion 2, we summarize themain features of multi-adjoint logi programming, both language syntax andproedural semantis. Setion 3 presents a disussion on multi-adjoint lattiesand their nie representation by using standard Prolog ode, in order to failitateits further assimilation inside the FLOPER tool. As desribed in Setion 4, wepropose too a sophistiated kind of latties apable for taking into aount detailson delarative traes, suh as the sequene of omputations (regarding programrules, fuzzy onnetives and primitive operators) needed for evaluating a givengoal. Finally, in Setion 5 we give our onlusions and some lines of future work.2 Multi-Adjoint Logi ProgrammingThis setion summarizes the main features of multi-adjoint logi programming(see [18, 16, 17℄ for a omplete formulation of this framework). In what follows,we will use the abbreviation MALP for referening programs belonging to thissetting.2.1 MALP SyntaxWe work with a �rst order language, ℒ, ontaining variables, onstants, fun-tion symbols, prediate symbols, and several (arbitrary) onnetives to inrease2

language expressiveness: impliation onnetives (←1,←2, . . .); onjuntive op-erators (denoted by &1,&2, . . .), disjuntive operators (∨1,∨2, . . .), and hybridoperators (usually denoted by @1,@2, . . .), all of them are grouped under thename of �aggregators�.Aggregation operators are useful to desribe/speify user preferenes. Anaggregation operator, when interpreted as a truth funtion, may be an arithmetimean, a weighted sum or in general any monotone appliation whose argumentsare values of a omplete bounded lattie L. For example, if an aggregator @ isinterpreted as [[@]](x, y, z) = (3x+2y+z)/6, we are giving the highest prefereneto the �rst argument, then to the seond, being the third argument the leastsigni�ant.Although these onnetives are binary operators, we usually generalize themas funtions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truthfuntion for an n-ary aggregation operator [[@]] : Ln → L is required to bemonotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.Additionally, our language ℒ ontains the values of a multi-adjoint lattie
⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a olletion of adjoint pairs ⟨←i,&i⟩,where eah &i is a onjuntor whih is intended to the evaluation of modusponens [18℄. More exatly, in this setting the following items must be satis�ed:� ⟨L,⪯⟩ is a bounded lattie, i.e. it has bottom and top elements, denoted by
⊥ and ⊤, respetively.� Eah operation &i is inreasing in both arguments.� Eah operation ←i is inreasing in the �rst argument and dereasing in theseond.� If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we havethat: x ⪯ (y ←i z) if and only if (x&i z) ⪯ y.This last ondition, alled adjoint property, ould be onsidered the most impor-tant feature of the framework (in ontrast with many other approahes) whihjusti�es most of its properties regarding ruial results for soundness, omplete-ness, appliability, et.In general, L may be the arrier of any omplete bounded lattie where a

L-expression is a well-formed expression omposed by values and onnetives of
L, as well as variable symbols and primitive operators (i.e., arithmeti symbolssuh as ∗,+,min, et...).In what follows, we assume that the truth funtion of any onnetive @ in L isgiven by its orresponding onnetive de�nition, that is, an equation of the form
@(x1, . . . , xn) ≜ E, where E is a L-expression not ontaining variable symbolsapart from x1, . . . , xn. For instane, in what follows we will be mainly onernedwith the following lassial set of adjoint pairs (onjuntors and impliations)in ⟨[0, 1],≤⟩, where labels L, G and P mean respetively �ukasiewiz logi, Gödelintuitionisti logi and produt logi (whih di�erent apabilities for modelingpessimist, optimist and realisti senarios, respetively):3

