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Abstract

Among other applications, multi-adjoint lattices have been successfully used for
modeling flexible notions of truth-degrees in the fuzzy extension of logic program-
ming called MALP (Multi-Adjoint Logic Programming). In this paper we focus in
the completion of such mathematical construct by adapting the classical notion of
Dedekind-MacNeille in order to relax this usual hypothesis on such kind of ordered
sets. On the practical side, we show too the role played by multi-adjoint lattices
into the “Fuzzy LOgic Programming Environment for Research” FLOPER that we
have developed in our research group.
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1 Introduction

In essence, the notion of multi-adjoint lattice considers a carrier set L (whose elements
verify a concrete ordering ≤) equipped with a set of connectives like implications,
conjunctions, disjunctions and other hybrid aggregators, with the particularity that
for each implication symbol there exists its adjoint conjunction used for modeling the
modus ponens inference rule in a fuzzy setting. For instance, some adjoint pairs, i.e.
conjunctors and implications, in the lattice ([0, 1],≤) are presented below, where labels
L, G and P mean respectively L̷ukasiewicz logic, Gödel intuitionistic logic and product
logic (with different capabilities for modeling pessimist, optimist and realistic scenarios,
respectively):
&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Product

&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise
Gödel

&L(x, y) ≜ max(0, x + y − 1) ←L (x, y) ≜ min{x− y + 1, 1} L̷ukasiewicz
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Moreover, in the MALP framework [25, 23, 24], each program has its own associ-
ated multi-adjoint lattice and each program rule (very similar to a Prolog clause1) is
“weighted” with an element of L, whereas the components in its body are linked with
connectives of the lattice. For instance, in the following propositional MALP program
(where obviously @aver refers to the classical average aggregator):

p ←P @aver(q, r) witℎ 0.9
q ← witℎ 0.8
r ← witℎ 0.6

the last two rules directly assign truth values 0.8 and 0.6 to propositional symbols q and
r, respectively, and the execution of p using the first rule, simply consists in evaluating
the expression “&P(0.9,@aver(0.8, 0.6))”, which returns the final truth degree 0.63.

Anyway, although the class of multi-adjoint lattices is wide enough to model real-
world application written with the MALP language [2], in [28, 26] we have proposed
some debugging/tracing techniques based on lattices (whose elements are strings of
characters) which do not fully accomplish with the hypothesis of complete lattice re-
quired by multi-adjoint lattices.

Motivated by this fact, in Sections 2 and 3 of this paper, we give a first step in
solving such problem, inspired by the Dedekind-MacNeille completion of an ordered set
P (also known as the normal completion of P and the completion by cuts) which was
originally proposed by M. MacNeille in 1937 (see [18]) as an extension of the famous
definitions of real numbers conceived as cuts from rational ones due to Dedekind2 in
1872 [8].

The Dedekind-MacNeille completion is directly related to the concept of the canon-
ical extension that was firstly introduced, for Boolean algebras, in [13] and that arises
from Stone’s duality theorem. Although out of the scope of this paper, in the future we
plan to analyze some canonical extensions for multi-adjoint lattices, formally introduced
in [9] (see also [10, 29], which study the completion of an n-ordered set), that have asso-
ciated monotone operators and analyze the results especially for the habitual domains
in multi-adjoint logic programming of bilattices and trilattices [20, 21, 19, 4, 5, 3, 6].

On the other hand, the last part of this paper is concerned with implementation and
practical developments achieved in our group. More exactly, in Section 4 we present
the FLOPER tool [27, 28, 26], which currently is useful for compiling (to standard
Prolog code), executing and debugging MALP programs in a safe way and it is ready
for being extended in the near future with powerful transformation and optimization
techniques designed in our research group in the recent past [14, 11]. In this paper, we
will focus in the management of multi-adjoint lattices performed by FLOPER, where
such constructs can be easily expressed by means of a set Prolog clauses. Moreover,
for a given program and goal, we will see too that different solution could be achieved
depending on the currently loaded lattice (which can be changed as much as wanted
even in a single work session).

1We assume familiarity with pure Logic Programming and its most popular language Prolog [16].
2This German mathematician was pupil of Gauss in Gotinga and nowadays is considered one of the

founders of modern algebra.
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2 Dedekind-MacNeille Completion

We start this section by giving some basic definitions before addressing the concept of
Dedekind-MacNeille completion.

