
A Pra
ti
al Management of FuzzyTruth-Degrees using FLOPER ★Pedro J. Mor
illo, Ginés Moreno, Jaime Penabad and Carlos VázquezUniversity of Castilla-La Man
haFa
ulty of Computer S
ien
e Engineering02071, Alba
ete (Spain){pmor
illo,
vazquez}�dsi.u
lm.es{Gines.Moreno,Jaime.Penabad}�u
lm.esAbstra
t. During the last two years, our developments regarding thedesign of the FLOPER tool (�Fuzzy LOgi
 Programming Environmentfor Resear
h�), have been devoted to implant in its
ore a rule-based, easyrepresentation of latti
es representing fuzzy notions of truth degrees be-yond the boolean
ase, in order to work with �exible programs belongingto the so-
alled multi-adjoint logi
 approa
h. Now, the system improvesits initial running/debugging/tra
ing
apabilities for managing this kindof fuzzy logi
 programs, with new options for manipulating in a
lassi
alProlog style the mathemati
al foundations of the enri
hment introdu
edby multi-adjoint latti
es. In parti
ular, we show that for a given programand query, many di�erent answers
an be obtained when
hanging theassumption of truth in a single work session. The experien
e related hereeviden
es the expressive power of Prolog rules (i.e.,
lauses) for imple-menting ri
h versions of multi-adjoint latti
es in a very easy way, as wellas its
ru
ial role in further fuzzy logi

omputations.1 Introdu
tionResear
h in the �elds of De
larative Programming and Fuzzy Logi
 have tradi-tionally provided programming languages and te
hniques with important appli-
ations in the areas of AI, rule-based systems, and so on [3, 17, 21℄. In parti
ular,Logi
 Programming [16℄ has been widely used for problem solving and knowl-edge representation in the past. Nevertheless, traditional logi
 languages do notin
orporate te
hniques or
onstru
ts to expli
itly deal with un
ertainty and ap-proximate reasoning in a natural way.To ful�ll this gap, Fuzzy Logi
 Programming has emerged as an interestingand still growing resear
h area trying to
onsolidate the e�orts for introdu
ingfuzzy logi
 into logi
 programming. During the last de
ades, several fuzzy logi
programming systems have been developed, su
h as [2, 4, 6, 15, 13, 27℄ and themany-valued logi
 programming language of [25, 26℄, where the
lassi
al inferen
e
★ This work was supported by the EU (FEDER), and the Spanish S
ien
e and Innova-tion Ministry (MICIN) under grant TIN 2007-65749 and by the Castilla-La Man
haAdministration under grant PII1I09-0117-4481.

me
hanism of SLD�Resolution has been repla
ed by a fuzzy variant whi
h is ableto handle partial truth and to reason with un
ertainty.This is the
ase of multi-adjoint logi
 programming [20, 18, 19℄, a powerfuland promising approa
h in the area. In this framework, a program
an be seenas a set of rules ea
h one annotated by a truth degree and a goal is a query tothe system plus a substitution (initially the empty substitution, denoted by id).Admissible steps (a generalization of the
lassi
al modus ponens inferen
e rule)are systemati
ally applied on goals in a similar way to
lassi
al resolution stepsin pure logi
 programming, thus returning a state
omposed by a
omputed sub-stitution together with an expression where all atoms have been exploited. Next,during the so
alled interpretive phase (see [10, 22℄), this expression is interpretedunder a given latti
e, hen
e returning a pair ⟨truth degree; substitution⟩ whi
h isthe fuzzy
ounterpart of the
lassi
al notion of
omputed answer used in purelogi
 programming.The main goal of the present paper is to present our last developments per-formed on the FLOPER system (see [1, 21, 24℄ and visit http://www.dsi.u
lm.es/investiga
ion/de
t/FLOPERpage.htm) whi
h enables the introdu
tion ofdi�erent notions of multi-adjoint latti
es for managing truth degrees even in asingle work-session without
hanging a given multi-adjoint logi
 program andgoal. Nowadays, the tool provides fa
ilities for exe
uting and debugging (by gen-erating de
larative tra
es) su
h kind of fuzzy programs, by means of two mainrepresentation (high/low-level, Prolog-based) ways whi
h are somehow antago-nisti
s regarding simpli
ity and a

