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Informally speaking, in the MALP framework of [10, 9℄, a program an beseen as a set of rules eah one annotated by a truth degree, and a goal is a queryto the system, i.e., a set of atoms linked with onnetives alled aggregators. Astate is a pair ⟨Q, �⟩ where Q is a goal and � a substitution (initially, the identitysubstitution). States are evaluated in two separate omputational phases. Firstly,admissible steps (a generalization of the lassial modus ponens inferene rule)are systematially applied by a bakward reasoning proedure in a similar way tolassial resolution steps in pure logi programming, thus returning a omputedsubstitution together with an expression where all atoms have been exploited.This last expression is then interpreted under a given lattie, hene returninga pair ⟨truth degree; substitution⟩ whih is the fuzzy ounterpart of the lassialnotion of omputed answer traditionally used in LP.In the present paper, we draw the last developments performed on the FLO-PER system (see [11, 12℄ and visit http://www.dsi.ulm.es/investigaion/det/FLOPERpage.htm), whih urrently provides failities for ompiling, exe-uting and manipulating suh kind of fuzzy programs, by means of two mainrepresentation (high/low-level, Prolog-based) ways whih are somehow antag-onistis regarding simpliity and auray features. The main purpose of thepresent paper is to highlight a ollateral e�et of the last feature implementedinto the tool, regarding the possibility of introduing di�erent notions of multi-adjoint latties whih an be easily de�ned with a Prolog taste. Only a few num-ber of lauses su�es for modeling rih notions of truth degrees inorporatingaugmented information about the program rules used in a derivation sequene aswell as the set of fuzzy onnetives evaluated at exeution time when reahingthe whole set of solutions for a given program and goal. The most surprisingfat reported here is that this kind of �extra proof information� an be freelyolleted on fuzzy omputed answers without requiring any additional ompu-tational resoure.The outline of this work is as follows. In Setion 2 we detail the main featuresof multi-adjoint logi programming, both syntax and proedural semantis. Se-tion 3 explains the urrent menu of programming resoures implemented intothe FLOPER tool, whih nowadays is being equipped with new options for per-forming advaned program manipulation tasks (transformation, speialization,optimization) with a lear fuzzy taste. The bene�ts of our present approahregarding how to obtain fuzzy omputed answers ontaining debugging informa-tion on exeution proofs, are highlighted in Setion 4. Finally, in Setion 5 wepresent our onlusions and propose some lines of future work.2 Multi-Adjoint Logi ProgramsIn what follows, we present a short summary of the main features of our lan-guage (we refer the reader to [10℄ for a omplete formulation). We work with a�rst order language, ℒ, ontaining variables, funtion symbols, prediate sym-bols, onstants, quanti�ers (∀ and ∃), and several (arbitrary) onnetives toinrease language expressiveness. In our fuzzy setting, we use impliation on-



netives (←1,←2, . . . ,←m) and also other onnetives whih are grouped underthe name of �aggregators� or �aggregation operators�. They are used to om-bine/propagate truth values through the rules. The general de�nition of aggre-gation operators subsumes onjuntive operators (denoted by &1,&2, . . . ,&k),disjuntive operators (∨1,∨2, . . . ,∨l), and average and hybrid operators (usuallydenoted by @1,@2, . . . ,@n). Although the onnetives &i, ∨i and @i are binaryoperators, we usually generalize them as funtions with an arbitrary numberof arguments. By de�nition, the truth funtion for an n-ary aggregation oper-ator [[@]] : Ln → L is required to be monotone and ful�lls [[@]](⊤, . . . ,⊤) = ⊤,
[[@]](⊥, . . . ,⊥) = ⊥. Additionally, our language ℒ ontains the values of a multi-adjoint lattie, ⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a olletion of adjointpairs ⟨←i,&i⟩, where eah &i is a onjuntor intended to the evaluation ofmodusponens. In general, the set of truth values L may be the arrier of any ompletebounded lattie but, for simpliity, in this paper we shall selet L as the set ofreal numbers in the interval [0, 1].A rule is a formula A←i ℬ, where A is an atomi formula (usually alled thehead) and ℬ (whih is alled the body) is a formula built from atomi formulas
B1, . . . , Bn (n ≥ 0 ), truth values of L and onjuntions, disjuntions and aggre-gations. Rules with an empty body are alled fats. A goal is a body submittedas a query to the system. Variables in a rule are assumed to be governed byuniversal quanti�ers. Roughly speaking, a multi-adjoint logi program is a set ofpairs ⟨ℛ; v⟩, where ℛ is a rule and v is a truth degree (a value of L) expressingthe on�dene whih the user of the system has in the truth of the rule ℛ. Often,we will write �ℛ with v� instead of ⟨ℛ; v⟩.In order to desribe the proedural semantis of the multi�adjoint logi lan-guage, in the following we denote by C[A] a formula where A is a sub-expression(usually an atom) whih ours in the �possibly empty� ontext C[] whereas
C[A/A′] means the replaement of A by A′ in ontext C[]. Moreover, Var(s) de-notes the set of distint variables ourring in the syntati objet s, �[Var(s)]refers to the substitution obtained from � by restriting its domain to Var(s) and
mgu(E) denotes the most general uni�er of an equation set E. In the followingde�nition, we always onsider that A is the seleted atom in goal Q.De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state. Given a program P, an admissible omputation isformalized as a state transition system, whose transition relation →AS is thesmallest relation satisfying the following admissible rules:1) ⟨Q[A];�⟩→AS⟨(Q[A/v&iℬ])�;��⟩ if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in Pand ℬ is not empty.2) ⟨Q[A];�⟩→AS⟨(Q[A/v])�;��⟩ if � = mgu({A′ = A}), and ⟨A′←i; v⟩ in P.Apart for exploiting atoms by using program rules, in this setting we an alsoevaluate expressions omposed by truth degrees and fuzzy onnetives by diretlyinterpreting them w.r.t. lattie L following our de�nition reasted from [6℄:De�nition 2 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth funtion of onnetive @ in the lattie



