
Fuzzy Computed AnswersColle
ting Proof Information ★Pedro J. Mor
illo, Ginés Moreno, Jaime Penabad and Carlos VázquezUniversity of Castilla-La Man
haFa
ulty of Computer S
ien
e Engineering02071, Alba
ete (Spain){pmor
illo,
vazquez}�dsi.u
lm.es{Gines.Moreno,Jaime.Penabad}�u
lm.esAbstra
t. MALP (i.e., the so-
alled Multi-Adjoint Logi
 Programmingapproa
h)
an be seen as a promising fuzzy extension of the popular, purelogi
 language Prolog, in
luding too a wide repertoire of
onstru
ts basedon fuzzy logi
 in order to support un
ertainty and approximated reason-ing in a natural way. Moreover, the Fuzzy LOgi
 Programming Environ-ment for Resear
h, FLOPER in brief, that we have implemented in ourresear
h group, is intended to assists the development of real-world appli-
ations written with MALP syntax. Among other
apabilities, the systemis able to safely translate fuzzy
ode into Prolog
lauses whi
h
an bedire
tly exe
uted inside any standard Prolog interpreter in a
ompletelytransparent way for the �nal user. In this fuzzy setting, it is mandatorythe use of latti
es modeling truth degrees beyond {true; false}. As de-s
ribed in this paper, FLOPER is able to su

essfully deal (in a very easyway) with sophisti
ated latti
es modeling truth degrees in the real inter-val [0, 1], also do
umenting -via de
larative tra
es- the proof pro
eduresfollowed when solving queries, without extra
omputational
ost.Key words: Fuzzy Logi
 Programming, Logi
 Proofs, De
larative Debugging1 Introdu
tionLogi
 Programming (LP) [8℄ has been widely used for problem solving and knowl-edge representation in the past, with re
ognized appli
ations in AI and relatedareas. Nevertheless, traditional LP languages do not in
orporate te
hniques or
onstru
ts to treat expli
itly with un
ertainty and approximated reasoning. Toover
ome this situation, during the last years, several fuzzy logi
 programmingsystems have been developed where the
lassi
al inferen
e me
hanism of SLD�Resolution has been repla
ed by a fuzzy variant able to handle partial truth andto reason with un
ertainty [3, 1, 10℄, with promising appli
ations in the �elds ofComputational Intelligen
e, Soft-Computing, Semanti
 Web, et
.
★ This work was supported by the EU (FEDER), and the Spanish S
ien
e and Inno-vation Ministry (MICINN) under grants TIN 2007-65749 and TIN2011-25846, andby the Castilla-La Man
ha Administration under grant PII1I09-0117-4481.

Informally speaking, in the MALP framework of [10, 9℄, a program
an beseen as a set of rules ea
h one annotated by a truth degree, and a goal is a queryto the system, i.e., a set of atoms linked with
onne
tives
alled aggregators. Astate is a pair ⟨Q, �⟩ where Q is a goal and � a substitution (initially, the identitysubstitution). States are evaluated in two separate
omputational phases. Firstly,admissible steps (a generalization of the
lassi
al modus ponens inferen
e rule)are systemati
ally applied by a ba
kward reasoning pro
edure in a similar way to
lassi
al resolution steps in pure logi
 programming, thus returning a
omputedsubstitution together with an expression where all atoms have been exploited.This last expression is then interpreted under a given latti
e, hen
e returninga pair ⟨truth degree; substitution⟩ whi
h is the fuzzy
ounterpart of the
lassi
alnotion of
omputed answer traditionally used in LP.In the present paper, we draw the last developments performed on the FLO-PER system (see [11, 12℄ and visit http://www.dsi.u
lm.es/investiga
ion/de
t/FLOPERpage.htm), whi
h
urrently provides fa
ilities for
ompiling, exe-
uting and manipulating su
h kind of fuzzy programs, by means of two mainrepresentation (high/low-level, Prolog-based) ways whi
h are somehow antag-onisti
s regarding simpli
ity and a

