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lm.esAbstra
t. During the last two years, our developments regarding thedesign of the FLOPER tool (�Fuzzy LOgi
 Programming Environmentfor Resear
h�), have been devoted to implant in its 
ore a rule-based, easyrepresentation of latti
es representing fuzzy notions of truth degrees be-yond the boolean 
ase, in order to work with �exible programs belongingto the so-
alled multi-adjoint logi
 approa
h. Now, the system improvesits initial running/debugging/tra
ing 
apabilities for managing this kindof fuzzy logi
 programs, with new options for manipulating in a 
lassi
alProlog style the mathemati
al foundations of the enri
hment introdu
edby multi-adjoint latti
es. In parti
ular, we show that for a given programand query, many di�erent answers 
an be obtained when 
hanging theassumption of truth in a single work session. The experien
e related hereeviden
es the expressive power of Prolog rules (i.e., 
lauses) for imple-menting ri
h versions of multi-adjoint latti
es in a very easy way, as wellas its 
ru
ial role in further fuzzy logi
 
omputations.1 Introdu
tionResear
h in the �elds of De
larative Programming and Fuzzy Logi
 have tradi-tionally provided programming languages and te
hniques with important appli-
ations in the areas of AI, rule-based systems, and so on [3, 17, 21℄. In parti
ular,Logi
 Programming [16℄ has been widely used for problem solving and knowl-edge representation in the past. Nevertheless, traditional logi
 languages do notin
orporate te
hniques or 
onstru
ts to expli
itly deal with un
ertainty and ap-proximate reasoning in a natural way.To ful�ll this gap, Fuzzy Logi
 Programming has emerged as an interestingand still growing resear
h area trying to 
onsolidate the e�orts for introdu
ingfuzzy logi
 into logi
 programming. During the last de
ades, several fuzzy logi
programming systems have been developed, su
h as [2, 4, 6, 15, 13, 27℄ and themany-valued logi
 programming language of [25, 26℄, where the 
lassi
al inferen
e
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me
hanism of SLD�Resolution has been repla
ed by a fuzzy variant whi
h is ableto handle partial truth and to reason with un
ertainty.This is the 
ase of multi-adjoint logi
 programming [20, 18, 19℄, a powerfuland promising approa
h in the area. In this framework, a program 
an be seenas a set of rules ea
h one annotated by a truth degree and a goal is a query tothe system plus a substitution (initially the empty substitution, denoted by id).Admissible steps (a generalization of the 
lassi
al modus ponens inferen
e rule)are systemati
ally applied on goals in a similar way to 
lassi
al resolution stepsin pure logi
 programming, thus returning a state 
omposed by a 
omputed sub-stitution together with an expression where all atoms have been exploited. Next,during the so 
alled interpretive phase (see [10, 22℄), this expression is interpretedunder a given latti
e, hen
e returning a pair ⟨truth degree; substitution⟩ whi
h isthe fuzzy 
ounterpart of the 
lassi
al notion of 
omputed answer used in purelogi
 programming.The main goal of the present paper is to present our last developments per-formed on the FLOPER system (see [1, 21, 24℄ and visit http://www.dsi.u
lm.es/investiga
ion/de
t/FLOPERpage.htm) whi
h enables the introdu
tion ofdi�erent notions of multi-adjoint latti
es for managing truth degrees even in asingle work-session without 
hanging a given multi-adjoint logi
 program andgoal. Nowadays, the tool provides fa
ilities for exe
uting and debugging (by gen-erating de
larative tra
es) su
h kind of fuzzy programs, by means of two mainrepresentation (high/low-level, Prolog-based) ways whi
h are somehow antago-nisti
s regarding simpli
ity and a

ura
y features.The stru
ture of the paper is as follows. In Se
tion 2, we summarize the mainfeatures of multi-adjoint logi
 programming, both language syntax and pro
e-dural semanti
s. Se
tion 3 presents a dis
ussion on multi-adjoint latti
es andtheir ni
e representation by using standard Prolog 
ode, in order to fa
ilitate itsfurther assimilation inside the FLOPER tool, as des
ribed in Se
tion 4. Finally,in Se
tion 5 we give our 
on
lusions and some lines of future work.2 Multi-Adjoint Logi
 ProgrammingThis se
tion summarizes the main features of multi-adjoint logi
 programming(see [20, 18, 19℄ for a 
omplete formulation of this framework). In what follows,we will use the abbreviation MALP for referen
ing programs belonging to thissetting.2.1 MALP SyntaxWe work with a �rst order language, ℒ, 
ontaining variables, 
onstants, fun
-tion symbols, predi
ate symbols, and several (arbitrary) 
onne
tives to in
reaselanguage expressiveness: impli
ation 
onne
tives (←1,←2, . . .); 
onjun
tive op-erators (denoted by &1,&2, . . .), disjun
tive operators (∨1,∨2, . . .), and hybridoperators (usually denoted by @1,@2, . . .), all of them are grouped under thename of �aggregators�.



