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Abstract. MALP (i.e., the so-called Multi-Adjoint Logic Programming
approach) can be seen as a promising fuzzy extension of the popular, pure
logic language Prolog, including too a wide repertoire of constructs based
on fuzzy logic in order to support uncertainty and approximated reason-
ing in a natural way. Moreover, the Fuzzy LOgic Programming Environ-
ment for Research, FLOPER in brief, that we have implemented in our
research group, is intended to assists the development of real-world appli-
cations written with MALP syntax. Among other capabilities, the system
is able to safely translate fuzzy code into Prolog clauses which can be
directly executed inside any standard Prolog interpreter in a completely
transparent way for the final user. In this fuzzy setting, it is mandatory
the use of lattices modeling truth degrees beyond {¢rue; false}. As de-
scribed in this paper, FLOPER is able to successfully deal (in a very easy
way) with sophisticated lattices modeling truth degrees in the real inter-
val [0, 1], also documenting -via declarative traces- the proof procedures
followed when solving queries, without extra computational cost.
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1 Introduction

Logic Programming (LP) [8] has been widely used for problem solving and knowl-
edge representation in the past, with recognized applications in AT and related
areas. Nevertheless, traditional LP languages do not incorporate techniques or
constructs to treat explicitly with uncertainty and approximated reasoning. To
overcome this situation, during the last years, several fuzzy logic programming
systems have been developed where the classical inference mechanism of SLD-
Resolution has been replaced by a fuzzy variant able to handle partial truth and
to reason with uncertainty [3,1,10], with promising applications in the fields of
Computational Intelligence, Soft-Computing, Semantic Web, etc.
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Informally speaking, in the MALP framework of [10,9], a program can be
seen as a set of rules each one annotated by a truth degree, and a goal is a query
to the system, i.e., a set of atoms linked with connectives called aggregators. A
state is a pair (Q, o) where Q is a goal and o a substitution (initially, the identity
substitution). States are evaluated in two separate computational phases. Firstly,
admissible steps (a generalization of the classical modus ponens inference rule)
are systematically applied by a backward reasoning procedure in a similar way to
classical resolution steps in pure logic programming, thus returning a computed
substitution together with an expression where all atoms have been exploited.
This last expression is then interpreted under a given lattice, hence returning
a pair (truth degree; substitution) which is the fuzzy counterpart of the classical
notion of computed answer traditionally used in LP.

In the present paper, we draw the last developments performed on the FLO-
PER system (see [11,12] and visit http://www.dsi.uclm.es/investigacion/
dect/FLOPERpage.htm), which currently provides facilities for compiling, exe-
cuting and manipulating such kind of fuzzy programs, by means of two main
representation (high/low-level, Prolog-based) ways which are somehow antag-
onistics regarding simplicity and accuracy features. The main purpose of the
present paper is to highlight a collateral effect of the last feature implemented
into the tool, regarding the possibility of introducing different notions of multi-
adjoint lattices which can be easily defined with a Prolog taste. Only a few num-
ber of clauses suffices for modeling rich notions of truth degrees incorporating
augmented information about the program rules used in a derivation sequence as
well as the set of fuzzy connectives evaluated at execution time when reaching
the whole set of solutions for a given program and goal. The most surprising
fact reported here is that this kind of “extra proof information” can be freely
collected on fuzzy computed answers without requiring any additional compu-
tational resource.

The outline of this work is as follows. In Section 2 we detail the main features
of multi-adjoint logic programming, both syntax and procedural semantics. Sec-
tion 3 explains the current menu of programming resources implemented into
the FLOPER tool, which nowadays is being equipped with new options for per-
forming advanced program manipulation tasks (transformation, specialization,
optimization) with a clear fuzzy taste. The benefits of our present approach
regarding how to obtain fuzzy computed answers containing debugging informa-
tion on execution proofs, are highlighted in Section 4. Finally, in Section 5 we
present our conclusions and propose some lines of future work.