Definition 2.1. Let (P,≤) be an ordered set and Q ⊂ P .

i) Q is a down-set (also called decreasing set and order ideal) if whenever x ∈ Q, y ∈
P with y ≤ x, we have y ∈ Q.

ii) Dually, Q is an up-set (also called increasing set and order filter) if whenever
x ∈ Q, y ∈ P with y ≥ x, we have y ∈ Q.

In what follows we will use the set, read as “down” Q, ↓ Q = {y ∈ P : ∃x ∈ Q / y ≤ x},
in particular, ↓ x = {y ∈ P : y ≤ x} that is called principal down-set and also principal
ideal generated by x (obviously, ↓ {x} =↓ x). The set of all down-sets of P is denoted
by O(P) which is an ordered set under the usual inclusion ordering. Similary, “up” Q,
↑ Q = {y ∈ P : ∃x ∈ Q / x ≤ y}.

If P is an ordered set and X = {↓ x : x ∈ P} (ordered by inclusion), Y = {↑ x :
x ∈ P} (ordered by reverse inclusion), then the maps ⊳ : X → Y given by ↓ x 7→↑ x
and ⊲ : Y → X given by ↑ x 7→↓ x forms a Galois connection between X and Y . This
notion appears in [22, 19], where a fuzzy generalization of the formal concept analysis
was presented. In particular, multi-adjoint concept lattices were introduced into the
MALP framework for application to formal concept analysis.

Definition 2.2. Let (P,≤), (Q,≤) be ordered sets. A map ' : P → Q is said to be

i) order-preserving (or monotone) if x ≤ y in P implies '(x) ≤ '(y) in Q.

ii) order-embedding if x ≤ y in P if and only if '(x) ≤ '(y) in Q.

ii) order-isomorphism if it is an order-embedding which maps P in Q.

Definition 2.3. Given a partially ordered set (P,≤), we define for every subset A of
P , two subsets of P as follows: Au = {x ∈ P : a ≤ x,∀a ∈ A} and Al = {x ∈ P : x ≤
a,∀a ∈ A}.

The sets Au, Al are called A upper and A lower, respectively. Au is the set of all upper
bounds3 of A and Al is the set of all lower bounds4. Moreover, Au is an up-set and Al

is a down-set.

Definition 2.4. Let (P,≤) be ordered set and Q ⊂ P . Q is join-dense (similary, meet-
dense) in P if for all a ∈ P exists A ⊂ Q such that a =

⋁

A5 (similary, a =
⋀

A).

3By definition, an element x ∈ P is an upper bound of A if a ≤ x for all a ∈ A.
4By definition, an element x ∈ P is an lower bound of A if x ≤ a for all a ∈ A.
5We also write

⋁
A for the joint or supremum of A instead of sup(A) and

⋀
A for the met or infimum

of A instead of inf(A) where these exist.
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The following proposition is elementary, but in later Theorems 2.10, 2.11 y 3.2 we find
interesting examples of isomorphisms guarantees.

Proposición 2.5. All ordered set (P,≤) is isomorphic to a subset of set (2P ,⊂).

Proof. It suffices to note that the map f : P → 2P , given by f(x) = {y ∈ P : y ≤ x} is
injective and is order-preserving. On the other hand, the image f(x) is a down-set of
ordered set (2P ,⊂).

We shall be interested in the ordered sets in which the infimum and the supremum
exist for all subsets.

Definition 2.6. Let (P,≤) be a non-empty ordered set. If inf(S) and sup(S) exist for
all S ⊂ P , then P is called a complete lattice.

It is straightforward to prove that a non-empty P is complete lattice if and only if
inf(S) exists in P for every subset S of P .

On the other hand, there are many options for the embedding of an ordered set into
a complete lattice. We examine here one such embedding that generalizes Dedekind’s
construction of ℝ by cuts of ℚ, in order to apply it to the case of multi-adjoint lattice.

Definition 2.7. Let P be an ordered set. If C is a complete lattice and ' : P → C is
an order-embedding, then we say that C is a completion of P (via ').

Since the map ' : x 7−→ ↓ x is trivially an order-embeding of P into the complete
lattice O(P) of all down-sets of P (with the inclusion order), this one is a natural
completion of P . However, it is unnecessarily large: it is sufficient to take into account
that if P is a complete lattice then P is a completion of itself (via the identity map),
whileO(P) is much larger. Another completion of an ordered set is the ideal completion.
In what follows, we consider the smallest complete lattice containing P , namely the
Dedekind-MacNeille completion.

