
A Pratial Management of FuzzyTruth-Degrees using FLOPER ★Pedro J. Morillo, Ginés Moreno, Jaime Penabad and Carlos VázquezUniversity of Castilla-La ManhaFaulty of Computer Siene Engineering02071, Albaete (Spain){pmorillo,vazquez}�dsi.ulm.es{Gines.Moreno,Jaime.Penabad}�ulm.esAbstrat. During the last two years, our developments regarding thedesign of the FLOPER tool (�Fuzzy LOgi Programming Environmentfor Researh�), have been devoted to implant in its ore a rule-based, easyrepresentation of latties representing fuzzy notions of truth degrees be-yond the boolean ase, in order to work with �exible programs belongingto the so-alled multi-adjoint logi approah. Now, the system improvesits initial running/debugging/traing apabilities for managing this kindof fuzzy logi programs, with new options for manipulating in a lassialProlog style the mathematial foundations of the enrihment introduedby multi-adjoint latties. In partiular, we show that for a given programand query, many di�erent answers an be obtained when hanging theassumption of truth in a single work session. The experiene related hereevidenes the expressive power of Prolog rules (i.e., lauses) for imple-menting rih versions of multi-adjoint latties in a very easy way, as wellas its ruial role in further fuzzy logi omputations.1 IntrodutionResearh in the �elds of Delarative Programming and Fuzzy Logi have tradi-tionally provided programming languages and tehniques with important appli-ations in the areas of AI, rule-based systems, and so on [3, 17, 21℄. In partiular,Logi Programming [16℄ has been widely used for problem solving and knowl-edge representation in the past. Nevertheless, traditional logi languages do notinorporate tehniques or onstruts to expliitly deal with unertainty and ap-proximate reasoning in a natural way.To ful�ll this gap, Fuzzy Logi Programming has emerged as an interestingand still growing researh area trying to onsolidate the e�orts for introduingfuzzy logi into logi programming. During the last deades, several fuzzy logiprogramming systems have been developed, suh as [2, 4, 6, 15, 13, 27℄ and themany-valued logi programming language of [25, 26℄, where the lassial inferene
★ This work was supported by the EU (FEDER), and the Spanish Siene and Innova-tion Ministry (MICIN) under grant TIN 2007-65749 and by the Castilla-La ManhaAdministration under grant PII1I09-0117-4481.

mehanism of SLD�Resolution has been replaed by a fuzzy variant whih is ableto handle partial truth and to reason with unertainty.This is the ase of multi-adjoint logi programming [20, 18, 19℄, a powerfuland promising approah in the area. In this framework, a program an be seenas a set of rules eah one annotated by a truth degree and a goal is a query tothe system plus a substitution (initially the empty substitution, denoted by id).Admissible steps (a generalization of the lassial modus ponens inferene rule)are systematially applied on goals in a similar way to lassial resolution stepsin pure logi programming, thus returning a state omposed by a omputed sub-stitution together with an expression where all atoms have been exploited. Next,during the so alled interpretive phase (see [10, 22℄), this expression is interpretedunder a given lattie, hene returning a pair ⟨truth degree; substitution⟩ whih isthe fuzzy ounterpart of the lassial notion of omputed answer used in purelogi programming.The main goal of the present paper is to present our last developments per-formed on the FLOPER system (see [1, 21, 24℄ and visit http://www.dsi.ulm.es/investigaion/det/FLOPERpage.htm) whih enables the introdution ofdi�erent notions of multi-adjoint latties for managing truth degrees even in asingle work-session without hanging a given multi-adjoint logi program andgoal. Nowadays, the tool provides failities for exeuting and debugging (by gen-erating delarative traes) suh kind of fuzzy programs, by means of two mainrepresentation (high/low-level, Prolog-based) ways whih are somehow antago-nistis regarding simpliity and auray features.The struture of the paper is as follows. In Setion 2, we summarize the mainfeatures of multi-adjoint logi programming, both language syntax and proe-dural semantis. Setion 3 presents a disussion on multi-adjoint latties andtheir nie representation by using standard Prolog ode, in order to failitate itsfurther assimilation inside the FLOPER tool, as desribed in Setion 4. Finally,in Setion 5 we give our onlusions and some lines of future work.2 Multi-Adjoint Logi ProgrammingThis setion summarizes the main features of multi-adjoint logi programming(see [20, 18, 19℄ for a omplete formulation of this framework). In what follows,we will use the abbreviation MALP for referening programs belonging to thissetting.2.1 MALP SyntaxWe work with a �rst order language, ℒ, ontaining variables, onstants, fun-tion symbols, prediate symbols, and several (arbitrary) onnetives to inreaselanguage expressiveness: impliation onnetives (←1,←2, . . .); onjuntive op-erators (denoted by &1,&2, . . .), disjuntive operators (∨1,∨2, . . .), and hybridoperators (usually denoted by @1,@2, . . .), all of them are grouped under thename of �aggregators�.