ura
y features.The stru
ture of the paper is as follows. In Se
tion 2, we summarize the mainfeatures of multi-adjoint logi
 programming, both language syntax and pro
e-dural semanti
s. Se
tion 3 presents a dis
ussion on multi-adjoint latti
es andtheir ni
e representation by using standard Prolog
ode, in order to fa
ilitate itsfurther assimilation inside the FLOPER tool, as des
ribed in Se
tion 4. Finally,in Se
tion 5 we give our
on
lusions and some lines of future work.2 Multi-Adjoint Logi
 ProgrammingThis se
tion summarizes the main features of multi-adjoint logi
 programming(see [20, 18, 19℄ for a
omplete formulation of this framework). In what follows,we will use the abbreviation MALP for referen
ing programs belonging to thissetting.2.1 MALP SyntaxWe work with a �rst order language, ℒ,
ontaining variables,
onstants, fun
-tion symbols, predi
ate symbols, and several (arbitrary)
onne
tives to in
reaselanguage expressiveness: impli
ation
onne
tives (←1,←2, . . .);
onjun
tive op-erators (denoted by &1,&2, . . .), disjun
tive operators (∨1,∨2, . . .), and hybridoperators (usually denoted by @1,@2, . . .), all of them are grouped under thename of �aggregators�.

Aggregation operators are useful to des
ribe/spe
ify user preferen
es. Anaggregation operator, when interpreted as a truth fun
tion, may be an arithmeti
mean, a weighted sum or in general any monotone appli
ation whose argumentsare values of a
omplete bounded latti
e L. For example, if an aggregator @ isinterpreted as [[@]](x, y, z) = (3x+2y+z)/6, we are giving the highest preferen
eto the �rst argument, then to the se
ond, being the third argument the leastsigni�
ant.Although these
onne
tives are binary operators, we usually generalize themas fun
tions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truthfun
tion for an n-ary aggregation operator [[@]] : Ln → L is required to bemonotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.Additionally, our language ℒ
ontains the values of a multi-adjoint latti
e
⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a
olle
tion of adjoint pairs ⟨←i,&i⟩,where ea
h &i is a
onjun
tor whi
h is intended to the evaluation of modusponens [20℄. More exa
tly, in this setting the following items must be satis�ed:� ⟨L,⪯⟩ is a bounded latti
e, i.e. it has bottom and top elements, denoted by
⊥ and ⊤, respe
tively.� Ea
h operation &i is in
reasing in both arguments.� Ea
h operation ←i is in
reasing in the �rst argument and de
reasing in these
ond.� If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we havethat: x ⪯ (y ←i z) if and only if (x&i z) ⪯ y.This last
ondition,
alled adjoint property,
ould be
onsidered the most impor-tant feature of the framework (in
ontrast with many other approa
hes) whi
hjusti�es most of its properties regarding
ru
ial results for soundness,
omplete-ness, appli
ability, et
.In general, L may be the
arrier of any
omplete bounded latti
e where a

L-expression is a well-formed expression
omposed by values and
onne
tives of
L, as well as variable symbols and primitive operators (i.e., arithmeti
 symbolssu
h as ∗,+,min, et
...).In what follows, we assume that the truth fun
tion of any
onne
tive @ in L isgiven by its
orresponding
onne
tive de�nition, that is, an equation of the form
@(x1, . . . , xn) ≜ E, where E is a L-expression not
ontaining variable symbolsapart from x1, . . . , xn. For instan
e, in what follows we will be mainly
on
ernedwith the following
lassi
al set of adjoint pairs (
onjun
tors and impli
ations)in ⟨[0, 1],≤⟩, where labels L, G and P mean respe
tively �ukasiewi
z logi
, Gödelintuitionisti
 logi
 and produ
t logi
 (whi
h di�erent
apabilities for modelingpessimist, optimist and realisti
 s
enarios, respe
tively):
&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Produ
t
&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise Gödel
&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} �ukasiewi
z

A rule is a formula H ←i ℬ, where H is an atomi
 formula (usually
alledthe head) and ℬ (whi
h is
alled the body) is a formula built from atomi
 for-mulas B1, . . . , Bn � n ≥ 0 �, truth values of L,
onjun
tions, disjun
tions andaggregations. A goal is a body submitted as a query to the system. Roughlyspeaking, a multi-adjoint logi
 program is a set of pairs ⟨ℛ;�⟩ (we often write�ℛ witℎ ��), where ℛ is a rule and � is a truth degree (a value of L) expressingthe
on�den
e of a programmer in the truth of rule ℛ. By abuse of language,we sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.2.2 MALP Pro
edural Semanti
sThe pro
edural semanti
s of the multi�adjoint logi
 language ℒ
an be thoughtof as an operational phase (based on admissible steps) followed by an interpre-tive one. In the following, C[A] denotes a formula where A is a sub-expressionwhi
h o

urs in the �possibly empty�
ontext C[]. Moreover, C[A/A′] means therepla
ement of A by A′ in
ontext C[], whereas Var(s) refers to the set of dis-tin
t variables o