2 Multi-Adjoint Logic Programs

In what follows, we present a short summary of the main features of our lan-
guage (we refer the reader to [10] for a complete formulation). We work with a
first order language, £, containing variables, function symbols, predicate sym-
bols, constants, quantifiers (V and 3), and several (arbitrary) connectives to
increase language expressiveness. In our fuzzy setting, we use implication con-



nectives (<1, <2, ..., <m,) and also other connectives which are grouped under
the name of “aggregators” or “aggregation operators”. They are used to com-
bine/propagate truth values through the rules. The general definition of aggre-
gation operators subsumes conjunctive operators (denoted by &1, &o, ..., &%),
disjunctive operators (V1, Vs, ..., V;), and average and hybrid operators (usually
denoted by @1, @,,...,@,). Although the connectives &;, V; and @; are binary
operators, we usually generalize them as functions with an arbitrary number
of arguments. By definition, the truth function for an n-ary aggregation oper-
ator [@] : L™ — L is required to be monotone and fulfills [@](T,...,T) =T,
[@](L,..., L) = L. Additionally, our language £ contains the values of a multi-
adjoint lattice, (L, <, <—1,&1, ..., 4, &), equipped with a collection of adjoint
pairs («—;, &;), where each &; is a conjunctor intended to the evaluation of modus
ponens. In general, the set of truth values L may be the carrier of any complete
bounded lattice but, for simplicity, in this paper we shall select L as the set of
real numbers in the interval [0, 1].

A rule is a formula A <+, B, where A is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
Bi,...,B, (n>0), truth values of L and conjunctions, disjunctions and aggre-
gations. Rules with an empty body are called facts. A goal is a body submitted
as a query to the system. Variables in a rule are assumed to be governed by
universal quantifiers. Roughly speaking, a multi-adjoint logic program is a set of
pairs (R;v), where R is a rule and v is a truth degree (a value of L) expressing
the confidence which the user of the system has in the truth of the rule R. Often,
we will write “R with v” instead of (R;v).

In order to describe the procedural semantics of the multi—adjoint logic lan-
guage, in the following we denote by C[A] a formula where A is a sub-expression
(usually an atom) which occurs in the —possibly empty— context C[] whereas
C[A/A’] means the replacement of A by A’ in context C[]. Moreover, Var(s) de-
notes the set of distinct variables occurring in the syntactic object s, 8[Var(s)]
refers to the substitution obtained from 6 by restricting its domain to Var(s) and
mgu(E) denotes the most general unifier of an equation set E. In the following
definition, we always consider that A is the selected atom in goal Q.

Definition 1 (Admissible Step). Let Q be a goal and let o be a substitution.
The pair (Q; o) is a state. Given a program P, an admissible computation is
formalized as a state transition system, whose transition relation — ag is the
smallest relation satisfying the following admissible rules:

1) (QA]; 0)—as((Q[A/v&iB])b; 08) if § = mgu({A" = A}), (A'«=iB;v) in P
and B is not empty.

2) (Q[A];0)— as((Q[A/v])8;00) if 0 = mgu({A’ = A}), and (A'<;;v) in P.

Apart for exploiting atoms by using program rules, in this setting we can also

evaluate expressions composed by truth degrees and fuzzy connectives by directly
interpreting them w.r.t. lattice L following our definition recasted from [6]:

Definition 2 (Interpretive Step). Let P be a program, Q a goal and o a
substitution. Assume that [Q] is the truth function of connective @ in the lattice



(L, =) associated to P, such that, for values ri,...,7y,ny1 € L, we have that
[Q(r1,...,7n) = rny1. Then, we formalize the notion of interpretive computa-
tion as a state transition system, whose transition relation — g is defined as the
least one satisfying:  (Q[Q(r1,...,m)];0) —r1s (Q[Q(r1,...,7n)/Tn+1];0)

Ezample 1. In order to illustrate our definitions, consider now the following pro-
gram P and lattice ([0, 1], <), where < is the usual order on real numbers.

Ri:p(X)p ¢(X,Y)&e r(Y) with 0.8 Ra : q(a,Y)p s(Y) with 0.7
Rs:q(b,Y)1 r(Y) with 0.8 Ra:r(Y)+ with 0.7
Rs : s(b)« with 0.9

The labels P, G and L mean for Product logic, Gddel intuitionistic logic and
Lukasiewicz logic, respectively. That is, [&p](x,y) = z-y, [&e](x, y) = min(z,y),
and [&L](z,y) = max(0,z4+y—1). In the following derivation for the program P
and goal <—p(X), we underline the selected expression in each computation step,
also indicating as a superscript the rule/connective exploited /evaluated in each
admissible/interpretive step (as usual, variables of program rules are renamed
after being used):

p(X): {h —as1™ (0.8 &p
— 45172 (0.8 &p ((0.7 &p 5(Y2)) &g r(Y2)); {X/a, X1/a,Y1/Y2})