Definition 2.8. [7] The Dedekind-MacNeille completion of an ordered set P is the set
DM(P ) = {A ⊂ P : Aul = A}.

Moreover, it is also known as the completion by cuts and the normal completion of P
(see [10]). By means of the following theorem, we can give equivalent definitions of the
above concept, in terms of principal ideals of the notion of cut.

Theorem 2.9. Let DM(P ) be the the Dedekind-MacNeille completion of P . Then,

i) DM(P ) = {A ⊂ P : △A ⊂ A}, where △A =
∩

{↓ x : x ∈ A↑}.

ii) DM(P ) = {A ⊂ P : (A,B) is a cut of P, for some B ⊂ P}.

(DM(P ),⊂) is a complete lattice and, moreover, the map ' : x 7−→↓ x is an order-
embedding of P into DM(P ). Then, it is easy to prove the following theorem.

Theorem 2.10. Let P be an ordered set and let ' : P → DM(P ) be such that '(x) =↓
x for all x ∈ P . Then, DM(P ) is a completion of P via the map '.
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DM(P ) is known as the Dedekind-MacNeille completion of an ordered set P . In
DM(P ), since inf(A) and sup(A) exist for any subset, A ⊂ DM(P ), is a complete
lattice. Moreover, this process can be readily applied to any lattice, if we define a com-
pletion of a lattice. The fundamental theorem that follows can be used to characterize
the Dedekind-MacNeille completion.

Theorem 2.11. [7] Let P be an ordered set and let ' : P → DM(P ) be the order-
embedding of P into its Dedekind-MacNeille completion given by '(x) =↓ x for all
x ∈ P . Then

i) '(P ) is both join-dense and meet-dense in DM(P ).

ii) If C is a complete lattice and P is a subset of C which is both join-dense and
meet-dense in C, then C ≈ DM(P ) via an order-isomorphism which agrees with
' on P .

3 Completion of a Quasimulti-adjoint Lattice

In this section, we analyze the specific properties of the Dedekind-MacNeille completion
in the case of the lattices used by MALP programs, starting with their formal definition.

Definition 3.1. Let (L,≤) be a lattice. A multi-adjoint lattice is (L,≤,←1,&1, . . . ,←n

,&n) such that:

i) (L,≤) is a complete lattice, namely, ∀S ⊂ L,∃ inf(S), sup(S)6.

ii) &i is increasing in both arguments, for all i, i = 1, . . . , n.

iii) ←i is increasing in the first argument and decreasing in the second, for all i.

iv) If ⟨&i,←i⟩ is an adjoint pair in (L,≤) then, for any x, y, z ∈ L, we have that:
x ≤ (y ←i z) if and only if (x&iz) ≤ y.

This last condition, called adjoint property, is the most important feature of the frame-
work. Moreover, if (L,≤,←1,&1, . . . ,←n,&n) is bounded and satisfy only ii), iii), iv),
we call quasimulti-adjoint lattice.

The following theorem guarantees that the Dedekind-MacNeille completion of a
quasimulti-joint lattice has a quasimulti-adjoint sublattice isomorphic to the initial
one. Also, in this theorem it can be viewed in detail the particular properties of the
embedding '.

Theorem 3.2. If (L,≤,←1,&1, . . . ,←n,&n) is a quasimulti-adjoint lattice, then Im(')
is a quasimulti-adjoint sublattice of the complete lattice DM(P ) (via ') that is isomor-
phic to L. Moreover, the order-embedding ' is a lattice homomorphism of lattices;
preserves all joins and meets which exist in P ; for any adjoint pair (←,&) in L, there
exists an adjoint pair (←

L̄
,&

L̄
) in Im('). Finally, for any connective in L there exists

an associated connective in L̄.
6Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and ⊤, respectively.
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Proof. We will prove first that the map ' : L → DM(L), given by '(x) =↓ x is an
order-embedding, homomorphism and preserves the indicated joins and meets. Indeed:

i) ' is a map since '(x) =↓ x ∈ DM(L) for all x ∈ DM(L): one has only to
consider (↓ x)↑↓ =↓ x.

ii) ' is injective: if we assume that '(x) =↓ x =↓ y = '(y), then x ∈↓ x =↓ y, so
x ≤ y. Similarly, shows that y ≤ x, and we obtain x = y by the antisymmetric
property.