urring in the synta
ti
 obje
t s, and �[Var(s)] denotes thesubstitution obtained from � by restri
ting its domain to Var(s).De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program
P, an admissible
omputation is formalized as a state transition system, whosetransition relation →AS ⊆ (ℰ×ℰ) is the smallest relation satisfying the followingadmissible rules (where we always
onsider that A is the sele
ted atom in Q and
mgu(E) denotes the most general uni�er of an equation set E [14℄):1) ⟨Q[A];�⟩ →AS ⟨(Q[A/v&iℬ])�;��⟩,if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P and ℬ is not empty.2) ⟨Q[A];�⟩ →AS ⟨(Q[A/v])�;��⟩,if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.Note that the se
ond
ase
ould be subsumed by the �rst one, after expressingea
h fa
t ⟨A′←i; v⟩ as a program rule of the form ⟨A′←i⊤; v⟩. As usual, rules aretaken renamed apart. We shall use the symbols →AS1 and →AS2 to distinguishbetween
omputation steps performed by applying one of the spe
i�
 admissiblerules. Also, the appli
ation of a rule on a step will be annotated as a supers
riptof the →AS symbol.De�nition 2. Let P be a program, Q a goal and �id� the empty substitution.An admissible derivation is a sequen
e ⟨Q; id⟩→AS . . .→AS⟨Q

′; �⟩. When Q′ is aformula not
ontaining atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is
alled an admissible
omputed answer (a.
.a.) for that derivation.Example 1. Let P be the multi-adjoint fuzzy logi
 program des
ribed in Figure1 where the equation de�ning the average aggregator @aver must obviously hasthe form: @aver(x1, x2) ≜ (x1 + x2)/2. Now, we
an generate the admissible

Multi-adjoint logi
 program P :
ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0.9
ℛ2 : q(a) ← witℎ 0.8
ℛ3 : r(X) ← witℎ 0.7
ℛ4 : s(X) ← witℎ 0.5Admissible derivation:
⟨p(X); id⟩ →AS1

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩Interpretive derivation:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩ →IS

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩ →IS

⟨&P(0.9, 0.6); {X/a}⟩ →IS

⟨0.54; {X/a}⟩.Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).derivation shown in Figure 1 (we underline the sele
ted atom in ea
h step). So,the admissible
omputed answer (a.
.a.) in this
ase is
omposed by the pair:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only refers to bindings related withvariables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.If we exploit all atoms of a given goal, by applying admissible steps as mu
h asneeded during the operational phase, then it be
omes a formula with no atoms (a
L-expression) whi
h
an be then dire
tly interpreted w.r.t. latti
e L by applyingthe following de�nition we initially presented in [10℄:De�nition 3 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth fun
tion of
onne
tive @ in the latti
e
⟨L,⪯⟩ asso
iated to P, su
h that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive
omputa-tion as a state transition system, whose transition relation →IS ⊆ (ℰ × ℰ) isde�ned as the least one satisfying:
⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩

De�nition 4. Let P be a program and ⟨Q;�⟩ an a.
.a., that is, Q is a goal not
ontaining atoms (i.e., a L-expression). An interpretive derivation is a sequen
e
⟨Q;�⟩→IS . . .→IS⟨Q

′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the latti
e asso
i-ated to P, the state ⟨r;�⟩ is
alled a fuzzy
omputed answer (f.
.a.) for thatderivation.Example 2. If we
omplete the previous derivation of Example 1 by applying 3interpretive steps in order to obtain the �nal f.
.a. ⟨0.54; {X/a}⟩, we generatethe interpretive derivation shown in Figure 1.3 Truth-Degrees and Multi-adjoint Latti
es in Pra
ti
eWe have re
ently
on
eived a very easy way to model truth-degree latti
es forbeing in
luded into the FLOPER tool. All relevant
omponents of ea
h latti
e
an be en
apsulated inside a Prolog �le whi
h must ne
essarily
ontain the de�-nitions of a minimal set of predi
ates de�ning the set of valid elements (in
ludingspe
ial mentions to the �top� and �bottom� ones), the full or partial orderingestablished among them, as well as the repertoire of fuzzy
onne
tives whi
h
an be used for their subsequent manipulation. In order to simplify our explana-tion, assume that �le �bool.pl� refers to the simplest notion of (a binary) adjointlatti
e, thus implementing the following set of predi
ates:� member/1 whi
h is satis�ed when being
alled with a parameter representinga valid truth degree. In the
ase of �nite latti
es, it is also re
ommend toimplement members/1 whi
h returns in one go a list
ontaining the wholeset of truth degrees. For instan
e, in the Boolean
ase, both predi
ates
an be simply modeled by the Prolog fa
ts: member(0)., member(1). andmembers([0,1℄).� bot/1 and top/1 obviously answer with the top and bottom element of thelatti
e, respe
tively. Both are implemented into �bool.pl� as bot(0). andtop(1).� leq/2 models the ordering relation among all the possible pairs of truthdegrees, and obviously it is only satis�ed when it is invoked with two elementsverifying that the �rst parameter is equal or smaller than the se
ond one. So,in our example it su�
es with in
luding into �bool.pl� the fa
ts: leq(0,X).and leq(X,1).� Finally, given some fuzzy
onne
tives of the form &label1 (
onjun
tion),
∨label2 (disjun
tion) or @label3 (aggregation) with arities n1, n2 and n3 re-spe
tively, we must provide
lauses de�ning the
onne
tive predi
ates�and_label1/(n1+1)�, �or_label2/(n2+1)� and �agr_label3/(n3+1)�, where theextra argument of ea
h predi
ate is intended to
ontain the result a
hievedafter the evaluation of the proper
onne
tive. For instan
e, in the Boolean
ase, the following two fa
ts model in a very easy way the behaviour of the
lassi
al
onjun
tion operation: and_bool(0,_,0). and_bool(1,X,X).