Aggregation operators are useful to des
ribe/spe
ify user preferen
es. Anaggregation operator, when interpreted as a truth fun
tion, may be an arithmeti
mean, a weighted sum or in general any monotone appli
ation whose argumentsare values of a 
omplete bounded latti
e L. For example, if an aggregator @ isinterpreted as [[@]](x, y, z) = (3x+2y+z)/6, we are giving the highest preferen
eto the �rst argument, then to the se
ond, being the third argument the leastsigni�
ant.Although these 
onne
tives are binary operators, we usually generalize themas fun
tions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By de�nition, the truthfun
tion for an n-ary aggregation operator [[@]] : Ln → L is required to bemonotonous and ful�lls [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.Additionally, our language ℒ 
ontains the values of a multi-adjoint latti
e
⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped with a 
olle
tion of adjoint pairs ⟨←i,&i⟩,where ea
h &i is a 
onjun
tor whi
h is intended to the evaluation of modusponens [20℄. More exa
tly, in this setting the following items must be satis�ed:� ⟨L,⪯⟩ is a bounded latti
e, i.e. it has bottom and top elements, denoted by
⊥ and ⊤, respe
tively.� Ea
h operation &i is in
reasing in both arguments.� Ea
h operation ←i is in
reasing in the �rst argument and de
reasing in these
ond.� If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we havethat: x ⪯ (y ←i z) if and only if (x&i z) ⪯ y.This last 
ondition, 
alled adjoint property, 
ould be 
onsidered the most impor-tant feature of the framework (in 
ontrast with many other approa
hes) whi
hjusti�es most of its properties regarding 
ru
ial results for soundness, 
omplete-ness, appli
ability, et
.In general, L may be the 
arrier of any 
omplete bounded latti
e where a

L-expression is a well-formed expression 
omposed by values and 
onne
tives of
L, as well as variable symbols and primitive operators (i.e., arithmeti
 symbolssu
h as ∗,+,min, et
...).In what follows, we assume that the truth fun
tion of any 
onne
tive @ in L isgiven by its 
orresponding 
onne
tive de�nition, that is, an equation of the form
@(x1, . . . , xn) ≜ E, where E is a L-expression not 
ontaining variable symbolsapart from x1, . . . , xn. For instan
e, in what follows we will be mainly 
on
ernedwith the following 
lassi
al set of adjoint pairs (
onjun
tors and impli
ations)in ⟨[0, 1],≤⟩, where labels L, G and P mean respe
tively �ukasiewi
z logi
, Gödelintuitionisti
 logi
 and produ
t logi
 (whi
h di�erent 
apabilities for modelingpessimist, optimist and realisti
 s
enarios, respe
tively):
&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Produ
t
&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise Gödel
&L(x, y) ≜ max(0, x+ y − 1) ←L (x, y) ≜ min{x− y + 1, 1} �ukasiewi
z



A rule is a formula H ←i ℬ, where H is an atomi
 formula (usually 
alledthe head) and ℬ (whi
h is 
alled the body) is a formula built from atomi
 for-mulas B1, . . . , Bn � n ≥ 0 �, truth values of L, 
onjun
tions, disjun
tions andaggregations. A goal is a body submitted as a query to the system. Roughlyspeaking, a multi-adjoint logi
 program is a set of pairs ⟨ℛ;�⟩ (we often write�ℛ witℎ ��), where ℛ is a rule and � is a truth degree (a value of L) expressingthe 
on�den
e of a programmer in the truth of rule ℛ. By abuse of language,we sometimes refer a tuple ⟨ℛ;�⟩ as a �rule�.2.2 MALP Pro
edural Semanti
sThe pro
edural semanti
s of the multi�adjoint logi
 language ℒ 
an be thoughtof as an operational phase (based on admissible steps) followed by an interpre-tive one. In the following, C[A] denotes a formula where A is a sub-expressionwhi
h o

urs in the �possibly empty� 
ontext C[]. Moreover, C[A/A′] means therepla
ement of A by A′ in 
ontext C[], whereas Var(s) refers to the set of dis-tin
t variables o