ura
y features. The main purpose of thepresent paper is to highlight a
ollateral e�e
t of the last feature implementedinto the tool, regarding the possibility of introdu
ing di�erent notions of multi-adjoint latti
es whi
h
an be easily de�ned with a Prolog taste. Only a few num-ber of
lauses su�
es for modeling ri
h notions of truth degrees in
orporatingaugmented information about the program rules used in a derivation sequen
e aswell as the set of fuzzy
onne
tives evaluated at exe
ution time when rea
hingthe whole set of solutions for a given program and goal. The most surprisingfa
t reported here is that this kind of �extra proof information�
an be freely
olle
ted on fuzzy
omputed answers without requiring any additional
ompu-tational resour
e.The outline of this work is as follows. In Se
tion 2 we detail the main featuresof multi-adjoint logi
 programming, both syntax and pro
edural semanti
s. Se
-tion 3 explains the
urrent menu of programming resour
es implemented intothe FLOPER tool, whi
h nowadays is being equipped with new options for per-forming advan
ed program manipulation tasks (transformation, spe
ialization,optimization) with a
lear fuzzy taste. The bene�ts of our present approa
hregarding how to obtain fuzzy
omputed answers
ontaining debugging informa-tion on exe
ution proofs, are highlighted in Se
tion 4. Finally, in Se
tion 5 wepresent our
on
lusions and propose some lines of future work.2 Multi-Adjoint Logi
 ProgramsIn what follows, we present a short summary of the main features of our lan-guage (we refer the reader to [10℄ for a
omplete formulation). We work with a�rst order language, ℒ,
ontaining variables, fun
tion symbols, predi
ate sym-bols,
onstants, quanti�ers (∀ and ∃), and several (arbitrary)
onne
tives toin
rease language expressiveness. In our fuzzy setting, we use impli
ation
on-

ne
tives (←1,←2, . . . ,←m) and also other
onne
tives whi
h are grouped underthe name of �aggregators� or �aggregation operators�. They are used to
om-bine/propagate truth values through the rules. The general de�nition of aggre-gation operators subsumes
onjun
tive operators (denoted by &1,&2, . . . ,&k),disjun
tive operators (∨1,∨2, . . . ,∨l), and average and hybrid operators (usuallydenoted by @1,@2, . . . ,@n). Although the
onne
tives &i, ∨i and @i are binaryoperators, we usually generalize them as fun
tions with an arbitrary numberof arguments. By de�nition, the truth fun
tion for an n-ary aggregation oper-ator [[@]] : Ln → L is required to be monotone and ful�lls [[@]](⊤, . . . ,⊤) = ⊤,
[[@]](⊥, . . . ,⊥) = ⊥. Additionally, our language ℒ
ontains the values of a multi-adjoint latti
e, ⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a
olle
tion of adjointpairs ⟨←i,&i⟩, where ea
h &i is a
onjun
tor intended to the evaluation ofmodusponens. In general, the set of truth values L may be the
arrier of any
ompletebounded latti
e but, for simpli
ity, in this paper we shall sele
t L as the set ofreal numbers in the interval [0, 1].A rule is a formula A←i ℬ, where A is an atomi
 formula (usually
alled thehead) and ℬ (whi
h is
alled the body) is a formula built from atomi
 formulas
B1, . . . , Bn (n ≥ 0), truth values of L and
onjun
tions, disjun
tions and aggre-gations. Rules with an empty body are
alled fa
ts. A goal is a body submittedas a query to the system. Variables in a rule are assumed to be governed byuniversal quanti�ers. Roughly speaking, a multi-adjoint logi
 program is a set ofpairs ⟨ℛ; v⟩, where ℛ is a rule and v is a truth degree (a value of L) expressingthe
on�den
e whi
h the user of the system has in the truth of the rule ℛ. Often,we will write �ℛ with v� instead of ⟨ℛ; v⟩.In order to des
ribe the pro
edural semanti
s of the multi�adjoint logi
 lan-guage, in the following we denote by C[A] a formula where A is a sub-expression(usually an atom) whi
h o

urs in the �possibly empty�
ontext C[] whereas
C[A/A′] means the repla
ement of A by A′ in
ontext C[]. Moreover, Var(s) de-notes the set of distin
t variables o

urring in the synta
ti
 obje
t s, �[Var(s)]refers to the substitution obtained from � by restri
ting its domain to Var(s) and
mgu(E) denotes the most general uni�er of an equation set E. In the followingde�nition, we always
onsider that A is the sele
ted atom in goal Q.De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state. Given a program P, an admissible
omputation isformalized as a state transition system, whose transition relation →AS is thesmallest relation satisfying the following admissible rules:1) ⟨Q[A];�⟩→AS⟨(Q[A/v&iℬ])�;��⟩ if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in Pand ℬ is not empty.2) ⟨Q[A];�⟩→AS⟨(Q[A/v])�;��⟩ if � = mgu({A′ = A}), and ⟨A′←i; v⟩ in P.Apart for exploiting atoms by using program rules, in this setting we
an alsoevaluate expressions
omposed by truth degrees and fuzzy
onne
tives by dire
tlyinterpreting them w.r.t. latti
e L following our de�nition re
asted from [6℄:De�nition 2 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth fun
tion of
onne
tive @ in the latti
e