Aggregation operators are useful to desribe/speify user preferenes. Anaggregation operator, when interpreted as a truth funtion, may be an arithmetimean, a weighted sum or in general any monotone appliation whose argumentsare values of a omplete bounded lattie L. For example, if an aggregator @ isinterpreted as [[@]](x, y, z) = (3x+2y+z)/6, we are giving the highest prefereneto the �rst argument, then to the seond, being the third argument the leastsigni�ant.Although these onnetives are binary operators, we usually generalize themas funtions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truthfuntion for an n-ary aggregation operator [[@]] : Ln → L is required to bemonotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.Additionally, our language ℒ ontains the values of a multi-adjoint lattie
⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a olletion of adjoint pairs ⟨←i,&i⟩,where eah &i is a onjuntor whih is intended to the evaluation of modusponens [20℄. More exatly, in this setting the following items must be satis�ed:� ⟨L,⪯⟩ is a bounded lattie, i.e. it has bottom and top elements, denoted by
⊥ and ⊤, respetively.� Eah operation &i is inreasing in both arguments.� Eah operation ←i is inreasing in the �rst argument and dereasing in theseond.� If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we havethat: x ⪯ (y ←i z) if and only if (x&i z) ⪯ y.This last ondition, alled adjoint property, ould be onsidered the most impor-tant feature of the framework (in ontrast with many other approahes) whihjusti�es most of its properties regarding ruial results for soundness, omplete-ness, appliability, et.In general, L may be the arrier of any omplete bounded lattie where a

L-expression is a well-formed expression omposed by values and onnetives of
L, as well as variable symbols and primitive operators (i.e., arithmeti symbolssuh as ∗,+,min, et...).In what follows, we assume that the truth funtion of any onnetive @ in L isgiven by its orresponding onnetive de�nition, that is, an equation of the form
@(x1, . . . , xn) ≜ E, where E is a L-expression not ontaining variable symbolsapart from x1, . . . , xn. For instane, in what follows we will be mainly onernedwith the following lassial set of adjoint pairs (onjuntors and impliations)in ⟨[0, 1],≤⟩, where labels L, G and P mean respetively �ukasiewiz logi, Gödelintuitionisti logi and produt logi (whih di�erent apabilities for modelingpessimist, optimist and realisti senarios, respetively):
&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Produt
&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise Gödel
&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} �ukasiewiz

A rule is a formula H ←i ℬ, where H is an atomi formula (usually alledthe head) and ℬ (whih is alled the body) is a formula built from atomi for-mulas B1, . . . , Bn � n ≥ 0 �, truth values of L, onjuntions, disjuntions andaggregations. A goal is a body submitted as a query to the system. Roughlyspeaking, a multi-adjoint logi program is a set of pairs ⟨ℛ;�⟩ (we often write�ℛ witℎ ��), where ℛ is a rule and � is a truth degree (a value of L) expressingthe on�dene of a programmer in the truth of rule ℛ. By abuse of language,we sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.2.2 MALP Proedural SemantisThe proedural semantis of the multi�adjoint logi language ℒ an be thoughtof as an operational phase (based on admissible steps) followed by an interpre-tive one. In the following, C[A] denotes a formula where A is a sub-expressionwhih ours in the �possibly empty� ontext C[]. Moreover, C[A/A′] means thereplaement of A by A′ in ontext C[], whereas Var(s) refers to the set of dis-tint variables ourring in the syntati objet s, and �[Var(s)] denotes thesubstitution obtained from � by restriting its domain to Var(s).De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program
P, an admissible omputation is formalized as a state transition system, whosetransition relation →AS ⊆ (ℰ×ℰ) is the smallest relation satisfying the followingadmissible rules (where we always onsider that A is the seleted atom in Q and
mgu(E) denotes the most general uni�er of an equation set E [14℄):1) ⟨Q[A];�⟩ →AS ⟨(Q[A/v&iℬ])�;��⟩,if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P and ℬ is not empty.2) ⟨Q[A];�⟩ →AS ⟨(Q[A/v])�;��⟩,if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.Note that the seond ase ould be subsumed by the �rst one, after expressingeah fat ⟨A′←i; v⟩ as a program rule of the form ⟨A′←i⊤; v⟩. As usual, rules aretaken renamed apart. We shall use the symbols →AS1 and →AS2 to distinguishbetween omputation steps performed by applying one of the spei� admissiblerules. Also, the appliation of a rule on a step will be annotated as a supersriptof the →AS symbol.De�nition 2. Let P be a program, Q a goal and �id� the empty substitution.An admissible derivation is a sequene ⟨Q; id⟩→AS . . .→AS⟨Q