&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Produt
&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise Gödel
&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} �ukasiewizA rule is a formula H ←i ℬ, where H is an atomi formula (usually alledthe head) and ℬ (whih is alled the body) is a formula built from atomi for-mulas B1, . . . , Bn � n ≥ 0 �, truth values of L, onjuntions, disjuntions andaggregations. A goal is a body submitted as a query to the system. Roughlyspeaking, a multi-adjoint logi program is a set of pairs ⟨ℛ;�⟩ (we often write�ℛ witℎ ��), where ℛ is a rule and � is a truth degree (a value of L) expressingthe on�dene of a programmer in the truth of rule ℛ. By abuse of language,we sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.2.2 MALP Proedural SemantisThe proedural semantis of the multi�adjoint logi language ℒ an be thoughtof as an operational phase (based on admissible steps) followed by an interpre-tive one. In the following, C[A] denotes a formula where A is a sub-expressionwhih ours in the �possibly empty� ontext C[]. Moreover, C[A/A′] means thereplaement of A by A′ in ontext C[], whereas Var(s) refers to the set of dis-tint variables ourring in the syntati objet s, and �[Var(s)] denotes thesubstitution obtained from � by restriting its domain to Var(s).De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program
P, an admissible omputation is formalized as a state transition system, whosetransition relation →AS ⊆ (ℰ×ℰ) is the smallest relation satisfying the followingadmissible rules (where we always onsider that A is the seleted atom in Q and
mgu(E) denotes the most general uni�er of an equation set E [13℄):1) ⟨Q[A];�⟩ →AS ⟨(Q[A/v&iℬ])�;��⟩,if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P and ℬ is not empty.2) ⟨Q[A];�⟩ →AS ⟨(Q[A/v])�;��⟩,if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.3) ⟨Q[A];�⟩→AS⟨(Q[A/⊥]);�⟩,if there is no rule in P whose head uni�es with A.Note that 3tℎ ase is introdued to ope with (possible) unsuessful admissiblederivations (this kind of step is useful when evaluating, for instane, an expres-sion like �∨(p, 0.8)�, whih returns a value di�erent from 0 even when there is noprogram rule de�ning p). As usual, rules are taken renamed apart. We shall usethe symbols →AS1, →AS2 and →AS3 to distinguish between omputation stepsperformed by applying one of the spei� admissible rules. Also, the appliationof a rule on a step will be annotated as a supersript of the →AS symbol.De�nition 2. Let P be a program, Q a goal and �id� the empty substitution.An admissible derivation is a sequene ⟨Q; id⟩→AS . . .→AS⟨Q

′; �⟩. When Q′ is a4

Multi-adjoint logi program P :
ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0.9
ℛ2 : q(a) ← witℎ 0.8
ℛ3 : r(X) ← witℎ 0.7
ℛ4 : s(X) ← witℎ 0.5Admissible derivation:
⟨p(X); id⟩ →AS1

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩Interpretive derivation:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩ →IS

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩ →IS

⟨&P(0.9, 0.6); {X/a}⟩ →IS

⟨0.54; {X/a}⟩.Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).formula not ontaining atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is alled an admissible omputed answer (a..a.) for that derivation.Example 1. Let P be the multi-adjoint fuzzy logi program desribed in Figure1 where the equation de�ning the average aggregator @aver must obviously hasthe form: @aver(x1, x2) ≜ (x1 + x2)/2. Now, we an generate the admissiblederivation shown in Figure 1 (we underline the seleted atom in eah step). So,the admissible omputed answer (a..a.) in this ase is omposed by the pair:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only refers to bindings related withvariables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.If we exploit all atoms of a given goal, by applying admissible steps as muh asneeded during the operational phase, then it beomes a formula with no atoms (a
L-expression) whih an be then diretly interpreted w.r.t. lattie L by applyingthe following de�nition we initially presented in [9℄:De�nition 3 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth funtion of onnetive @ in the lattie5

⟨L,⪯⟩ assoiated to P, suh that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive omputa-tion as a state transition system, whose transition relation →IS ⊆ (ℰ × ℰ) isde�ned as the least one satisfying:
⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩De�nition 4. Let P be a program and ⟨Q;�⟩ an a..a., that is, Q is a goal notontaining atoms (i.e., a L-expression). An interpretive derivation is a sequene