⟨L,⪯⟩ asso
iated to P, su
h that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive
omputa-tion as a state transition system, whose transition relation →IS is de�ned as theleast one satisfying: ⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩Example 1. In order to illustrate our de�nitions,
onsider now the following pro-gram P and latti
e ([0, 1],≤), where ≤ is the usual order on real numbers.
ℛ1 : p(X)←P q(X,Y)&G r(Y) witℎ 0.8 ℛ2 : q(a, Y)←P s(Y) witℎ 0.7
ℛ3 : q(b, Y)←L r(Y) witℎ 0.8 ℛ4 : r(Y)← witℎ 0.7
ℛ5 : s(b)← witℎ 0.9The labels P, G and L mean for Produ
t logi
, Gödel intuitionisti
 logi
 and�ukasiewi
z logi
, respe
tively. That is, [[&P]](x, y) = x⋅y, [[&G]](x, y) = min(x, y),and [[&L]](x, y) = max(0, x+y−1). In the following derivation for the program Pand goal←p(X), we underline the sele
ted expression in ea
h
omputation step,also indi
ating as a supers
ript the rule/
onne
tive exploited/evaluated in ea
hadmissible/interpretive step (as usual, variables of program rules are renamedafter being used):
⟨p(X); {}⟩ →AS1

ℛ1 ⟨0.8 &P (q(X1, Y1) &G r(Y1)); {X/X1}⟩

→AS1
ℛ2 ⟨0.8 &P ((0.7 &P s(Y2)) &G r(Y2)); {X/a,X1/a, Y1/Y2}⟩

→AS2
ℛ5 ⟨0.8 &P ((0.7 &P 0.9) &G r(b)); {X/a,X1/a, Y1/b, Y2/b}⟩

→IS
&P ⟨0.8 &P (0.63 &G r(b)); {X/a,X1/a, Y1/b, Y2/b}⟩

→AS2
ℛ4 ⟨0.8 &P (0.63 &G 0.7); {X/a,X1/a, Y1/b, Y2/b, Y3/b}⟩

→IS
&G ⟨0.8 &P 0.63; {X/a,X1/a, Y1/b, Y2/b, Y3/b}⟩

→IS
&P ⟨0.504; {X/a,X1/a, Y1/b, Y2/b, Y3/b}⟩So, after fo
using our interest in variables belonging to the original goal, the�nal fuzzy
omputed answer (f.
.a., in brief) is ⟨0.504; {X/a}⟩, with the obviousmeaning that the original goal is true at a 50.4% when X be a.3 The FLOPER SystemAs detailed in [11, 12℄, our parser has been implemented by using the
lassi
alDCG's (De�nite Clause Grammars) resour
e of the Prolog language, sin
e it is a
onvenient notation for expressing grammar rules. On
e the appli
ation is loadedinside a Prolog interpreter (in our
ase, Si
stus Prolog v.3.12.5), it shows a menuwhi
h in
ludes options for loading, parsing, listing and saving fuzzy programs,as well as for exe
uting fuzzy goals. All these a
tions are based in the translationof the fuzzy
ode into standard Prolog
ode. The key point is to extend ea
hatom with an extra argument,
alled truth variable of the form _TVi, whi
h isintended to
ontain the truth degree obtained after the subsequent evaluationof the atom. For instan
e, the �rst
lause in our target program is translatedinto: �p(X,_TV0) : −q(X, Y,_TV1), r(Y,_TV2), and_godel(_TV1,_TV2,_TV3),

and_prod(0.8,_TV3,_TV0). �, where the de�nition of the �aggregator predi-
ates� are: �and_prod(X, Y, Z) : −Z is X ∗ Y.� and �and_godel(X, Y, Z) : −(X =<