′; �⟩. When Q′ is aformula not ontaining atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is alled an admissible omputed answer (a..a.) for that derivation.Example 1. Let P be the multi-adjoint fuzzy logi program desribed in Figure1 where the equation de�ning the average aggregator @aver must obviously hasthe form: @aver(x1, x2) ≜ (x1 + x2)/2. Now, we an generate the admissible

Multi-adjoint logi program P :
ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0.9
ℛ2 : q(a) ← witℎ 0.8
ℛ3 : r(X) ← witℎ 0.7
ℛ4 : s(X) ← witℎ 0.5Admissible derivation:
⟨p(X); id⟩ →AS1

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩Interpretive derivation:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩ →IS

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩ →IS

⟨&P(0.9, 0.6); {X/a}⟩ →IS

⟨0.54; {X/a}⟩.Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).derivation shown in Figure 1 (we underline the seleted atom in eah step). So,the admissible omputed answer (a..a.) in this ase is omposed by the pair:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only refers to bindings related withvariables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.If we exploit all atoms of a given goal, by applying admissible steps as muh asneeded during the operational phase, then it beomes a formula with no atoms (a
L-expression) whih an be then diretly interpreted w.r.t. lattie L by applyingthe following de�nition we initially presented in [10℄:De�nition 3 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth funtion of onnetive @ in the lattie
⟨L,⪯⟩ assoiated to P, suh that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive omputa-tion as a state transition system, whose transition relation →IS ⊆ (ℰ × ℰ) isde�ned as the least one satisfying:
⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩

De�nition 4. Let P be a program and ⟨Q;�⟩ an a..a., that is, Q is a goal notontaining atoms (i.e., a L-expression). An interpretive derivation is a sequene
⟨Q;�⟩→IS . . .→IS⟨Q

′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the lattie assoi-ated to P, the state ⟨r;�⟩ is alled a fuzzy omputed answer (f..a.) for thatderivation.Example 2. If we omplete the previous derivation of Example 1 by applying 3interpretive steps in order to obtain the �nal f..a. ⟨0.54; {X/a}⟩, we generatethe interpretive derivation shown in Figure 1.3 Truth-Degrees and Multi-adjoint Latties in PratieWe have reently oneived a very easy way to model truth-degree latties forbeing inluded into the FLOPER tool. All relevant omponents of eah lattiean be enapsulated inside a Prolog �le whih must neessarily ontain the de�-nitions of a minimal set of prediates de�ning the set of valid elements (inludingspeial mentions to the �top� and �bottom� ones), the full or partial orderingestablished among them, as well as the repertoire of fuzzy onnetives whihan be used for their subsequent manipulation. In order to simplify our explana-tion, assume that �le �bool.pl� refers to the simplest notion of (a binary) adjointlattie, thus implementing the following set of prediates:� member/1 whih is satis�ed when being alled with a parameter representinga valid truth degree. In the ase of �nite latties, it is also reommend toimplement members/1 whih returns in one go a list ontaining the wholeset of truth degrees. For instane, in the Boolean ase, both prediatesan be simply modeled by the Prolog fats: member(0)., member(1). andmembers([0,1℄).� bot/1 and top/1 obviously answer with the top and bottom element of thelattie, respetively. Both are implemented into �bool.pl� as bot(0). andtop(1).� leq/2 models the ordering relation among all the possible pairs of truthdegrees, and obviously it is only satis�ed when it is invoked with two elementsverifying that the �rst parameter is equal or smaller than the seond one. So,in our example it su�es with inluding into �bool.pl� the fats: leq(0,X).and leq(X,1).� Finally, given some fuzzy onnetives of the form &label1 (onjuntion),
∨label2 (disjuntion) or @label3 (aggregation) with arities n1, n2 and n3 re-spetively, we must provide lauses de�ning the onnetive prediates�and_label1/(n1+1)�, �or_label2/(n2+1)� and �agr_label3/(n3+1)�, where theextra argument of eah prediate is intended to ontain the result ahievedafter the evaluation of the proper onnetive. For instane, in the Booleanase, the following two fats model in a very easy way the behaviour of thelassial onjuntion operation: and_bool(0,_,0). and_bool(1,X,X).