⟨Q;�⟩→IS . . .→IS⟨Q
′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the lattie assoi-ated to P, the state ⟨r;�⟩ is alled a fuzzy omputed answer (f..a.) for thatderivation.Example 2. If we omplete the previous derivation of Example 1 by applying 3interpretive steps in order to obtain the �nal f..a. ⟨0.54; {X/a}⟩, we generatethe interpretive derivation shown in Figure 1.3 Truth-Degrees and Multi-adjoint Latties in PratieIn [22℄ we desribe a very easy way to model truth-degree latties for beinginluded into the FLOPER tool. All relevant omponents of eah lattie areenapsulated inside a Prolog �le whih must neessarily ontain the de�nitionsof a minimal set of prediates de�ning the set of valid elements (inluding speialmentions to the �top� and �bottom� ones), the full or partial ordering establishedamong them, as well as the repertoire of fuzzy onnetives whih an be usedfor their subsequent manipulation. In order to simplify our explanation, assumethat �le �bool.pl� refers to the simplest notion of (a binary) adjoint lattie, thusimplementing the following set of prediates:� member/1 whih is satis�ed when being alled with a parameter representinga valid truth degree. In the ase of �nite latties, it is also reommend toimplement members/1 whih returns in one go a list ontaining the wholeset of truth degrees. For instane, in the Boolean ase, both prediatesan be simply modeled by the Prolog fats: member(0)., member(1). andmembers([0,1℄).� bot/1 and top/1 obviously answer with the top and bottom element of thelattie, respetively. Both are implemented into �bool.pl� as bot(0). andtop(1).� leq/2 models the ordering relation among all the possible pairs of truthdegrees, and obviously it is only satis�ed when it is invoked with two elementsverifying that the �rst parameter is equal or smaller than the seond one. So,in our example it su�es with inluding into �bool.pl� the fats: leq(0,X).and leq(X,1).� Finally, given some fuzzy onnetives of the form &label1 (onjuntion),

∨label2 (disjuntion) or @label3 (aggregation) with arities n1, n2 and n3 re-spetively, we must provide lauses de�ning the onnetive prediates6

member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattie)bot(0). top(1). leq(X,Y) :- X=<Y.and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z) :- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).agr_aver2(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),agr_aver(Z1,Z2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2.Multi-adjoint lattie modeling truth degrees in the real interval [0,1℄ (�num.pl�).�and_label1/(n1+1)�, �or_label2/(n2+1)� and �agr_label3/(n3+1)�, where theextra argument of eah prediate is intended to ontain the result ahievedafter the evaluation of the proper onnetive. For instane, in the Booleanase, the following two fats model in a very easy way the behaviour of thelassial onjuntion operation: and_bool(0,_,0). and_bool(1,X,X).The reader an easily hek that the use of lattie �bool.pl� when working withMALP programs whose rules have the form:�A ←bool &bool(B1, . . . , Bn) witℎ 1�.... being A and Bi typial atoms1, suessfully mimis the behaviour of lassialProlog programs where lauses aomplish with the shape �A : − B1, . . . , Bn�.As a novelty in the fuzzy setting, when evaluating goals aording to the proe-dural semantis desribed in Setion 2, eah output will ontain the orrespond-ing Prolog's substitution (i.e., the risp notion of omputed answer obtained bymeans of lassial SLD-resolution) together with the maximum truth degree 1.On the other hand and following the Prolog style regulated by the previousguidelines, in �le �num.lat� we have inluded the lauses shown in Figure 2.Here, we have modeled the more �exible lattie (that we will mainly use in ourexamples, beyond the boolean ase) whih enables the possibility of workingwith truth degrees in the in�nite spae (note that this ondition disables theimplementation of the onsulting prediate �members/1�) of the real numbersbetween 0 and 1, allowing too the possibility of using onjuntion and disjuntionoperators reasted from the three typial fuzzy logis proposals desribed before1 Here we also assume that several versions of the lassial onjuntion operation havebeen implemented with di�erent arities.7

(i.e., the �ukasiewiz, Gödel and produt logis), as well as a useful desriptionfor the hybrid aggregator average.Note also that we have inluded de�nitions for auxiliary prediates, whosenames always begin with the pre�x �pri_�. All of them are intended to desribeprimitive/arithmeti operators (in our ase +, −, ∗, /, min and max) in aProlog style, for being appropriately alled from the bodies of lauses de�ningprediates with higher levels of expressivity (this is the ase for instane, of thethree kinds of fuzzy onnetives we are onsidering: onjuntions, disjuntionsand agreggations).Sine till now we have onsidered two lassial, fully ordered latties (with a�nite and in�nite number of elements, olleted in �les �bool.pl� and �num.pl�,respetively), we wish now to introdue a di�erent ase oping with a very simplelattie where not always any pair of truth degrees are omparable. So, onsiderthe following partially ordered multi-adjoint lattie in the diagram below forwhih the onjuntion and impliation onnetives based on the Gödel intuis-tionisti logi desribed in Setion 2 onform an adjoint pair.... but with thepartiularity now that, in the general ase, the Gödel 's onjuntion must beexpressed as &G(x, y) ≜ inf(x, y), where it is important to note that we mustreplae the use of �min� by �inf � in the onnetive de�nition.
⊤