member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite latti
e)bot(0). top(1). leq(X,Y) :- X=<Y.and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z):- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2.Multi-adjoint latti
e modeling truth degrees in the real interval [0,1℄ (�num.pl�).The reader
an easily
he
k that the use of latti
e �bool.pl� when working withMALP programs whose rules have the form:�A ←bool &bool(B1, . . . , Bn) witℎ 1�.... being A and Bi typi
al atoms1, su

essfully mimi
s the behaviour of
lassi
alProlog programs where
lauses a

omplish with the shape �A : − B1, . . . , Bn�.As a novelty in the fuzzy setting, when evaluating goals a

ording to the pro
e-dural semanti
s des
ribed in Se
tion 2, ea
h output will
ontain the
orrespond-ing Prolog's substitution (i.e., the
risp notion of
omputed answer obtained bymeans of
lassi
al SLD-resolution) together with the maximum truth degree 1.On the other hand and following the Prolog style regulated by the previousguidelines, in �le �num.lat� we have in
luded the
lauses shown in Figure 2.Here, we have modeled the more �exible latti
e (that we will mainly use in ourexamples, beyond the boolean
ase) whi
h enables the possibility of workingwith truth degrees in the in�nite spa
e (note that this
ondition disables theimplementation of the
onsulting predi
ate �members/1�) of the real numbersbetween 0 and 1, allowing too the possibility of using
onjun
tion and disjun
tionoperators re
asted from the three typi
al fuzzy logi
s proposals des
ribed before(i.e., the �ukasiewi
z, Gödel and produ
t logi
s), as well as a useful des
riptionfor the hybrid aggregator average.Note also that we have in
luded de�nitions for auxiliary predi
ates, whosenames always begin with the pre�x �pri_�. All of them are intended to des
ribeprimitive/arithmeti
 operators (in our
ase +, −, ∗, /, min and max) in aProlog style, for being appropriately
alled from the bodies of
lauses de�ningpredi
ates with higher levels of expressivity (this is the
ase for instan
e, of the1 Here we also assume that several versions of the
lassi
al
onjun
tion operation havebeen implemented with di�erent arities.

three kinds of fuzzy
onne
tives we are
onsidering:
onjuntions, disjun
tionsand agreggations).Sin
e till now we have
onsidered two
lassi
al, fully ordered latti
es (with a�nite and in�nite number of elements,
olle
ted in �les �bool.pl� and �num.pl�,respe
tively), we wish now to introdu
e a di�erent
ase
oping with a very simplelatti
e where not always any pair of truth degrees are
omparable. So,
onsiderthe following partially ordered multi-adjoint latti
e in the diagram below forwhi
h the
onjun
tion and impli
ation
onne
tives based on the Gödel intuis-tionisti
 logi
 des
ribed in Se
tion 2
onform an adjoint pair.... but with theparti
ularity now that, in the general
ase, the Gödel 's
onjun
tion must beexpressed as &G(x, y) ≜ inf(x, y), where it is important to note that we mustrepla
e the use of �min� by �inf � in the
onne
tive de�nition.
⊤

� �

⊥

member(bottom). member(alpha).member(beta). member(top).members([bottom,alpha,beta,top℄).leq(bottom,X). leq(alpha,alpha). leq(alpha,top).leq(beta,beta). leq(beta,top). leq(X,top).and_godel(X,Y,Z) :- pri_inf(X,Y,Z).pri_inf(bottom,X,bottom):-!.pri_inf(alpha,X,alpha):-leq(alpha,X),!.pri_inf(beta,X,beta):-leq(beta,X),!.pri_inf(top,X,X):-!.pri_inf(X,Y,bottom).To this end, observe in the Prolog
ode a

ompanying the �gure above that wehave introdu
ed �ve
lauses de�ning the new primitive operator �pri_inf/3�whi
h is intended to return the in�mum of two elements. Related with this fa
t,we must point out the following aspe
ts:� Note that sin
e truth degrees � and � (or their
orresponding representationsas Prolog terms �alpha� and �beta� used for instan
e in the de�nition(s)of �members(s)/1�) are in
omparable then, any
all to goals of the form�?- leq(alpha,beta).� or �?- leq(beta,alpha).� will always fail.� Fortunately, a goal of the form �?- pri_inf(alpha,beta,X).�, or alterna-tively �?- pri_inf(beta,alpha,X).�, instead of failing, su

essfully pro-du
es the desired result �X=bottom�.� Note anyway that the implementation of the �pri_inf/1� predi
ate is manda-tory for
oding the general de�nition of �and_godel/3�.