2 E q(X1, Y1) & r(Y1)); {X/Xq})

— 4527 (0.8 &p ((0.7 &p 0.9) &¢ 7(b)); {X/a, X1/a,Y1/b,Ya/b})
( (
(
(0.8 &p 0.63

—15% (0.8 &p (0.63 &¢ r(b)); {X/a, X1/a,Y1/b,Y2/b})

— 4527 (0.8 &p (0.63 &g 0.7); {X/a, X1/a,Y1/b,Ya/b,Y3/b})
—15% (0.8 &p 0.63;{X/a, X1/a,Y1/b,Ya/b,Y3/b})

—15% (0.504; {X/a, X1/a,Y1/b,Ya/b,Y3/b})

So, after focusing our interest in variables belonging to the original goal, the
final fuzzy computed answer (f.c.a., in brief) is (0.504; {X/a}), with the obvious
meaning that the original goal is true at a 50.4% when X be a.

3 The FLOPER System

As detailed in [11,12], our parser has been implemented by using the classical
DCG’s (Definite Clause Grammars) resource of the Prolog language, since it is a
convenient notation for expressing grammar rules. Once the application is loaded
inside a Prolog interpreter (in our case, Sicstus Prolog v.3.12.5), it shows a menu
which includes options for loading, parsing, listing and saving fuzzy programs,
as well as for executing fuzzy goals. All these actions are based in the translation
of the fuzzy code into standard Prolog code. The key point is to extend each
atom with an extra argument, called truth variable of the form _TV;, which is
intended to contain the truth degree obtained after the subsequent evaluation
of the atom. For instance, the first clause in our target program is translated
into: “p(X, TVO) : —q(X,Y, TV1),r(Y, TV2),and godel( TV1, TV2, TV3),
and_ prod(0.8, TV3, TVO).”, where the definition of the “aggregator predi-
cates” are: “and_prod(X,Y,Z): —Z is X*Y.” and “and_godel(X,Y,Z): —(X =<
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Fig. 1. Building a graphical interface for FLOPER.

Y,Z=X;X>Y,Z=Y).. The last clause in the program, becomes the pure Prolog
fact “s(b,0.9).” while a fuzzy goal like “p(X)”, is translated into the pure Pro-
log goal: “p(X, Truth_degree)” (note that the last truth degree variable is not
anonymous now) for which the Prolog interpreter returns the two desired fuzzy
computed answers [Truth_degree=0.504,X=a] and [Truth_degree=0.4,X=b].

The previous set of options suffices for running fuzzy programs: all internal
computations (including compiling and executing) are pure Prolog derivations
whereas inputs (fuzzy programs and goals) and outputs (fuzzy computed an-
swers) have always a fuzzy taste, which produces the illusion on the final user of
being working with a purely fuzzy logic programming tool.

Moreover, it is also possible to select into the FLOPER’s goal menu, options
“tree” and “depth”, which are useful for tracing execution trees and fixing the
maximum length allowed for their branches (initially 3), respectively. Working
with these options is crucial when the “run” choice fails: remember that this
last option is based on the generation of pure logic SLD-derivations which might
fall in loop or directly fail in some cases as the experiments of [11] show, in
contrast with the traces (based on finite, non-failed, admissible derivations) that
the “tree” option displays. By using the graphical interface we are implementing
for FLOPER, Figure 1 shows a tree evidencing an infinite branch where states
are colored in yellow and program rules exploited in admissible steps are enclosed
in circles.



4 Fuzzy Computed Answers with Extended Information

Strongly related with the last paragraph of the previous section and also con-
necting with the results we plan to explain in what follows, the “ismode” choice
is useful for deciding among three levels of detail when visualizing the interpre-
tive computations performed during the generation of “evaluation trees”. This
last option, together with the possibility of loading new lattices into the system,
represents our last developments performed on FLOPER, as reported in [12].

member (X) :- number(X),0=<X,X=<1.

bot (0) . top(1).

leq(X,Y) :- X=<Y.

and\_luka(X,Y,Z):- pri_add(X,Y,Ul),pri_sub(U1,1,U2),pri_max(0,U2,Z).

and_godel (X,Y,Z):- pri_min(X,Y,Z).
and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).
or_godel(X,Y,Z) :- pri_max(X,Y,Z).
or_prod(X,Y,Z) :- pri_prod(X,Y,Ul),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/V.