� �

⊥

member(bottom). member(alpha).member(beta). member(top).members([bottom,alpha,beta,top℄).leq(bottom,X). leq(alpha,alpha). leq(alpha,top).leq(beta,beta). leq(beta,top). leq(X,top).and_godel(X,Y,Z) :- pri_inf(X,Y,Z).pri_inf(bottom,X,bottom):-!.pri_inf(alpha,X,alpha):-leq(alpha,X),!.pri_inf(beta,X,beta):-leq(beta,X),!.pri_inf(top,X,X):-!.pri_inf(X,Y,bottom).To this end, observe in the Prolog ode aompanying the �gure above that wehave introdued �ve lauses de�ning the new primitive operator �pri_inf/3�whih is intended to return the in�mum of two elements. Related with this fat,we must point out the following aspets:� Note that sine truth degrees � and � (or their orresponding representationsas Prolog terms �alpha� and �beta� used for instane in the de�nition(s)of �members(s)/1�) are inomparable then, any all to goals of the form�?- leq(alpha,beta).� or �?- leq(beta,alpha).� will always fail.8

� Fortunately, a goal of the form �?- pri_inf(alpha,beta,X).�, or alterna-tively �?- pri_inf(beta,alpha,X).�, instead of failing, suessfully pro-dues the desired result �X=bottom�.� Note anyway that the implementation of the �pri_inf/1� prediate is manda-tory for oding the general de�nition of �and_godel/3�.4 Delarative Traes into f..a.'s using FLOPERAs detailed in [1, 19, 22, 23℄, our parser has been implemented by using the las-sial DCG's (De�nite Clause Grammars) resoure of the Prolog language, sineit is a onvenient notation for expressing grammar rules. One the appliationis loaded inside a Prolog interpreter (in our ase, Sistus Prolog v.3.12.5), itshows a menu whih inludes options for loading, parsing, listing and savingfuzzy programs, as well as for exeuting fuzzy goals.All these ations are based in the translation of the fuzzy ode into standardProlog ode. The key point is to extend eah atom with an extra argument,alled truth variable of the form �_TVi�, whih is intended to ontain the truthdegree obtained after the subsequent evaluation of the atom. For instane, the�rst lause in our target program is translated into:p(X,_TV0) :- q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).Moreover, the seond lause in our target program in Figure 1, beomes thepure Prolog fat �q(a,0.8)� while a fuzzy goal like �p(X)�, is translated intothe pure Prolog goal: �p(X,Truth_degree)� (note that the last truth degreevariable is not anonymous now) for whih the Prolog interpreter returns thedesired fuzzy omputed answer [Truth_degree = 0.54, X = a]. The previous setof options su�es for running fuzzy programs (the �run� hoie also uses thelauses ontained in �num.pl�, whih represent the default lattie): all internalomputations (inluding ompiling and exeuting) are pure Prolog derivationswhereas inputs (fuzzy programs and goals) and outputs (fuzzy omputed an-swers) have always a fuzzy taste, thus produing the illusion on the �nal user ofbeing working with a purely fuzzy logi programming tool.On the other hand, in [22℄ we explain that FLOPER has been reentlyequipped with new options, alled �lat� and �show�, for allowing the possibilityof respetively hanging and displaying the multi-adjoint lattie assoiated to agiven program. Assume that �new_num.pl� ontains the same Prolog ode than�num.pl� with the exeption of the de�nition regarding the average aggregator).Now, instead of omputing the average of two truth degrees, let us onsider a new9