iii) ' is order-preserving: if x ≤ y in L implies '(x) ≤ '(y) in DM(L), by definition
of lower bound.

iv) Also, ' is an order-embedding: if '(x) ≤ '(y), then ↓ x ⊂↓ y. Since x ∈↓ x,
x ∈↓ y and therefore x ≤ y.

iv) ' is a lattice homomorphism, i.e., '(x∧ y) = '(x)∩'(y), '(x∨ y) = '(x)∪'(y).
Certainly, we shall prove the equality of both sets. If z ∈ '(x ∧ y) it holds that
z ≤ x ∧ y and, by definition of greatest lower bound, z ≤ x, z ≤ y. Then, we
have z ∈ '(x), z ∈ '(y), that is, z ∈ '(x) ∩ '(y). Thus, we obtain, '(x ∧ y) ⊂
'(x) ∩ '(y). The reverse inclusion, '(x) ∩'(y) ⊂ '(x ∧ y), is analogous, like the
dual result '(x ∨ y) = '(x) ∪ '(y).

v) ' preserves all joins and meets wich exist in P . Let A be a subset of L and
assume that

⋁

A exists in L. We shall prove that '(
⋁

A) =
⋁

'(A), namely,
↓ (

⋁

A) =
⋁

{↓ a : a ∈ A}. It is easy to prove that ↓ (
⋁

A) is an upper bound for
{↓ a : a ∈ A}. Moreover, if B ∈ DM(L) is an upper for the set {↓ a : a ∈ A},
we have a ∈↓ a ⊂ B for all a ∈ A, and therefore A ⊂ B. On the other hand, if
↓ (

⋁

A) exists in L, ↓ (
⋁

A) = 7Aul, and so ↓ (
⋁

A) = Aul ⊂ Bul = B.

Likewise, if
⋀

A exists in L, we shall prove that '(
⋀

A) =
⋀

'(A), that is,
↓ (

⋀

A) =
⋀

{↓ a : a ∈ A}. Since,
⋀

{↓ a : a ∈ A} =
∩

{↓ a : a ∈ A}, we have the
intended result.

Furthermore, we shall show that for any adjoint pair (←,&) in L, there exists an
adjoint pair (←L̄,&L̄) in Im('), set denoted by L̄. First, let A,B,C ∈ L̄, A =
'(x), B = '(y), C = '(z) be, for x, y, z ∈ L; then, we define the conjunction &L̄

and the implication ←
L̄

as
A&

L̄
B = '(x)&

L̄
'(y) := '(x&y) B ←

L̄
C = '(y)←

L̄
'(z) := '(y ← z)

resulting the following properties:

i) &
L̄

is increasing in both arguments: we shall show that if A1 ⊂ A2, then A1&
L̄
B ⊂

A2&
L̄
B. Since A1 = '(x1), A2 = '(x2), B = '(y), with x1, x2, y ∈ L, we have

that A1&L̄
B = '(x1&y) ⊂ '(x2&y) = A2&

L̄
B being as ' is order-preserving

and & is increasing in the first argument. Likewise, the increase in the second
component is obtained.

7By definition of least upper bound and since Aul is a down-set.
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ii) &L̄ has identity element, in particular the identity of L̄ denoted by ⊤L̄ and is the
set ⊤L̄ =↓ ⊤ = {z ∈ L : z ≤ ⊤} = L. We need to check that ⊤L̄&L̄A = A, for
all A ∈ L̄. Certainly, if A = '(x), x ∈ L, we have ⊤L̄&L̄A = L&L̄A = '(⊤&x) =
'(x) = A, because & is a conjunction in L̄ and ⊤ is the identity element of L̄.

iii) ←
L̄

is increasing in the first argument and decreasing in the second argument or,
more accurately, ←

L̄
is order-preserving in the consequent and order-reversing

in the antecedent. Regarding the antecedent, we need to prove that if C1 ⊂ C2,
then B ←

L̄
C1 ⊃ B ←

L̄
C2. Since C1 = '(z1), C2 = '(z2), B = '(y), with

z1, z2, y ∈ L, we have that B ←
L̄
C1 = '(y ← z1) ⊃ '(y ← z2) = B ←

L̄
C2

because ←L is an implication and ' is order-preserving. Similarly, the behavior
in the consequent is obtained.