4 The FLOPER System in A
tionAs detailed in [1, 21℄, our parser has been implemented by using the
lassi
alDCG's (De�nite Clause Grammars) resour
e of the Prolog language, sin
e itis a
onvenient notation for expressing grammar rules. On
e the appli
ation isloaded inside a Prolog interpreter (in our
ase, Si
stus Prolog v.3.12.5), it showsa menu whi
h in
ludes options for loading, parsing, listing and saving fuzzyprograms, as well as for exe
uting fuzzy goals (see Figure 3).All these a
tions are based in the translation of the fuzzy
ode into standardProlog
ode. The key point is to extend ea
h atom with an extra argument,
alled truth variable of the form �_TVi�, whi
h is intended to
ontain the truthdegree obtained after the subsequent evaluation of the atom. For instan
e, the�rst
lause in our target program is translated into:p(X,_TV0) :- q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).Moreover, the se
ond
lause in our target program, be
omes the pure Prologfa
t �q(a,0.8)� while a fuzzy goal like �p(X)�, is translated into the pure Pro-log goal: �p(X, Truth_degree)� (note that the last truth degree variable is notanonymous now) for whi
h the Prolog interpreter returns the desired fuzzy
om-puted answer [Truth_degree = 0.54, X = a]. The previous set of options su�
esfor running fuzzy programs (the �run�
hoi
e also uses the
lauses
ontained in�num.pl�, whi
h represent the default latti
e): all internal
omputations (in
lud-ing
ompiling and exe
uting) are pure Prolog derivations whereas inputs (fuzzyprograms and goals) and outputs (fuzzy
omputed answers) have always a fuzzytaste, thus produ
ing the illusion on the �nal user of being working with a purelyfuzzy logi
 programming tool.On the other hand, as showed in the down-middle, dark part of Figure 3,FLOPER has been re
ently equipped with a new option,
alled �loadLat� forallowing the possibility of
hanging the multi-adjoint latti
e asso
iated to a givenprogram. For instan
e, assume that �new_num.pl�
ontains the same Prolog
ode than �num.pl� with the ex
eption of the de�nition regarding the averageaggregator. Now, instead of
omputing the average of two truth degrees, letus
onsider the average between the results a
hieved after applying to bothelements, the disjun
tions operators des
ribed by Gödel and �ukasiewi
z, thatis:@aver(x1, x2) ≜ (∨G(x1, x2)+∨L(x1, x2))∗0.5. The
orresponding Prolog
lausemodeling su
h de�nition into the �new_num.pl� �le
ould be:agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),pri_add(Z1,Z2,Z3),pri_prod(Z3,0.5,Z).

Fig. 3. Example of a work session with FLOPER showing �Small Interpretive Steps�and program/goal menus.and now, by sele
ting again the �run� option (without
hanging the program andgoal), the system would display the new solution: [Truth_degree = 0.72, X = a].However, when trying to go beyond program exe
ution, the previous methodbe
omes insu�
ient. In parti
ular, observe that we
an only simulate
ompletefuzzy derivations (by performing the
orresponding Prolog derivations based onSLD-resolution) but we
an not generate partial derivations or even apply a sin-gle admissible step on a given fuzzy expression. This kind of low-level manipula-tions are mandatory when trying to in
orporate to the tool some program trans-formation te
hniques su
h as those based on fold/unfold (i.e.,
ontra
tion andexpansion of sub-expressions of a program using the de�nitions of this programor of a pre
eding one, thus generating more e�
ient
ode) or partial evaluationwe have des
ribed in [5, 9, 12℄. For instan
e, our fuzzy unfolding transformationis de�ned as the repla
ement of a program rule ℛ : (A ←i ℬ with v) by theset of rules {A� ←i ℬ
′ with v ∣ ⟨ℬ; id⟩ →AS ⟨ℬ