version whih omputes the average between the results ahieved after applyingto both elements the disjuntions operators desribed by Gödel and �ukasiewiz,that is: @aver(x1, x2) ≜ (∨G(x1, x2)+∨L(x1, x2))∗ 0.5. The orresponding Prologlause modeling suh de�nition into the �new_num.pl� �le ould be:agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),pri_add(Z1,Z2,Z3),pri_prod(Z3,0.5,Z).and now, by seleting again the �run� option (without hanging the program andgoal), the system would display the new solution: [Truth_degree = 0.72, X = a].Let us onsider now the so alled domain of weight valuesW used in the QLP(Quali�ed Logi Programming) framework of [24℄, whose elements are intendedto represent proof osts, measured as the weighted depth of proof trees (althoughlose to MALP, the QLP sheme allows a lesser repertoire of onnetives in thebody of program rules). In essene, W an be seen as lattie ⟨ℝ ∪∞,≥⟩, where
≥ is the reverse of the usual numerial ordering (with ∞ ≥ d for any d ∈ ℝ) andthus, the bottom elements is ∞ and the top element is 0 (and not vie versa).By using again the �lat� option of FLOPER, we an assoiate this lattie
W to the program seen before after hanging the �weights� of eah program ruleto 1 (the underlying idea is that �the use of eah program rule in a derivationimplies the appliation of one admissible step�). Moreover, sine in this lattiethe arithmeti operation �+� plays the role of a onjuntion (t-norm) onnetive,we assume the de�nitions of the set of onnetives appearing in the programmapped to �+� (i.e. &P(x, y) ≜ x+ y, &G(x, y) ≜ x+ y and @aver(x, y) ≜ x+ y).Now, for goal �p(X)� we ould generate an admissible derivation similar to theone seen in Figure 1, but ending now with ⟨&P(1,&G(1,@aver(1, 1))); {X/a}⟩And sine: &P(1,&G(1,@aver(1, 1))) = +(1,+(1,+(1, 1))) = 4, the �nal fuzzyomputed answer or f..a. ⟨4; {X/a}⟩ indiates that goal �p(X)� holds when Xis a, as proved after applying 4 admissible steps, as wanted.Moreover, we an also oneive a more powerful lattie expressed as theartesian produt of the one seen in Figure 2 (real numbers in the interval [0, 1])and W . Now, eah element has two omponents, oping with truth degrees andost measures. In order to be loaded into FLOPER, we must de�ne in Prologthe new lattie, whose elements ould be expressed, for instane, as data termsof the form �info(Fuzzy_Truth_Degree,Cost_Number_Steps)�. Moreover, thelauses de�ning some prediates required for managing them are:member(info(X,Y)) :- number(X), 0=<X, X=<1, number(Y), Y=<0.leq(info(X1,Y1),info(X2,Y2)) :- X1=<X2, Y1>=Y2. top(info(1,0)).and_godel(info(X1,Y1),info(X2,Y2),info(X3,Y3)) :- pri_min(X1,X2,X3),pri_add(Y1,Y2,Y3).Finally, if the weights assigned to the rules of our running example be�info(0.9,1)� for ℛ1, �info(0.8,1)� for ℛ2, �info(0.7,1)� for ℛ3 and�info(0.5,1)� for ℛ4, then, for goal �p(X)� we would obtain the desired f..a.
⟨info(0.54, 4); {X/a}⟩with the obvious meaning that we need 4 admissible stepsto prove that the query is true at a 56 % degree when X is a�.10

member(info(X,_)):-number(X),0=<X,X=<1. bot(info(0,_)).top(info(1,_)). leq(info(X1,_),info(X2,_)):- X1 =< X2.and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).or_godel(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_max(X1,Y1,Z1,DatMAX),pri_app(X2,Y2,Dat1),pri_app(Dat1,'|GODEL.',Dat2),pri_app(Dat2,DatMAX,Z2).or_luka(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_add(X1,Y1,U1,DatADD),pri_min(U1,1,Z1,DatMIN),pri_app(X2,Y2,Dat1),pri_app(Dat1,'|LUKA.',Dat2),pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatMIN,Z2).agr_aver(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_add(X1,Y1,Aux,DatADD),pri_div(Aux,2,Z1,DatDIV),pri_app(X2,Y2,Dat1),pri_app(Dat1,'�AVER.',Dat2),pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatDIV,Z2).agr_aver2(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-or_godel(info(X1,''),info(Y1,''),Za),or_luka(info(X1,''),info(Y1,''),Zb),agr_aver(Za,Zb,info(Z1,Dat3)),pri_app(X2,Y2,Dat1),pri_app(Dat1,'�AVER2.',Dat2),pri_app(Dat2,Dat3,Z2).pri_add(X,Y,Z,'#ADD.') :- Z is X+Y. pri_sub(X,Y,Z,'#SUB.') :- Z is X-Y.pri_prod(X,Y,Z,'#PROD.'):-Z is X * Y. pri_div(X,Y,Z,'#DIV.') :- Z is X/Y.pri_min(X,Y,Z,'#MIN.') :- (X=<Y,Z=X;X>Y,Z=Y).pri_max(X,Y,Z,'#MAX.') :- (X=<Y,Z=Y;X>Y,Z=X).pri_app(X,Y,Z) :- name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).append([℄,X,X). append([X|Xs℄,Y,[X|Zs℄):-append(Xs,Y,Zs).Fig. 3. Multi-adjoint lattie modeling truth degrees with labels.One step beyond, in what follows we are going to design a muh more omplexlattie to ope with delarative traes. Its elements must have two omponents,taking into aount truth degrees and �labels� olleting information about theprogram rules, fuzzy onnetives and primitive operators used when exeutingprograms. In order to be loaded into FLOPER, we need to de�ne again the newlattie as a Prolog program, whose elements will be expressed now as data termsof the form �info(Fuzzy_Truth_Degree, Label)� as shown in Figure 3 (notethat the omplex version of the average onnetive is alled here agr_aver2 andinvokes the simple version agr_aver).Here, we see that when implementing for instane the onjuntion operatorof the Produt Logi, in the seond omponent of our extended notion of �truthdegree�, we have appended the labels of its arguments with the label '&PROD.'(see lauses de�ning and_prod, pri_app and append). Of ourse, in the fuzzyprogram to be run, we must also take into aount the use of labels assoiated11