Fig. 2. Multi-adjoint lattice modeling truth degrees in the real interval [0,1].

We have recently conceived a very easy way to model truth-degree lattices
for being included into the FLOPER tool by using the “lat/show” options. All
relevant components of each lattice can be encapsulated inside a Prolog file which
must necessarily contain the definitions of a minimal set of predicates defining
the set of valid elements (predicate member), including special mentions to the
“top” and “bottom” ones, the full or partial ordering established among them
(predicate leq), as well as the repertoire of fuzzy connectives which can be used
for their subsequent manipulation.

For instance, in Figure 2 we have modeled the lattice that we used in our
examples, which enables the possibility of working with truth degrees in the
infinite space of the real numbers between 0 and 1, allowing too the possibility of
using conjunction and disjunction operators recasted from the three typical fuzzy
logics proposals described before (i.e., the Lukasiewicz, Godel and product logics),
as well as a useful description for the hybrid aggregator average. Note also that
we have included definitions for auxiliary predicates, whose names always begin



with the prefix “pri_”. All of them are intended to describe primitive/arithmetic
operators (in our case +, —, %, /, min and max) in a Prolog style, for being
appropriately called from the bodies of clauses defining predicates with higher
levels of expressivity (this is the case for instance, of the three kinds of fuzzy
connectives we are considering: conjuntions, disjunctions and agreggations).

One step beyond, we can also conceive a more complex lattice whose elements
could have two components, coping with truth degrees and “labels” collecting
information about the program rules and fuzzy connectives used when executing
programs. In order to be loaded into FLOPER, we must define in Prolog the
new lattice, whose elements could be expressed, for instance, as data terms of
the form “info (Fuzzy_Truth_Degree, Label)”. Moreover, the clauses defining
some predicates required for managing them are:

member (info(X,_)) : —-number (X) ,0=<X,X=<1.
bot (info(0,_)). top(info(1,_)).
leq(info(X1,_),info(X2,_)) :- X1 =< X2.

and_prod (info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Datl),
pri_app(Datl, ’&PROD.’,Dat2) ,pri_app(Dat2,DatPR0OD,Z2).

pri_app(X,Y,Z):-name(X,L1) ,name(Y,L2),append(L1,L2,L3) ,name(Z,L3).
pri_append([]1,X,X). append ([A|B],C, [A|D]) :-append(B,C,D).

Here, we have seen that when implementing for instance the conjunction
operator of the Product Logic, in the second component of our extended notion
of “truth degree”, we have appended the labels of its arguments with the label
*&PROD. ’ (see clauses defining and_prod, pri_app and append). Of course, in
the fuzzy program to be run, we must also take into account the use of labels
associated to the program rules. For instance, in our example the first rule must
have the form:

p(X) <prod q(X,Y) &godel r(Y) with info(0.8,’RULEL.’).

And now, after executing goal p(X) we obtain the two desired computed answers
(including the sequence of program rules exploited and connective definitions
evaluated till finding each solution):

[ Truth_degree=info(0.504, RULE1.RULE2.RULE5.&PROD.
RULE4.&GODEL.&PROD.}), X=al

[ Truth_degree=info (0.4, RULE1.RULE3.RULE4.&LUKA.
RULE4.&GODEL.&PROD. ), X=b]



5 Conclusions and Future Work

The experience acquired in our research group regarding the design of techniques
and methods based on fuzzy logic in close relationship with the so-called multi-
adjoint logic programming approach ([2,5,7,4]), has motivated our interest for
putting in practice all our developments around the design of the FLOPER
environment [11, 12]. Our philosophy is to friendly connect this fuzzy framework
with Prolog programmers: our system, apart for being implemented in Prolog,
also translates the fuzzy code to classical clauses and, what is more, in this paper
we have also shown that a wide range of lattices modeling powerful and flexible
notions of truth degrees can be easily used into FLOPER for augmenting fuzzy
computed answers with proof traces without requiring additional cost.

Apart for our ongoing efforts devoted to providing FLOPER with a graphical
interface as illustrated in Figure 1, nowadays we are especially interested in
implementing all the manipulation tasks developed in our group on fold /unfold
transformations [2, 5], partial evaluation [7] and thresholded tabulation [4].
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