member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattie)bot(0). top(1). leq(X,Y) :- X=<Y.and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z):- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2.Multi-adjoint lattie modeling truth degrees in the real interval [0,1℄ (�num.pl�).The reader an easily hek that the use of lattie �bool.pl� when working withMALP programs whose rules have the form:�A ←bool &bool(B1, . . . , Bn) witℎ 1�.... being A and Bi typial atoms1, suessfully mimis the behaviour of lassialProlog programs where lauses aomplish with the shape �A : − B1, . . . , Bn�.As a novelty in the fuzzy setting, when evaluating goals aording to the proe-dural semantis desribed in Setion 2, eah output will ontain the orrespond-ing Prolog's substitution (i.e., the risp notion of omputed answer obtained bymeans of lassial SLD-resolution) together with the maximum truth degree 1.On the other hand and following the Prolog style regulated by the previousguidelines, in �le �num.lat� we have inluded the lauses shown in Figure 2.Here, we have modeled the more �exible lattie (that we will mainly use in ourexamples, beyond the boolean ase) whih enables the possibility of workingwith truth degrees in the in�nite spae (note that this ondition disables theimplementation of the onsulting prediate �members/1�) of the real numbersbetween 0 and 1, allowing too the possibility of using onjuntion and disjuntionoperators reasted from the three typial fuzzy logis proposals desribed before(i.e., the �ukasiewiz, Gödel and produt logis), as well as a useful desriptionfor the hybrid aggregator average.Note also that we have inluded de�nitions for auxiliary prediates, whosenames always begin with the pre�x �pri_�. All of them are intended to desribeprimitive/arithmeti operators (in our ase +, −, ∗, /, min and max) in aProlog style, for being appropriately alled from the bodies of lauses de�ningprediates with higher levels of expressivity (this is the ase for instane, of the1 Here we also assume that several versions of the lassial onjuntion operation havebeen implemented with di�erent arities.

three kinds of fuzzy onnetives we are onsidering: onjuntions, disjuntionsand agreggations).Sine till now we have onsidered two lassial, fully ordered latties (with a�nite and in�nite number of elements, olleted in �les �bool.pl� and �num.pl�,respetively), we wish now to introdue a di�erent ase oping with a very simplelattie where not always any pair of truth degrees are omparable. So, onsiderthe following partially ordered multi-adjoint lattie in the diagram below forwhih the onjuntion and impliation onnetives based on the Gödel intuis-tionisti logi desribed in Setion 2 onform an adjoint pair.... but with thepartiularity now that, in the general ase, the Gödel 's onjuntion must beexpressed as &G(x, y) ≜ inf(x, y), where it is important to note that we mustreplae the use of �min� by �inf � in the onnetive de�nition.
⊤

� �

⊥

member(bottom). member(alpha).member(beta). member(top).members([bottom,alpha,beta,top℄).leq(bottom,X). leq(alpha,alpha). leq(alpha,top).leq(beta,beta). leq(beta,top). leq(X,top).and_godel(X,Y,Z) :- pri_inf(X,Y,Z).pri_inf(bottom,X,bottom):-!.pri_inf(alpha,X,alpha):-leq(alpha,X),!.pri_inf(beta,X,beta):-leq(beta,X),!.pri_inf(top,X,X):-!.pri_inf(X,Y,bottom).To this end, observe in the Prolog ode aompanying the �gure above that wehave introdued �ve lauses de�ning the new primitive operator �pri_inf/3�whih is intended to return the in�mum of two elements. Related with this fat,we must point out the following aspets:� Note that sine truth degrees � and � (or their orresponding representationsas Prolog terms �alpha� and �beta� used for instane in the de�nition(s)of �members(s)/1�) are inomparable then, any all to goals of the form�?- leq(alpha,beta).� or �?- leq(beta,alpha).� will always fail.� Fortunately, a goal of the form �?- pri_inf(alpha,beta,X).�, or alterna-tively �?- pri_inf(beta,alpha,X).�, instead of failing, suessfully pro-dues the desired result �X=bottom�.� Note anyway that the implementation of the �pri_inf/1� prediate is manda-tory for oding the general de�nition of �and_godel/3�.