Fig. 1. Building a graphi
al interfa
e for FLOPER.
Y, Z = X; X > Y, Z = Y).�. The last
lause in the program, be
omes the pure Prologfa
t �s(b, 0.9).� while a fuzzy goal like �p(X)�, is translated into the pure Pro-log goal: �p(X, Truth_degree)� (note that the last truth degree variable is notanonymous now) for whi
h the Prolog interpreter returns the two desired fuzzy
omputed answers [Truth_degree=0.504,X=a℄ and [Truth_degree=0.4,X=b℄.The previous set of options su�
es for running fuzzy programs: all internal
omputations (in
luding
ompiling and exe
uting) are pure Prolog derivationswhereas inputs (fuzzy programs and goals) and outputs (fuzzy
omputed an-swers) have always a fuzzy taste, whi
h produ
es the illusion on the �nal user ofbeing working with a purely fuzzy logi
 programming tool.Moreover, it is also possible to sele
t into the FLOPER's goal menu, options�tree� and �depth�, whi
h are useful for tra
ing exe
ution trees and �xing themaximum length allowed for their bran
hes (initially 3), respe
tively. Workingwith these options is
ru
ial when the �run�
hoi
e fails: remember that thislast option is based on the generation of pure logi
 SLD-derivations whi
h mightfall in loop or dire
tly fail in some
ases as the experiments of [11℄ show, in
ontrast with the tra
es (based on �nite, non-failed, admissible derivations) thatthe �tree� option displays. By using the graphi
al interfa
e we are implementingfor FLOPER, Figure 1 shows a tree eviden
ing an in�nite bran
h where statesare
olored in yellow and program rules exploited in admissible steps are en
losedin
ir
les.

4 Fuzzy Computed Answers with Extended InformationStrongly related with the last paragraph of the previous se
tion and also
on-ne
ting with the results we plan to explain in what follows, the �ismode�
hoi
eis useful for de
iding among three levels of detail when visualizing the interpre-tive
omputations performed during the generation of �evaluation trees�. Thislast option, together with the possibility of loading new latti
es into the system,represents our last developments performed on FLOPER, as reported in [12℄.member(X) :- number(X),0=<X,X=<1.bot(0). top(1).leq(X,Y) :- X=<Y.and_luka(X,Y,Z):- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z):- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2. Multi-adjoint latti
e modeling truth degrees in the real interval [0,1℄.We have re
ently
on
eived a very easy way to model truth-degree latti
esfor being in
luded into the FLOPER tool by using the �lat/show� options. Allrelevant
omponents of ea
h latti
e
an be en
apsulated inside a Prolog �le whi
hmust ne
essarily
ontain the de�nitions of a minimal set of predi
ates de�ningthe set of valid elements (predi
ate member), in
luding spe
ial mentions to the�top� and �bottom� ones, the full or partial ordering established among them(predi
ate leq), as well as the repertoire of fuzzy
onne
tives whi
h
an be usedfor their subsequent manipulation.For instan
e, in Figure 2 we have modeled the latti
e that we used in ourexamples, whi
h enables the possibility of working with truth degrees in thein�nite spa
e of the real numbers between 0 and 1, allowing too the possibility ofusing
onjun
tion and disjun
tion operators re
asted from the three typi
al fuzzylogi
s proposals des
ribed before (i.e., the �ukasiewi
z, Gödel and produ
t logi
s),as well as a useful des
ription for the hybrid aggregator average. Note also thatwe have in
luded de�nitions for auxiliary predi
ates, whose names always begin

with the pre�x �pri_�. All of them are intended to des
ribe primitive/arithmeti
operators (in our
ase +, −, ∗, /, min and max) in a Prolog style, for beingappropriately
alled from the bodies of
lauses de�ning predi
ates with higherlevels of expressivity (this is the
ase for instan
e, of the three kinds of fuzzy
onne
tives we are
onsidering:
onjuntions, disjun
tions and agreggations).One step beyond, we
an also
on
eive a more
omplex latti
e whose elements
ould have two
omponents,
oping with truth degrees and �labels�
olle
tinginformation about the program rules and fuzzy
onne
tives used when exe
utingprograms. In order to be loaded into FLOPER, we must de�ne in Prolog thenew latti
e, whose elements
ould be expressed, for instan
e, as data terms ofthe form �info(Fuzzy_Truth_Degree, Label)�. Moreover, the
lauses de�ningsome predi
ates required for managing them are:member(info(X,_)):-number(X),0=<X,X=<1.bot(info(0,_)). top(info(1,_)).leq(info(X1,_),info(X2,_)) :- X1 =< X2.and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).pri_app(X,Y,Z):-name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).pri_append([℄,X,X). append([A|B℄,C,[A|D℄):-append(B,C,D).Here, we have seen that when implementing for instan
e the
onjun
tionoperator of the Produ
t Logi
, in the se
ond
omponent of our extended notionof �truth degree�, we have appended the labels of its arguments with the label'&PROD.' (see
lauses de�ning and_prod, pri_app and append). Of
ourse, inthe fuzzy program to be run, we must also take into a