iv) (←L̄,&L̄) is an adjoint pair: we need to check that for any A,B,C ∈ L̄, A ⊂
(B ←L̄ C) ⇔ A&L̄C ⊂ B is fulfilled. Given A,B,C ∈ L̄, A = '(x), B =
'(y), C = '(z), with x, y, z ∈ L. For the first expression, we have A ⊂ (B ←

L̄

C)⇔ '(x) ⊂ '(y ← z)⇔ x ⊂ (y ← z), where we use in the last step that ' is an
order-embedding. On the other hand, using the definition of &

L̄
and again the

character of order-embedding of ', A&
L̄
C ⊂ B ⇔ '(x&z) ⊂ '(y) ⇔ x&z ≤ y,

and we have the indeed equality in virtue of the adjoint property of pair (←,&)
in lattice L.

Finally, each connective in L defines a connective in L̄, more detailed:

a) if ∧ is a conjunction in L, there exists an associated conjunction ∧̄ in L̄. The
commutative and associative properties of ∧̄ are derived from the respective of
∧. Moreover, ∧̄ verifies claims i), ii) before that we have shown for &

L̄
. All is

routine and we omit it.

b) if ∨ is a disjunction in L, there exists a disjunction ∨̄ in L̄ associated. Similarly
a).

c) if @ is a aggregator in L, there exists an associated aggregator @̄ in L̄..

It is easy to prove that ' is suryective if ' preserves all joins and meets. In this case,
L is isomorphic to (complete) multi-adjoint lattice DM(P ).

4 Multi-adjoint Lattices in Practice using FLOPER

From now, we proceed with more practical aspects regarding multi-adjoint lattices and
implementation issues. The parser of our FLOPER tool [27, 28] has been implemented
by using the Prolog language. Once the application is loaded inside a Prolog interpreter,
it shows a menu which includes options for loading/compiling, parsing, listing and
saving fuzzy programs, as well as for executing/debugging fuzzy goals. Moreover, in
[27] we explain that FLOPER has been recently equipped with new options, called
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“lat” and “show”, for allowing the possibility of respectively changing and displaying
the multi-adjoint lattice associated to a given program, as we are going to explain.

When modeling a lattice to be loaded into FLOPER, all its relevant components
must be encapsulated inside a Prolog file which must necessarily contain the definitions
of a minimal set of predicates defining the set of valid elements (including special
mentions to the “top” and “bottom” ones), the full or partial ordering established
among them, as well as the repertoire of fuzzy connectives which can be used for
their subsequent manipulation. In order to simplify our explanation, assume that file
“bool.pl” refers to the simplest notion of (a binary) adjoint lattice, thus implementing
the following set of predicates:

∙ member/1 which is satisfied when being called with a parameter representing a
valid truth degree. For instance, in the Boolean case, both predicates can be sim-
ply modeled by the Prolog facts: member(0)., member(1). and members([0,1]).

∙ bot/1 and top/1 obviously answer with the top and bottom element of the lattice,
respectively. Both are implemented into “bool.pl” as bot(0). and top(1).

∙ leq/2 models the ordering relation among all the possible pairs of truth degrees,
and obviously it is only satisfied when it is invoked with two elements verifying
that the first parameter is equal or smaller than the second one. So, in our exam-
ple it suffices with including into “bool.pl” the facts: leq(0,X). and leq(X,1).

∙ Finally, if we have some fuzzy connectives of the form &label1
(conjunction), ∨label2

(disjunction) or @label3
(aggregation) with arities n1, n2 and n3 respectively,

we must provide clauses defining the connective predicates “and label1/(n1+1)”,
“or label2/(n2+1)” and “agr label3/(n3+1)”, where the extra argument of each
predicate is intended to contain the result achieved after the evaluation of the
proper connective. For instance, in the Boolean case, the following two facts
model in a very easy way the behaviour of the classical conjunction operation:
and bool(0, ,0). and bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl” when working with MALP
programs whose rules have the form: “A ←bool &bool(B1, . . . , Bn) witℎ 1”, being A
and Bi typical atoms, successfully mimics the behaviour of classical Prolog programs
where clauses accomplish with the shape “A : − B1, . . . , Bn”. As a novelty in the fuzzy
setting, the outputs associated to the evaluation of goals will contain the corresponding
Prolog’s substitution (i.e., the crisp notion of computed answer obtained by means of
classical SLD-resolution) together with the maximum truth degree 1.