4 The FLOPER System in AtionAs detailed in [1, 21℄, our parser has been implemented by using the lassialDCG's (De�nite Clause Grammars) resoure of the Prolog language, sine itis a onvenient notation for expressing grammar rules. One the appliation isloaded inside a Prolog interpreter (in our ase, Sistus Prolog v.3.12.5), it showsa menu whih inludes options for loading, parsing, listing and saving fuzzyprograms, as well as for exeuting fuzzy goals (see Figure 3).All these ations are based in the translation of the fuzzy ode into standardProlog ode. The key point is to extend eah atom with an extra argument,alled truth variable of the form �_TVi�, whih is intended to ontain the truthdegree obtained after the subsequent evaluation of the atom. For instane, the�rst lause in our target program is translated into:p(X,_TV0) :- q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).Moreover, the seond lause in our target program, beomes the pure Prologfat �q(a,0.8)� while a fuzzy goal like �p(X)�, is translated into the pure Pro-log goal: �p(X, Truth_degree)� (note that the last truth degree variable is notanonymous now) for whih the Prolog interpreter returns the desired fuzzy om-puted answer [Truth_degree = 0.54, X = a]. The previous set of options su�esfor running fuzzy programs (the �run� hoie also uses the lauses ontained in�num.pl�, whih represent the default lattie): all internal omputations (inlud-ing ompiling and exeuting) are pure Prolog derivations whereas inputs (fuzzyprograms and goals) and outputs (fuzzy omputed answers) have always a fuzzytaste, thus produing the illusion on the �nal user of being working with a purelyfuzzy logi programming tool.On the other hand, as showed in the down-middle, dark part of Figure 3,FLOPER has been reently equipped with a new option, alled �loadLat� forallowing the possibility of hanging the multi-adjoint lattie assoiated to a givenprogram. For instane, assume that �new_num.pl� ontains the same Prologode than �num.pl� with the exeption of the de�nition regarding the averageaggregator. Now, instead of omputing the average of two truth degrees, letus onsider the average between the results ahieved after applying to bothelements, the disjuntions operators desribed by Gödel and �ukasiewiz, thatis:@aver(x1, x2) ≜ (∨G(x1, x2)+∨L(x1, x2))∗0.5. The orresponding Prolog lausemodeling suh de�nition into the �new_num.pl� �le ould be:agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),pri_add(Z1,Z2,Z3),pri_prod(Z3,0.5,Z).

Fig. 3. Example of a work session with FLOPER showing �Small Interpretive Steps�and program/goal menus.and now, by seleting again the �run� option (without hanging the program andgoal), the system would display the new solution: [Truth_degree = 0.72, X = a].However, when trying to go beyond program exeution, the previous methodbeomes insu�ient. In partiular, observe that we an only simulate ompletefuzzy derivations (by performing the orresponding Prolog derivations based onSLD-resolution) but we an not generate partial derivations or even apply a sin-gle admissible step on a given fuzzy expression. This kind of low-level manipula-tions are mandatory when trying to inorporate to the tool some program trans-formation tehniques suh as those based on fold/unfold (i.e., ontration andexpansion of sub-expressions of a program using the de�nitions of this programor of a preeding one, thus generating more e�ient ode) or partial evaluationwe have desribed in [5, 9, 12℄. For instane, our fuzzy unfolding transformationis de�ned as the replaement of a program rule ℛ : (A ←i ℬ with v) by theset of rules {A� ←i ℬ
′ with v ∣ ⟨ℬ; id⟩ →AS ⟨ℬ

′;�⟩}, whih obviously requiresthe implementation of mehanisms for generating derivations of a single step,rearranging the body of a program rule, applying substitutions to its head, et.To this end, in [21℄ we have presented a new low-level representation for thefuzzy ode whih urrently o�ers the possibility of performing debugging ationssuh as traing a FLOPER work session. The idea is ollet in detail all relevantomponents assoiated to eah fuzzy rule, suh as its number inside the program,omposition of the atom onforming its head, kind of impliation onneting thehead and its body, details about onnetives and atoms omposing this body