ount the use of labelsasso
iated to the program rules. For instan
e, in our example the �rst rule musthave the form:p(X) <prod q(X,Y) &godel r(Y) with info(0.8,'RULE1.').And now, after exe
uting goal p(X) we obtain the two desired
omputed answers(in
luding the sequen
e of program rules exploited and
onne
tive de�nitionsevaluated till �nding ea
h solution):[Truth_degree=info(0.504, RULE1.RULE2.RULE5.&PROD.RULE4.&GODEL.&PROD.}), X=a℄[Truth_degree=info(0.4, RULE1.RULE3.RULE4.&LUKA.RULE4.&GODEL.&PROD.), X=b℄

5 Con
lusions and Future WorkThe experien
e a
quired in our resear
h group regarding the design of te
hniquesand methods based on fuzzy logi
 in
lose relationship with the so-
alled multi-adjoint logi
 programming approa
h ([2, 5, 7, 4℄), has motivated our interest forputting in pra
ti
e all our developments around the design of the FLOPERenvironment [11, 12℄. Our philosophy is to friendly
onne
t this fuzzy frameworkwith Prolog programmers: our system, apart for being implemented in Prolog,also translates the fuzzy
ode to
lassi
al
lauses and, what is more, in this paperwe have also shown that a wide range of latti
es modeling powerful and �exiblenotions of truth degrees
an be easily used into FLOPER for augmenting fuzzy
omputed answers with proof tra
es without requiring additional
ost.Apart for our ongoing e�orts devoted to providing FLOPER with a graphi
alinterfa
e as illustrated in Figure 1, nowadays we are espe
ially interested inimplementing all the manipulation tasks developed in our group on fold/unfoldtransformations [2, 5℄, partial evaluation [7℄ and thresholded tabulation [4℄.Referen
es1. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and EvidentialReasoning in Arti�
ial Intelligen
e. John Wiley & Sons, In
., 1995.2. J.A. Guerrero and G. Moreno. Optimizing fuzzy logi
 programs by unfolding,aggregation and folding. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 219:19�34, 2008.3. M. Ishizuka and N. Kanai. Prolog-ELF In
orporating Fuzzy Logi
. In Aravind K.Joshi, editor, Pro
eedings of the 9th International Joint Conferen
e on Arti�
ialIntelligen
e (IJCAI'85), pages 701�703. Morgan Kaufmann, 1985.4. P. Julián, J. Medina, G. Moreno, and M. Ojeda. E�
ient thresholded tabulationfor fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundationsof Reasoning under Un
ertainty), 249:125�141, 2010.5. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjointApproa
h. Fuzzy Sets and Systems, Elsevier, 154:16�33, 2005.6. P. Julián, G. Moreno, and J. Penabad. Operational/Interpretive Unfoldingof Multi-adjoint Logi
 Programs. Journal of Universal Computer S
ien
e,12(11):1679�1699, 2006.7. P. Julián, G. Moreno, and J. Penabad. An Improved Redu
tant Cal
ulus usingFuzzy Partial Evaluation Te
hniques. Fuzzy Sets and Systems, 160:162�181, 2009.8. J.W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, Berlin, 1987.9. J. Medina, M. Ojeda-A
iego, and P. Vojtá². A pro
edural semanti
s for multi-adjoint logi
 programing. Progress in Arti�
ial Intelligen
e, EPIA'01, Springer-Verlag, Le
ture Notes in Arti�
ial Intelligen
e, 2258(1):290�297, 2001.10. J. Medina, M. Ojeda-A
iego, and P. Vojtá². Similarity-based Uni�
ation: a multi-adjoint approa
h. Fuzzy Sets and Systems, 146:43�62, 2004.11. P. J. Mor
illo and G. Moreno. Programming with Fuzzy Logi
 Rules by usingthe FLOPER Tool. In N. Bassiliades et al., editors, Pro
. of RuleML'08, pages119-126. Springer Verlag, LNCS 3521, 2008.12. P.J. Mor
illo, G. Moreno, J. Penabad, and C. Vázquez. A Pra
ti
al Managementof Fuzzy Truth Degrees using FLOPER. In M. Dean et al., editors, Pro
. ofRuleML'10, pages 20-34. Springer Verlag, LNCS 6403, 2010.