to the program rules. For instane, in set of rules of our example (where we usethe omplex version of average, i.e., �aver2 in the �rst rule) must have the form:p(X) <prod &godel(q(X),�aver2(r(X),s(X))) with info(0.9,'RULE1.').q(a) with info(0.8,'RULE2.').r(X) with info(0.7,'RULE3.').s(X) with info(0.5,'RULE4.').Now, the reader an easily tests that, after exeuting goal p(X), we obtainthe desired fuzzy omputed answers whih inludes the desired delarative traeregarding program-rules/onnetive-alls/primitive-operators evaluated till �nd-ing the �nal solution:>> run.[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.�AVER2.|GODEL.#MAX.|LUKA.#ADD.#MIN.�AVER.#ADD.#DIV.&GODEL.#MIN.&PROD.#PROD.), X=a℄In this fuzzy omputed answer we obtain both the truth value (0.72) and sub-stitution (X = a) assoiated to our goal, but also the sequene of program rulesexploited when applying admissible steps as well as the proper fuzzy onne-tives evaluated during the interpretive phase, also detailing the set of primitiveoperators (of the form #label) they all.Strongly related with this, in [20℄ we proposed a variant of the original notionof interpretive step (see De�nition 3) whih was able to distinguish alls to fuzzyonnetives (onjuntions, disjuntions and aggregations) and omputations de-voted to the evaluation of primitive operators, thus providing ost measuresabout the omplexity of onnetives. Suh new notion, alled small interpretivestep, has been reently implemented into FLOPER, as desribed in [23℄, in orderto generate �evaluation trees� like the one shown in Figure 4. However, omparedwith our present approah where we don't need any additional modi�ation ofthe underlying exeution mahinery, the implementation of [23℄ required stronghanges in the ore of the systems, inluding a new representation of the fuzzyode muh more involved than the one based in the ompilation to Prolog odedesribed at the beginning of this setion.The researh line on ost measures mentioned above was motivated afterevidening in our fuzzy fold/unfold framework desribed in [4, 8℄ that it is pos-sible to improve the �shape� of a set of program rules but with the �risk� ofautomatially generating a set of arti�ial onnetives (see the de�nition of theaggregation transformation desribed in [4℄) whih neessarily invoke other on-netives, thus produing nested de�nitions of aggregators. For this reason, it isvery important to �alibrate� the omplexities of these new onnetives (i.e., tovisualize the number of diret/indiret alls they perform to other onnetivesand/or primitive operators) in order to detet if the whole transformation pro-ess really returns improved sets of program rules and onnetive de�nitions. Inthis sense, the present work an be seen as a �rst stage to ahieve this goal.12