⟨L,⪯⟩ assoiated to P, suh that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive omputa-tion as a state transition system, whose transition relation →IS is de�ned as theleast one satisfying: ⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩Example 1. In order to illustrate our de�nitions, onsider now the following pro-gram P and lattie ([0, 1],≤), where ≤ is the usual order on real numbers.
ℛ1 : p(X)←P q(X,Y )&G r(Y ) witℎ 0.8 ℛ2 : q(a, Y )←P s(Y ) witℎ 0.7
ℛ3 : q(b, Y )←L r(Y ) witℎ 0.8 ℛ4 : r(Y )← witℎ 0.7
ℛ5 : s(b)← witℎ 0.9The labels P, G and L mean for Produt logi, Gödel intuitionisti logi and�ukasiewiz logi, respetively. That is, [[&P]](x, y) = x⋅y, [[&G]](x, y) = min(x, y),and [[&L]](x, y) = max(0, x+y−1). In the following derivation for the program Pand goal←p(X), we underline the seleted expression in eah omputation step,also indiating as a supersript the rule/onnetive exploited/evaluated in eahadmissible/interpretive step (as usual, variables of program rules are renamedafter being used):
⟨p(X); {}⟩ →AS1

ℛ1 ⟨0.8 &P (q(X1, Y1) &G r(Y1)); {X/X1}⟩

→AS1
ℛ2 ⟨0.8 &P ((0.7 &P s(Y2)) &G r(Y2)); {X/a,X1/a, Y1/Y2}⟩

→AS2
ℛ5 ⟨0.8 &P ((0.7 &P 0.9) &G r(b)); {X/a,X1/a, Y1/b, Y2/b}⟩

→IS
&P ⟨0.8 &P (0.63 &G r(b)); {X/a,X1/a, Y1/b, Y2/b}⟩

→AS2
ℛ4 ⟨0.8 &P (0.63 &G 0.7); {X/a,X1/a, Y1/b, Y2/b, Y3/b}⟩

→IS
&G ⟨0.8 &P 0.63; {X/a,X1/a, Y1/b, Y2/b, Y3/b}⟩

→IS
&P ⟨0.504; {X/a,X1/a, Y1/b, Y2/b, Y3/b}⟩So, after fousing our interest in variables belonging to the original goal, the�nal fuzzy omputed answer (f..a., in brief) is ⟨0.504; {X/a}⟩, with the obviousmeaning that the original goal is true at a 50.4% when X be a.3 The FLOPER SystemAs detailed in [11, 12℄, our parser has been implemented by using the lassialDCG's (De�nite Clause Grammars) resoure of the Prolog language, sine it is aonvenient notation for expressing grammar rules. One the appliation is loadedinside a Prolog interpreter (in our ase, Sistus Prolog v.3.12.5), it shows a menuwhih inludes options for loading, parsing, listing and saving fuzzy programs,as well as for exeuting fuzzy goals. All these ations are based in the translationof the fuzzy ode into standard Prolog ode. The key point is to extend eahatom with an extra argument, alled truth variable of the form _TVi, whih isintended to ontain the truth degree obtained after the subsequent evaluationof the atom. For instane, the �rst lause in our target program is translatedinto: �p(X,_TV0) : −q(X, Y,_TV1), r(Y,_TV2), and_godel(_TV1,_TV2,_TV3),

and_prod(0.8,_TV3,_TV0). �, where the de�nition of the �aggregator predi-ates� are: �and_prod(X, Y, Z) : −Z is X ∗ Y.� and �and_godel(X, Y, Z) : −(X =<