′;�⟩}, whi
h obviously requiresthe implementation of me
hanisms for generating derivations of a single step,rearranging the body of a program rule, applying substitutions to its head, et
.To this end, in [21℄ we have presented a new low-level representation for thefuzzy
ode whi
h
urrently o�ers the possibility of performing debugging a
tionssu
h as tra
ing a FLOPER work session. The idea is
olle
t in detail all relevant
omponents asso
iated to ea
h fuzzy rule, su
h as its number inside the program,
omposition of the atom
onforming its head, kind of impli
ation
onne
ting thehead and its body, details about
onne
tives and atoms
omposing this body

and atta
hed weight. For instan
e, after parsing the �rst rule of our program, weobtain the following expression whi
h is asserted into the interpreter's databaseas a Prolog fa
t (whi
h it is never exe
uted dire
tly, in
ontrast with the high-level, Prolog-based representation, showed at the beginning of this se
tion):rule(1,head(atom(pred(p,1),[var('X')℄)),impl(prod),body(and(godel,2,[atom(pred(q,1),[var('X')℄),agr(aver,2,[atom(pred(r,1),[var('X')℄),atom(pred(s,1),[var('X')℄)℄)℄)),td(0.9)).Two more examples: substitutions are modeled by lists of terms of the form
link(V, T) where V and T
ontains the
ode asso
iated to an original variableand its
orresponding (linked) fuzzy term, respe
tively, whereas a state is rep-resented by a term with fun
tor state/2. We have implemented predi
ates formanipulating su
h kind of
ode at a very low level in order to unify expressions,
ompose substitutions, apply admisible/interpretive steps, et
...Looking again to the darked part of Figure 3, observe in the FLOPER'sgoal menu the �tree� and �depth� options, whi
h are useful for tra
ing exe
u-tion trees and �xing the maximum length allowed for their bran
hes (initially3), respe
tively. Working with these options is
ru
ial when the �run�
hoi
efails: remember that this last option is based on the generation of pure logi
SLD-derivations whi
h might fall in loop or dire
tly fail in some
ases as theexperiments of [21℄ show, in
ontrast with the tra
es (based on �nite, non-failed,admissible derivations) that the �tree� option displays. As we are going toillustrate in what follows, the system displays states on di�erent lines, appropri-ately indented to distinguish the proper relationship -parent/
hild/grand
hild...-among nodes on unfolding trees. Ea
h node
ontains an state (
omposed by the
orresponding goal and substitution) pre
eded by the number of the programrule used by the admissible step leading to it (root nodes always labeled withthe virtual, non existing rule R0).Strongly related with these last options, the �ismode�
hoi
e showed at thebottom of Figure 3, de
ides among three levels of detail when visualizing theinterpretive phase performed during the generation of �unfolding trees�. It is im-portant to remark that together with the possibility of introdu
ing multi-adjointlatti
es, it represents our last re
ord a
hieved in the development of the FLOPERtool. When the user sele
ts su
h
hoi
e, three options are o�ered:

∙ �Large� means to obtain the �nal result in one go. For instan
e, for ourrunning example (with the se
ond notion of �average�) FLOPER draws:R0 <p(X),{}>R1 <&prod(0.9,&godel(q(X1),�aver(r(X1),s(X1)))),{X/X1} >R2 <&prod(0.9,&godel(0.8,�aver(r(a),s(a)))),{X/a,X1/a}>R3 <&prod(0.9,&godel(0.8,�aver(0.7,s(a)))),{X/a,X1/a,X11/a}>R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a}>result < 0.7200000000000001,{X/a,X1/a,X11/a}>
∙ �Medium� implements the notion of �interpretive step� a

ording De�nition 3[10℄ whi
h in our
ase produ
es the pi
ture (note here that those states produ
esduring the interpretive phase are pre
eded by the word �is� instead of the num-ber of a program rule, sin
e no rules are exploited in this
ase in
ontrast withadmissible steps):R0 <p(X),{}>R1 <&prod(0.9,&godel(q(X1),�aver(r(X1),s(X1)))),{X/X1}>R2 <&prod(0.9,&godel(0.8,�aver(r(a),s(a)))),{X/a,X1/a}>R3 <&prod(0.9,&godel(0.8,�aver(0.7,s(a)))),{X/a,X1/a,X11/a}>R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a}>is <&prod(0.9,&godel(0.8,0.85)),{X/a,X1/a,X11/a,_16/a}>is <&prod(0.9,0.8),{X/a,X1/a,X11/a,_16/a}>is <0.7200000000000001,{X/a,X1/a,X11/a,_16/a}>
∙ �Small� allows to visualize in detail both the dire
t/indire
t
alls to
onne
tivede�nitions and primitive operators performed along the whole interpretive phase(see [22, 24℄). The reader
an observe at the beginning of Figure 3, the aspe
to�ered by FLOPER when visualizing in detail the behaviour of our runningexample, where the set of �small interpretive steps� are (we omit here the initialfourth states- asso
iated to admissible steps- sin
e they
oin
ide with our twolast illustrations above):...R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a,_16/a}>sis1 <&prod(0.9,&godel(0.8,#prod(#add(|godel(0.7,0.5),|luka(..sis1 <&prod(0.9,&godel(0.8,#prod(#add(#max(0.7,0.5),|luka(0.7.sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,|luka(0.7,0.5)), ..sis1 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(#add(0.7, ...sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(1.2,1)), ...sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,1),0.5))),sis2 <&prod(0.9,&godel(0.8,#prod(1.7,0.5))), {X/a,X1/a ..sis2 <&prod(0.9,&godel(0.8,0.85)), {X/a,X1/a,X11/a,sis1 <&prod(0.9,#min(0.8,0.85)), {X/a,X1/a,X11/a,sis2 <&prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>sis1 <#prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>sis2 <0.7200000000000001, {X/a,X1/a,X11/a,_16/a}>