On the other hand, and following the Prolog style regulated by the previous guide-
lines, in file “num.lat” we have included the clauses shown in Figure 1. Here, we have
modeled the more flexible lattice which enables the possibility of working with truth
degrees in the real interval [0, 1], allowing too the possibility of using conjunction and
disjunction operators recasted from the three typical fuzzy logics proposals described
before (i.e., the L̷ukasiewicz, Gödel and product logics), as well as a useful description
for the hybrid aggregator average.
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member(X) :- number(X),0=<X,X=<1.

bot(0). top(1). leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).

and_godel(X,Y,Z):- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 1: Multi-adjoint lattice modeling truth degrees in the real interval [0,1].

Note also that we have included definitions for auxiliary predicates, whose names always
begin with the prefix “pri ”. All of them are intended to describe primitive/arithmetic
operators (in our case +, −, ∗, /, min and max) in a Prolog style, for being ap-
propriately called from the bodies of clauses defining predicates with higher levels of
expressivity (this is the case for instance, of the three kinds of fuzzy connectives we are
considering: conjuntions, disjunctions and agreggations).

Assume that “new num.pl” contains the same Prolog code than “num.pl” with the
exception of the definition regarding the average aggregator. Now, instead of computing
the average of two truth degrees, let us consider a new version which computes the
average between the results achieved after applying to both elements the disjunctions
operators described by Gödel and L̷ukasiewicz, that is: @aver(x1, x2) = (∨G(x1, x2) +
∨L(x1, x2))/2 (where ∨G(x1, x2) = max(x1, x2) and ∨L(x1, x2) = min(1, x1, x2). The
corresponding Prolog clause modeling such definition into the “new num.pl” file is:

agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),

pri_add(Z1,Z2,Z3), pri_div(Z3,2,Z).

And now, if with the new lattice we execute goal p w.r.t. the same program seen in Sec-
tion 1 (introduction), instead of obtaining 0.63, the new solution will be 0.81 since now
&P(0.9,@aver(0.8, 0.6)) = &P(0.9, (∨G(0.8, 0.6)+∨L(0.8, 0.6))/2) = 0.9∗(max(0.8, 0.6)+
min(1, 0.8 + 0.6))/2) = 0.9 ∗ ((0.8 + 1)/2) = 0.81.

To finish this section, in our last example we consider the partially ordered multi-
adjoint lattice of Figure 2, for which the conjunction and implication connectives based
on the Gödel intuistionistic logic conforms and adjoint pair (in the general case, the
Gödel ’s conjunctor is expressed in terms of “inf” instead of “min”).
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⊤

� �

⊥

member(bottom). member(alpha).

member(beta). member(top).

leq(bottom,X). leq(alpha,alpha). leq(alpha,top).

leq(beta,beta). leq(beta,top). leq(X,top).

and godel(X,Y,Z) :- pri inf(X,Y,Z).

pri inf(bottom,X,bottom):-!.

pri inf(alpha,X,alpha):-leq(alpha,X),!.

pri inf(beta,X,beta):-leq(beta,X),!.

pri inf(top,X,X):-!.

pri inf(X,Y,bottom).

Figure 2: Partially-ordered multi-adjoint lattice.

Conclusions and Future Work

This paper has been mainly concerned with the Dedekind-MacNeille completion, a rel-
evant and elegant mathematical concept which might help us to adapt some lattices for
being safely used into the multi-adjoint logic programming framework. In particular,
we have shown a technique which let us to “skip” in some cases the hypothesis of com-
plete lattice usually required in multi-adjoint lattices, being this hypothesis mandatory,
for instance, when describing the fix-point and model-theoretic declarative semantics
of MALP [15]. In particular, the results achieved in this paper are useful to justify the
safe use into FLOPER, according the methodology explained in the last part of this
paper, of those lattices (composed by all finite strings whose elements are formed from
an arbitrary alphabet of symbols) used in [28, 26] for documenting with declarative
traces the execution of goals at a very low computational cost.

Since many standard completions of a lattice arise for suitable choices of the sets
of up-subset and down-subset of P , in the future we plan to consider the concept of
canonical extensions (i.e., dense and compact completions) of lattices with additional
operations (introduced in [9]) and its application in the case of the quasimulti-adjoint
lattices. Lattices with additional operations emerge from linear logics([1, 12, 17]). The
results obtained can be applied for bilattices and trilattices (common MALP domains).
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