Fig. 1. Building a graphial interfae for FLOPER.
Y, Z = X; X > Y, Z = Y).�. The last lause in the program, beomes the pure Prologfat �s(b, 0.9).� while a fuzzy goal like �p(X)�, is translated into the pure Pro-log goal: �p(X, Truth_degree)� (note that the last truth degree variable is notanonymous now) for whih the Prolog interpreter returns the two desired fuzzyomputed answers [Truth_degree=0.504,X=a℄ and [Truth_degree=0.4,X=b℄.The previous set of options su�es for running fuzzy programs: all internalomputations (inluding ompiling and exeuting) are pure Prolog derivationswhereas inputs (fuzzy programs and goals) and outputs (fuzzy omputed an-swers) have always a fuzzy taste, whih produes the illusion on the �nal user ofbeing working with a purely fuzzy logi programming tool.Moreover, it is also possible to selet into the FLOPER's goal menu, options�tree� and �depth�, whih are useful for traing exeution trees and �xing themaximum length allowed for their branhes (initially 3), respetively. Workingwith these options is ruial when the �run� hoie fails: remember that thislast option is based on the generation of pure logi SLD-derivations whih mightfall in loop or diretly fail in some ases as the experiments of [11℄ show, inontrast with the traes (based on �nite, non-failed, admissible derivations) thatthe �tree� option displays. By using the graphial interfae we are implementingfor FLOPER, Figure 1 shows a tree evidening an in�nite branh where statesare olored in yellow and program rules exploited in admissible steps are enlosedin irles.



4 Fuzzy Computed Answers with Extended InformationStrongly related with the last paragraph of the previous setion and also on-neting with the results we plan to explain in what follows, the �ismode� hoieis useful for deiding among three levels of detail when visualizing the interpre-tive omputations performed during the generation of �evaluation trees�. Thislast option, together with the possibility of loading new latties into the system,represents our last developments performed on FLOPER, as reported in [12℄.member(X) :- number(X),0=<X,X=<1.bot(0). top(1).leq(X,Y) :- X=<Y.and\_luka(X,Y,Z):- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z):- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2. Multi-adjoint lattie modeling truth degrees in the real interval [0,1℄.We have reently oneived a very easy way to model truth-degree lattiesfor being inluded into the FLOPER tool by using the �lat/show� options. Allrelevant omponents of eah lattie an be enapsulated inside a Prolog �le whihmust neessarily ontain the de�nitions of a minimal set of prediates de�ningthe set of valid elements (prediate member), inluding speial mentions to the�top� and �bottom� ones, the full or partial ordering established among them(prediate leq), as well as the repertoire of fuzzy onnetives whih an be usedfor their subsequent manipulation.For instane, in Figure 2 we have modeled the lattie that we used in ourexamples, whih enables the possibility of working with truth degrees in thein�nite spae of the real numbers between 0 and 1, allowing too the possibility ofusing onjuntion and disjuntion operators reasted from the three typial fuzzylogis proposals desribed before (i.e., the �ukasiewiz, Gödel and produt logis),as well as a useful desription for the hybrid aggregator average. Note also thatwe have inluded de�nitions for auxiliary prediates, whose names always begin



with the pre�x �pri_�. All of them are intended to desribe primitive/arithmetioperators (in our ase +, −, ∗, /, min and max) in a Prolog style, for beingappropriately alled from the bodies of lauses de�ning prediates with higherlevels of expressivity (this is the ase for instane, of the three kinds of fuzzyonnetives we are onsidering: onjuntions, disjuntions and agreggations).One step beyond, we an also oneive a more omplex lattie whose elementsould have two omponents, oping with truth degrees and �labels� olletinginformation about the program rules and fuzzy onnetives used when exeutingprograms. In order to be loaded into FLOPER, we must de�ne in Prolog thenew lattie, whose elements ould be expressed, for instane, as data terms ofthe form �info(Fuzzy_Truth_Degree, Label)�. Moreover, the lauses de�ningsome prediates required for managing them are:member(info(X,_)):-number(X),0=<X,X=<1.bot(info(0,_)). top(info(1,_)).leq(info(X1,_),info(X2,_)) :- X1 =< X2.and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),pri_app(Dat1,'&PROD.',Dat2),pri_app(Dat2,DatPROD,Z2).pri_app(X,Y,Z):-name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).pri_append([℄,X,X). append([A|B℄,C,[A|D℄):-append(B,C,D).Here, we have seen that when implementing for instane the onjuntionoperator of the Produt Logi, in the seond omponent of our extended notionof �truth degree�, we have appended the labels of its arguments with the label'&PROD.' (see lauses de�ning and_prod, pri_app and append). Of ourse, inthe fuzzy program to be run, we must also take into aount the use of labelsassoiated to the program rules. For instane, in our example the �rst rule musthave the form:p(X) <prod q(X,Y) &godel r(Y) with info(0.8,'RULE1.').And now, after exeuting goal p(X) we obtain the two desired omputed answers(inluding the sequene of program rules exploited and onnetive de�nitionsevaluated till �nding eah solution):[ Truth_degree=info(0.504, RULE1.RULE2.RULE5.&PROD.RULE4.&GODEL.&PROD.}), X=a℄[ Truth_degree=info(0.4, RULE1.RULE3.RULE4.&LUKA.RULE4.&GODEL.&PROD.), X=b℄
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