Fig. 4. Building a graphial interfae for FLOPER.5 Conlusions and Future WorkThe experiene aquired in our researh group regarding the design of tehniquesand methods based on fuzzy logi in lose relationship with the so-alled multi-adjoint logi programming approah ([9, 4, 8, 10, 11, 6, 7, 20, 21℄), has motivatedour interest for putting in pratie all our developments around the design ofthe FLOPER environment [19, 23, 22℄. Our philosophy is to friendly onnetthis fuzzy framework with Prolog programmers: our system, apart for beingimplemented in Prolog, also translates the fuzzy ode to lassial lauses (intwo di�erent representations) and, what is more, in this paper we have alsoshown that a wide range of latties modeling powerful and �exible notions oftruth degrees also admit a nie rule-based haraterizations into Prolog. Themain purpose of this work has been the illustration of an interesting kind oflatties where truth-degrees are aompanied with labels, having the ability ofaugmenting fuzzy omputed answers with delarative traes (i.e., by listing thesequene of program rules, onnetive alls and primitive operators used for�nding solutions) without requiring additional ost.Apart for our ongoing e�orts devoted to providing FLOPER with a graphialinterfae as illustrated in Figure 42, nowadays we are espeially interested in ex-2 Here we show an unfolding tree evidening an in�nite branh where states are oloredin yellow and program rules exploited in admissible steps are enlosed in irles.13

tending the tool with testing tehniques for automatially heking that lattiesmodeled aording the Prolog-based method established in this paper, verify therequirements of our fuzzy setting (with speial mention to the adjoint property).For the future, we plan to implementing all the manipulation tasks developedin our group on fold/unfold transformations [4, 8℄, partial evaluation [11℄ andthresholded tabulation [7℄. Moreover, we ontinue working in the development ofour �rst real-world appliation (written in MALP and ompiled with FLOPER)whih is devoted to manipulate XML douments via fuzzy extension of the popu-lar XPath language (please, visit url http://www.dsi.ulm.es/investigaion/det/FuzzyXPath.htm).Referenes1. J.M. Abietar, P.J. Morillo, and G. Moreno. Designing a software tool for fuzzylogi programming. In T.E. Simos and G. Maroulis, editors, Pro. of the Inter-national Conferene of Computational Methods in Sienes and Engineering IC-CMSE'07, Volume 2 (Computation in Modern Siene and Engineering), pages1117�1120. Amerian Institute of Physis (distributed by Springer), 2007.2. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and EvidentialReasoning in Arti�ial Intelligene. John Wiley & Sons, In., 1995.3. S. Guadarrama, S. Muñoz, and C. Vauheret. Fuzzy Prolog: A new approah usingsoft onstraints propagation. Fuzzy Sets and Systems, 144(1):127�150, 2004.4. J.A. Guerrero and G. Moreno. Optimizing fuzzy logi programs by unfolding,aggregation and folding. Eletroni Notes in Theoretial Computer Siene, 219:19�34, 2008.5. M. Ishizuka and N. Kanai. Prolog-ELF Inorporating Fuzzy Logi. In Aravind K.Joshi, editor, Proeedings of the 9th Int. Joint Conferene on Arti�ial Intelligene,IJCAI'85, pages 701�703. Morgan Kaufmann, 1985.6. P. Julián, J. Medina, G. Moreno, and M. Ojeda. Thresholded tabulation in a fuzzylogi setting. Eletroni Notes in Theoretial Computer Siene, 248:115�130, 2009.7. P. Julián, J. Medina, G. Moreno, and M. Ojeda. E�ient thresholded tabulationfor fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundationsof Reasoning under Unertainty), 249:125�141, 2010.8. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjointApproah. Fuzzy Sets and Systems, 154:16�33, 2005.9. P. Julián, G. Moreno, and J. Penabad. Operational/Interpretive Unfoldingof Multi-adjoint Logi Programs. Journal of Universal Computer Siene,12(11):1679�1699, 2006.10. P. Julián, G. Moreno, and J. Penabad. Measuring the interpretive ost in fuzzylogi omputations. In Franeso Masulli, Sushmita Mitra, and Gabriella Pasi,editors, Pro. of Appliations of Fuzzy Sets Theory, 7th International Workshopon Fuzzy Logi and Appliations, WILF 2007, Camogli, Italy, July 7-10, pages28�36. Springer Verlag, LNAI 4578, 2007.11. P. Julián, G. Moreno, and J. Penabad. An Improved Redutant Calulus usingFuzzy Partial Evaluation Tehniques. Fuzzy Sets and Systems, 160:162�181, 2009.doi: 10.1016/j.fss.2008.05.006.12. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logi program-ming and its appliations. Journal of Logi Programming, 12:335�367, 1992.14