and attahed weight. For instane, after parsing the �rst rule of our program, weobtain the following expression whih is asserted into the interpreter's databaseas a Prolog fat (whih it is never exeuted diretly, in ontrast with the high-level, Prolog-based representation, showed at the beginning of this setion):rule(1,head(atom(pred(p,1),[var('X')℄)),impl(prod),body(and(godel,2,[atom(pred(q,1),[var('X')℄),agr(aver,2,[atom(pred(r,1),[var('X')℄),atom(pred(s,1),[var('X')℄)℄)℄)),td(0.9)).Two more examples: substitutions are modeled by lists of terms of the form
link(V, T) where V and T ontains the ode assoiated to an original variableand its orresponding (linked) fuzzy term, respetively, whereas a state is rep-resented by a term with funtor state/2. We have implemented prediates formanipulating suh kind of ode at a very low level in order to unify expressions,ompose substitutions, apply admisible/interpretive steps, et...Looking again to the darked part of Figure 3, observe in the FLOPER'sgoal menu the �tree� and �depth� options, whih are useful for traing exeu-tion trees and �xing the maximum length allowed for their branhes (initially3), respetively. Working with these options is ruial when the �run� hoiefails: remember that this last option is based on the generation of pure logiSLD-derivations whih might fall in loop or diretly fail in some ases as theexperiments of [21℄ show, in ontrast with the traes (based on �nite, non-failed,admissible derivations) that the �tree� option displays. As we are going toillustrate in what follows, the system displays states on di�erent lines, appropri-ately indented to distinguish the proper relationship -parent/hild/grandhild...-among nodes on unfolding trees. Eah node ontains an state (omposed by theorresponding goal and substitution) preeded by the number of the programrule used by the admissible step leading to it (root nodes always labeled withthe virtual, non existing rule R0).Strongly related with these last options, the �ismode� hoie showed at thebottom of Figure 3, deides among three levels of detail when visualizing theinterpretive phase performed during the generation of �unfolding trees�. It is im-portant to remark that together with the possibility of introduing multi-adjointlatties, it represents our last reord ahieved in the development of the FLOPERtool. When the user selets suh hoie, three options are o�ered:

∙ �Large� means to obtain the �nal result in one go. For instane, for ourrunning example (with the seond notion of �average�) FLOPER draws:R0 <p(X),{}>R1 <&prod(0.9,&godel(q(X1),�aver(r(X1),s(X1)))),{X/X1} >R2 <&prod(0.9,&godel(0.8,�aver(r(a),s(a)))),{X/a,X1/a}>R3 <&prod(0.9,&godel(0.8,�aver(0.7,s(a)))),{X/a,X1/a,X11/a}>R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a}>result < 0.7200000000000001,{X/a,X1/a,X11/a}>
∙ �Medium� implements the notion of �interpretive step� aording De�nition 3[10℄ whih in our ase produes the piture (note here that those states produesduring the interpretive phase are preeded by the word �is� instead of the num-ber of a program rule, sine no rules are exploited in this ase in ontrast withadmissible steps):R0 <p(X),{}>R1 <&prod(0.9,&godel(q(X1),�aver(r(X1),s(X1)))),{X/X1}>R2 <&prod(0.9,&godel(0.8,�aver(r(a),s(a)))),{X/a,X1/a}>R3 <&prod(0.9,&godel(0.8,�aver(0.7,s(a)))),{X/a,X1/a,X11/a}>R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a}>is <&prod(0.9,&godel(0.8,0.85)),{X/a,X1/a,X11/a,_16/a}>is <&prod(0.9,0.8),{X/a,X1/a,X11/a,_16/a}>is <0.7200000000000001,{X/a,X1/a,X11/a,_16/a}>
∙ �Small� allows to visualize in detail both the diret/indiret alls to onnetivede�nitions and primitive operators performed along the whole interpretive phase(see [22, 24℄). The reader an observe at the beginning of Figure 3, the aspeto�ered by FLOPER when visualizing in detail the behaviour of our runningexample, where the set of �small interpretive steps� are (we omit here the initialfourth states- assoiated to admissible steps- sine they oinide with our twolast illustrations above):...R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a,_16/a}>sis1 <&prod(0.9,&godel(0.8,#prod(#add(|godel(0.7,0.5),|luka(..sis1 <&prod(0.9,&godel(0.8,#prod(#add(#max(0.7,0.5),|luka(0.7.sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,|luka(0.7,0.5)), ..sis1 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(#add(0.7, ...sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(1.2,1)), ...sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,1),0.5))),sis2 <&prod(0.9,&godel(0.8,#prod(1.7,0.5))), {X/a,X1/a ..sis2 <&prod(0.9,&godel(0.8,0.85)), {X/a,X1/a,X11/a,sis1 <&prod(0.9,#min(0.8,0.85)), {X/a,X1/a,X11/a,sis2 <&prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>sis1 <#prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>sis2 <0.7200000000000001, {X/a,X1/a,X11/a,_16/a}>