Fig. 4. Building a graphi
al interfa
e for FLOPER.Observe in this last
ase that during the interpretive phase we apply �smallinterpretive steps� of kind →SIS1 or →SIS2 (a

ording to [24℄). The intuitiveidea is that, whereas a→SIS1 step �expands� a
onne
tive de�nition on the nextstate, the role of evaluating primitive operators is played by→SIS2 steps. Noti
ein the �gure that ea
h primitive operators is always labeled by pre�x �#�). Thesefa
ts justify why in our Prolog-based implementation of multi-adjoint latti
es,
lauses de�ning
onne
tive predi
ates only perform
alls to predi
ates of theform �and_*�, �or_*�, �agr_*� (useful for identifying further →SIS1 steps) or�pri_*� (asso
iated to →SIS2 steps).5 Con
lusions and Future WorkThe experien
e a
quired in our resear
h group regarding the design of te
hniquesand methods based on fuzzy logi
 in
lose relationship with the so-
alled multi-adjoint logi
 programming approa
h ([10, 5, 9, 11, 12, 7, 8, 22, 23℄), has motivatedour interest for putting in pra
ti
e all our developments around the design of theFLOPER environment [21, 24℄. Our philosophy is to friendly
onne
t this fuzzyframework with Prolog programmers: our system, apart for being implementedin Prolog, also translates the fuzzy
ode to
lassi
al
lauses (in two di�erentrepresentations) and, what is more, in this paper we have also shown that a

wide range of latti
es modeling powerful and �exible notions of truth degreesalso admit a ni
e rule-based
hara
terizations into Prolog.Apart for our ongoing e�orts devoted to providing FLOPER with a graphi
alinterfa
e as illustrated in Figure 42, nowadays we are espe
ially interested in ex-tending the tool with testing te
hniques for automati
ally
he
king that latti
esmodeled a

ording the Prolog-based method established in this paper, verify therequirements of our fuzzy setting (with spe
ial mention to the adjoint property).For the future, we have in mind to provide an interfa
e with rules written inFuzzy-RuleML and other fuzzy languages like the ones presented in [26, 13℄ (theXSB system supports GAP).Referen
es1. J.M. Abietar, P.J. Mor
illo, and G. Moreno. Designing a software tool for fuzzylogi
 programming. In T.E. Simos and G. Maroulis, editors, Pro
. of the Inter-national Conferen
e of Computational Methods in S
ien
es and Engineering IC-CMSE'07, Volume 2 (Computation in Modern S
ien
e and Engineering), pages1117�1120. Ameri
an Institute of Physi
s (distributed by Springer), 2007.2. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and EvidentialReasoning in Arti�
ial Intelligen
e. John Wiley & Sons, In
., 1995.3. Ivan Bratko. Prolog Programming for Arti�
ial Intelligen
e. Addison Wesley,September 2000.4. S. Guadarrama, S. Muñoz, and C. Vau
heret. Fuzzy Prolog: A new approa
h usingsoft
onstraints propagation. Fuzzy Sets and Systems, 144(1):127�150, 2004.5. J.A. Guerrero and G. Moreno. Optimizing fuzzy logi
 programs by unfolding,aggregation and folding. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 219:19�34, 2008.6. M. Ishizuka and N. Kanai. Prolog-ELF In
orporating Fuzzy Logi
. In Aravind K.Joshi, editor, Pro
eedings of the 9th Int. Joint Conferen
e on Arti�
ial Intelligen
e,IJCAI'85, pages 701�703. Morgan Kaufmann, 1985.7. P. Julián, J. Medina, G. Moreno, and M. Ojeda. Thresholded tabulation in a fuzzylogi
 setting. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 248:115�130, 2009.8. P. Julián, J. Medina, G. Moreno, and M. Ojeda. E�
ient thresholded tabulationfor fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundationsof Reasoning under Un
ertainty), 249:125�141, 2010.9. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjointApproa
h. Fuzzy Sets and Systems, 154:16�33, 2005.10. P. Julián, G. Moreno, and J. Penabad. Operational/Interpretive Unfoldingof Multi-adjoint Logi
 Programs. Journal of Universal Computer S
ien
e,12(11):1679�1699, 2006.11. P. Julián, G. Moreno, and J. Penabad. Measuring the interpretive
ost in fuzzylogi

omputations. In Fran
es
o Masulli, Sushmita Mitra, and Gabriella Pasi,editors, Pro
. of Appli
ations of Fuzzy Sets Theory, 7th International Workshopon Fuzzy Logi
 and Appli
ations, WILF 2007, Camogli, Italy, July 7-10, pages28�36. Springer Verlag, LNAI 4578, 2007.2 Here we show an unfolding tree eviden
ing an in�nite bran
h where states are
oloredin yellow and program rules exploited in admissible steps are en
losed in
ir
les.