13. J. L. Lassez, M. J. Maher, and K. Marriott. Uni�ation Revisited. In J. Minker,editor, Foundations of Dedutive Databases and Logi Programming, pages 587�625. Morgan Kaufmann, Los Altos, Ca., 1988.14. D. Li and D. Liu. A fuzzy Prolog database system. John Wiley & Sons, In., 1990.15. J.W. Lloyd. Foundations of Logi Programming. Springer-Verlag, Berlin, 1987.Seond edition.16. J. Medina, M. Ojeda-Aiego, and P. Vojtá². Multi-adjoint logi programming withontinuous semantis. Pro. of Logi Programming and Non-Monotoni Reasoning,LPNMR'01, Springer-Verlag, LNAI, 2173:351�364, 2001.17. J. Medina, M. Ojeda-Aiego, and P. Vojtá². A proedural semantis for multi-adjoint logi programing. Progress in Arti�ial Intelligene, EPIA'01, Springer-Verlag, LNAI, 2258(1):290�297, 2001.18. J. Medina, M. Ojeda-Aiego, and P. Vojtá². Similarity-based Uni�ation: a multi-adjoint approah. Fuzzy Sets and Systems, 146:43�62, 2004.19. P.J. Morillo and G. Moreno. Programming with Fuzzy Logi Rules by usingthe FLOPER Tool. In Nik Bassiliades, Guido Governatori, and Adrian Pashke,editors, Pro. of the 2nd. International Symposium on Rule Representation, In-terhange and Reasoning on the Web, RuleML 2008, Orlando, FL, USA, Otober30-31, pages 119�126. Springer Verlag, LNCS 3521, 2008.20. P.J. Morillo and G. Moreno. Modeling interpretive steps in fuzzy logi ompu-tations. In Vito Di Gesù, Sankar K. Pal, and Alfredo Petrosino, editors, Pro.of the 8th International Workshop on Fuzzy Logi and Appliations, WILF 2009.Palermo, Italy, June 9-12, pages 44�51. Springer Verlag, LNAI 5571, 2009.21. P.J. Morillo and G. Moreno. On ost estimations for exeuting fuzzy logi pro-grams. In Hamid R. Arabnia, David de la Fuente, and José Angel Olivas, editors,Proeedings of the 11th International Conferene on Arti�ial Intelligene, ICAI2009, July 13-16, Las Vegas (Nevada), USA, pages 217�223. CSREA Press, 2009.22. P.J. Morillo, G. Moreno, J. Penabad, and C. Vázquez. A Pratial Management ofFuzzy Truth Degrees using FLOPER. In M. Dean et al., editor, Pro. of the 4th.International Symposium on Rule Interhange and Appliations, RuleML 2010,Washington, USA, Otober 21�23, pages 20�34. Springer Verlag, LNCS 6403, 2010.23. P.J. Morillo, G. Moreno, J. Penabad, and C. Vázquez. Modeling interpretive stepsinto the FLOPER environment. In H.R. Arabnia et al., editor, Proeedings of the12th International Conferene on Arti�ial Intelligene, ICAI 2010, July 12-15,Las Vegas (Nevada), USA, pages 16�22. CSREA Press, 2010.24. M. Rodríguez-Artalejo and C. Romero-Díaz. Quantitative logi programming re-visited. In J. Garrigue and M. Hermenegildo, editors, Funtional and Logi Pro-gramming (FLOPS'08), pages 272�288. Springer LNCS 4989, 2008.25. U. Straia. Query answering in normal logi programs under unertainty. In 8thEuropean Conferenes on Symboli and Quantitative Approahes to Reasoning withUnertainty (ECSQARU-05), number 3571 in Leture Notes in Computer Siene,pages 687�700, Barelona, Spain, 2005. Springer Verlag.26. U. Straia. Managing unertainty and vagueness in desription logis, logi pro-grams and desription logi programs. In Reasoning Web, 4th International Sum-mer Shool, Tutorial Letures, number 5224 in Leture Notes in Computer Siene,pages 54�103. Springer Verlag, 2008.27. P. Vojtá². Fuzzy Logi Programming. Fuzzy Sets and Systems, 124(1):361�370,2001. 15