Fig. 4. Building a graphial interfae for FLOPER.Observe in this last ase that during the interpretive phase we apply �smallinterpretive steps� of kind →SIS1 or →SIS2 (aording to [24℄). The intuitiveidea is that, whereas a→SIS1 step �expands� a onnetive de�nition on the nextstate, the role of evaluating primitive operators is played by→SIS2 steps. Notiein the �gure that eah primitive operators is always labeled by pre�x �#�). Thesefats justify why in our Prolog-based implementation of multi-adjoint latties,lauses de�ning onnetive prediates only perform alls to prediates of theform �and_*�, �or_*�, �agr_*� (useful for identifying further →SIS1 steps) or�pri_*� (assoiated to →SIS2 steps).5 Conlusions and Future WorkThe experiene aquired in our researh group regarding the design of tehniquesand methods based on fuzzy logi in lose relationship with the so-alled multi-adjoint logi programming approah ([10, 5, 9, 11, 12, 7, 8, 22, 23℄), has motivatedour interest for putting in pratie all our developments around the design of theFLOPER environment [21, 24℄. Our philosophy is to friendly onnet this fuzzyframework with Prolog programmers: our system, apart for being implementedin Prolog, also translates the fuzzy ode to lassial lauses (in two di�erentrepresentations) and, what is more, in this paper we have also shown that a

wide range of latties modeling powerful and �exible notions of truth degreesalso admit a nie rule-based haraterizations into Prolog.Apart for our ongoing e�orts devoted to providing FLOPER with a graphialinterfae as illustrated in Figure 42, nowadays we are espeially interested in ex-tending the tool with testing tehniques for automatially heking that lattiesmodeled aording the Prolog-based method established in this paper, verify therequirements of our fuzzy setting (with speial mention to the adjoint property).For the future, we have in mind to provide an interfae with rules written inFuzzy-RuleML and other fuzzy languages like the ones presented in [26, 13℄ (theXSB system supports GAP).Referenes1. J.M. Abietar, P.J. Morillo, and G. Moreno. Designing a software tool for fuzzylogi programming. In T.E. Simos and G. Maroulis, editors, Pro. of the Inter-national Conferene of Computational Methods in Sienes and Engineering IC-CMSE'07, Volume 2 (Computation in Modern Siene and Engineering), pages1117�1120. Amerian Institute of Physis (distributed by Springer), 2007.2. J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. Fril- Fuzzy and EvidentialReasoning in Arti�ial Intelligene. John Wiley & Sons, In., 1995.3. Ivan Bratko. Prolog Programming for Arti�ial Intelligene. Addison Wesley,September 2000.4. S. Guadarrama, S. Muñoz, and C. Vauheret. Fuzzy Prolog: A new approah usingsoft onstraints propagation. Fuzzy Sets and Systems, 144(1):127�150, 2004.5. J.A. Guerrero and G. Moreno. Optimizing fuzzy logi programs by unfolding,aggregation and folding. Eletroni Notes in Theoretial Computer Siene, 219:19�34, 2008.6. M. Ishizuka and N. Kanai. Prolog-ELF Inorporating Fuzzy Logi. In Aravind K.Joshi, editor, Proeedings of the 9th Int. Joint Conferene on Arti�ial Intelligene,IJCAI'85, pages 701�703. Morgan Kaufmann, 1985.7. P. Julián, J. Medina, G. Moreno, and M. Ojeda. Thresholded tabulation in a fuzzylogi setting. Eletroni Notes in Theoretial Computer Siene, 248:115�130, 2009.8. P. Julián, J. Medina, G. Moreno, and M. Ojeda. E�ient thresholded tabulationfor fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundationsof Reasoning under Unertainty), 249:125�141, 2010.9. P. Julián, G. Moreno, and J. Penabad. On Fuzzy Unfolding. A Multi-adjointApproah. Fuzzy Sets and Systems, 154:16�33, 2005.10. P. Julián, G. Moreno, and J. Penabad. Operational/Interpretive Unfoldingof Multi-adjoint Logi Programs. Journal of Universal Computer Siene,12(11):1679�1699, 2006.11. P. Julián, G. Moreno, and J. Penabad. Measuring the interpretive ost in fuzzylogi omputations. In Franeso Masulli, Sushmita Mitra, and Gabriella Pasi,editors, Pro. of Appliations of Fuzzy Sets Theory, 7th International Workshopon Fuzzy Logi and Appliations, WILF 2007, Camogli, Italy, July 7-10, pages28�36. Springer Verlag, LNAI 4578, 2007.2 Here we show an unfolding tree evidening an in�nite branh where states are oloredin yellow and program rules exploited in admissible steps are enlosed in irles.