12. P. Julián, G. Moreno, and J. Penabad. An Improved Redu
tant Cal
ulus usingFuzzy Partial Evaluation Te
hniques. Fuzzy Sets and Systems, 160:162�181, 2009.doi: 10.1016/j.fss.2008.05.006.13. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logi
 program-ming and its appli
ations. Journal of Logi
 Programming, 12:335�367, 1992.14. J. L. Lassez, M. J. Maher, and K. Marriott. Uni�
ation Revisited. In J. Minker,editor, Foundations of Dedu
tive Databases and Logi
 Programming, pages 587�625. Morgan Kaufmann, Los Altos, Ca., 1988.15. D. Li and D. Liu. A fuzzy Prolog database system. John Wiley & Sons, In
., 1990.16. J.W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, Berlin, 1987.Se
ond edition.17. J.W. Lloyd. De
larative programming for arti�
ial intelligen
e appli
ations. SIG-PLAN Not., 42(9):123�124, 2007.18. J. Medina, M. Ojeda-A
iego, and P. Vojtá². Multi-adjoint logi
 programming with
ontinuous semanti
s. Pro
. of Logi
 Programming and Non-Monotoni
 Reasoning,LPNMR'01, Springer-Verlag, LNAI, 2173:351�364, 2001.19. J. Medina, M. Ojeda-A
iego, and P. Vojtá². A pro
edural semanti
s for multi-adjoint logi
 programing. Progress in Arti�
ial Intelligen
e, EPIA'01, Springer-Verlag, LNAI, 2258(1):290�297, 2001.20. J. Medina, M. Ojeda-A
iego, and P. Vojtá². Similarity-based Uni�
ation: a multi-adjoint approa
h. Fuzzy Sets and Systems, 146:43�62, 2004.21. P.J. Mor
illo and G. Moreno. Programming with Fuzzy Logi
 Rules by usingthe FLOPER Tool. In Ni
k Bassiliades, Guido Governatori, and Adrian Pas
hke,editors, Pro
 of the 2nd. Rule Representation, Inter
hange and Reasoning on theWeb, International Symposium, RuleML 2008, Orlando, FL, USA, O
tober 30-31,pages 119�126. Springer Verlag, LNCS 3521, 2008.22. P.J. Mor
illo and G. Moreno. Modeling interpretive steps in fuzzy logi

ompu-tations. In Vito Di Gesù, Sankar K. Pal, and Alfredo Petrosino, editors, Pro
.of the 8th International Workshop on Fuzzy Logi
 and Appli
ations, WILF 2009.Palermo, Italy, June 9-12, pages 44�51. Springer Verlag, LNAI 5571, 2009.23. P.J. Mor
illo and G. Moreno. On
ost estimations for exe
uting fuzzy logi
 pro-grams. In Hamid R. Arabnia, David de la Fuente, and José Angel Olivas, editors,Pro
eedings of the 11th International Conferen
e on Arti�
ial Intelligen
e, ICAI2009, July 13-16, 2009, Las Vegas (Nevada), USA, pages 217�223. CSREA Press,2009.24. P.J. Mor
illo, G. Moreno, J. Penabad, and C. Vázquez. Modeling interpretive stepsinto the FLOPER environment. In Pro
eedings of the 12th International Confer-en
e on Arti�
ial Intelligen
e, ICAI 2010, July 12-15, 2010, Las Vegas (Nevada),USA. CSREA Press (a

epted for publi
ation), 2010.25. U. Stra

ia. Query answering in normal logi
 programs under un
ertainty. In 8thEuropean Conferen
es on Symboli
 and Quantitative Approa
hes to Reasoning withUn
ertainty (ECSQARU-05), number 3571 in Le
ture Notes in Computer S
ien
e,pages 687�700, Bar
elona, Spain, 2005. Springer Verlag.26. U. Stra

ia. Managing un
ertainty and vagueness in des
ription logi
s, logi
 pro-grams and des
ription logi
 programs. In Reasoning Web, 4th International Sum-mer S
hool, Tutorial Le
tures, number 5224 in Le
ture Notes in Computer S
ien
e,pages 54�103. Springer Verlag, 2008.27. P. Vojtá². Fuzzy Logi
 Programming. Fuzzy Sets and Systems, 124(1):361�370,2001.