12. P. Julián, G. Moreno, and J. Penabad. An Improved Redutant Calulus usingFuzzy Partial Evaluation Tehniques. Fuzzy Sets and Systems, 160:162�181, 2009.doi: 10.1016/j.fss.2008.05.006.13. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logi program-ming and its appliations. Journal of Logi Programming, 12:335�367, 1992.14. J. L. Lassez, M. J. Maher, and K. Marriott. Uni�ation Revisited. In J. Minker,editor, Foundations of Dedutive Databases and Logi Programming, pages 587�625. Morgan Kaufmann, Los Altos, Ca., 1988.15. D. Li and D. Liu. A fuzzy Prolog database system. John Wiley & Sons, In., 1990.16. J.W. Lloyd. Foundations of Logi Programming. Springer-Verlag, Berlin, 1987.Seond edition.17. J.W. Lloyd. Delarative programming for arti�ial intelligene appliations. SIG-PLAN Not., 42(9):123�124, 2007.18. J. Medina, M. Ojeda-Aiego, and P. Vojtá². Multi-adjoint logi programming withontinuous semantis. Pro. of Logi Programming and Non-Monotoni Reasoning,LPNMR'01, Springer-Verlag, LNAI, 2173:351�364, 2001.19. J. Medina, M. Ojeda-Aiego, and P. Vojtá². A proedural semantis for multi-adjoint logi programing. Progress in Arti�ial Intelligene, EPIA'01, Springer-Verlag, LNAI, 2258(1):290�297, 2001.20. J. Medina, M. Ojeda-Aiego, and P. Vojtá². Similarity-based Uni�ation: a multi-adjoint approah. Fuzzy Sets and Systems, 146:43�62, 2004.21. P.J. Morillo and G. Moreno. Programming with Fuzzy Logi Rules by usingthe FLOPER Tool. In Nik Bassiliades, Guido Governatori, and Adrian Pashke,editors, Pro of the 2nd. Rule Representation, Interhange and Reasoning on theWeb, International Symposium, RuleML 2008, Orlando, FL, USA, Otober 30-31,pages 119�126. Springer Verlag, LNCS 3521, 2008.22. P.J. Morillo and G. Moreno. Modeling interpretive steps in fuzzy logi ompu-tations. In Vito Di Gesù, Sankar K. Pal, and Alfredo Petrosino, editors, Pro.of the 8th International Workshop on Fuzzy Logi and Appliations, WILF 2009.Palermo, Italy, June 9-12, pages 44�51. Springer Verlag, LNAI 5571, 2009.23. P.J. Morillo and G. Moreno. On ost estimations for exeuting fuzzy logi pro-grams. In Hamid R. Arabnia, David de la Fuente, and José Angel Olivas, editors,Proeedings of the 11th International Conferene on Arti�ial Intelligene, ICAI2009, July 13-16, 2009, Las Vegas (Nevada), USA, pages 217�223. CSREA Press,2009.24. P.J. Morillo, G. Moreno, J. Penabad, and C. Vázquez. Modeling interpretive stepsinto the FLOPER environment. In Proeedings of the 12th International Confer-ene on Arti�ial Intelligene, ICAI 2010, July 12-15, 2010, Las Vegas (Nevada),USA. CSREA Press (aepted for publiation), 2010.25. U. Straia. Query answering in normal logi programs under unertainty. In 8thEuropean Conferenes on Symboli and Quantitative Approahes to Reasoning withUnertainty (ECSQARU-05), number 3571 in Leture Notes in Computer Siene,pages 687�700, Barelona, Spain, 2005. Springer Verlag.26. U. Straia. Managing unertainty and vagueness in desription logis, logi pro-grams and desription logi programs. In Reasoning Web, 4th International Sum-mer Shool, Tutorial Letures, number 5224 in Leture Notes in Computer Siene,pages 54�103. Springer Verlag, 2008.27. P. Vojtá². Fuzzy Logi Programming. Fuzzy Sets and Systems, 124(1):361�370,2001.