urring in the synta
ti
 obje
t s, and �[Var(s)] denotes thesubstitution obtained from � by restri
ting its domain to Var(s).De�nition 1 (Admissible Step). Let Q be a goal and let � be a substitution.The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program
P, an admissible 
omputation is formalized as a state transition system, whosetransition relation →AS ⊆ (ℰ×ℰ) is the smallest relation satisfying the followingadmissible rules (where we always 
onsider that A is the sele
ted atom in Q and
mgu(E) denotes the most general uni�er of an equation set E [14℄):1) ⟨Q[A];�⟩ →AS ⟨(Q[A/v&iℬ])�;��⟩,if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P and ℬ is not empty.2) ⟨Q[A];�⟩ →AS ⟨(Q[A/v])�;��⟩,if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.Note that the se
ond 
ase 
ould be subsumed by the �rst one, after expressingea
h fa
t ⟨A′←i; v⟩ as a program rule of the form ⟨A′←i⊤; v⟩. As usual, rules aretaken renamed apart. We shall use the symbols →AS1 and →AS2 to distinguishbetween 
omputation steps performed by applying one of the spe
i�
 admissiblerules. Also, the appli
ation of a rule on a step will be annotated as a supers
riptof the →AS symbol.De�nition 2. Let P be a program, Q a goal and �id� the empty substitution.An admissible derivation is a sequen
e ⟨Q; id⟩→AS . . .→AS⟨Q

′; �⟩. When Q′ is aformula not 
ontaining atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =
�[Var(Q)], is 
alled an admissible 
omputed answer (a.
.a.) for that derivation.Example 1. Let P be the multi-adjoint fuzzy logi
 program des
ribed in Figure1 where the equation de�ning the average aggregator @aver must obviously hasthe form: @aver(x1, x2) ≜ (x1 + x2)/2. Now, we 
an generate the admissible



Multi-adjoint logi
 program P :
ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) witℎ 0.9
ℛ2 : q(a) ← witℎ 0.8
ℛ3 : r(X) ← witℎ 0.7
ℛ4 : s(X) ← witℎ 0.5Admissible derivation:
⟨p(X); id⟩ →AS1

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩ →AS2
ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩ →AS2
ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩ →AS2
ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩Interpretive derivation:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩ →IS

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩ →IS

⟨&P(0.9, 0.6); {X/a}⟩ →IS

⟨0.54; {X/a}⟩.Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X).derivation shown in Figure 1 (we underline the sele
ted atom in ea
h step). So,the admissible 
omputed answer (a.
.a.) in this 
ase is 
omposed by the pair:
⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only refers to bindings related withvariables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.If we exploit all atoms of a given goal, by applying admissible steps as mu
h asneeded during the operational phase, then it be
omes a formula with no atoms (a
L-expression) whi
h 
an be then dire
tly interpreted w.r.t. latti
e L by applyingthe following de�nition we initially presented in [10℄:De�nition 3 (Interpretive Step). Let P be a program, Q a goal and � asubstitution. Assume that [[@]] is the truth fun
tion of 
onne
tive @ in the latti
e
⟨L,⪯⟩ asso
iated to P, su
h that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive 
omputa-tion as a state transition system, whose transition relation →IS ⊆ (ℰ × ℰ) isde�ned as the least one satisfying:
⟨Q[@(r1, . . . , rn)];�⟩ →IS ⟨Q[@(r1, . . . , rn)/rn+1];�⟩



De�nition 4. Let P be a program and ⟨Q;�⟩ an a.
.a., that is, Q is a goal not
ontaining atoms (i.e., a L-expression). An interpretive derivation is a sequen
e
⟨Q;�⟩→IS . . .→IS⟨Q

′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the latti
e asso
i-ated to P, the state ⟨r;�⟩ is 
alled a fuzzy 
omputed answer (f.
.a.) for thatderivation.Example 2. If we 
omplete the previous derivation of Example 1 by applying 3interpretive steps in order to obtain the �nal f.
.a. ⟨0.54; {X/a}⟩, we generatethe interpretive derivation shown in Figure 1.3 Truth-Degrees and Multi-adjoint Latti
es in Pra
ti
eWe have re
ently 
on
eived a very easy way to model truth-degree latti
es forbeing in
luded into the FLOPER tool. All relevant 
omponents of ea
h latti
e
an be en
apsulated inside a Prolog �le whi
h must ne
essarily 
ontain the de�-nitions of a minimal set of predi
ates de�ning the set of valid elements (in
ludingspe
ial mentions to the �top� and �bottom� ones), the full or partial orderingestablished among them, as well as the repertoire of fuzzy 
onne
tives whi
h
an be used for their subsequent manipulation. In order to simplify our explana-tion, assume that �le �bool.pl� refers to the simplest notion of (a binary) adjointlatti
e, thus implementing the following set of predi
ates:� member/1 whi
h is satis�ed when being 
alled with a parameter representinga valid truth degree. In the 
ase of �nite latti
es, it is also re
ommend toimplement members/1 whi
h returns in one go a list 
ontaining the wholeset of truth degrees. For instan
e, in the Boolean 
ase, both predi
ates
an be simply modeled by the Prolog fa
ts: member(0)., member(1). andmembers([0,1℄).� bot/1 and top/1 obviously answer with the top and bottom element of thelatti
e, respe
tively. Both are implemented into �bool.pl� as bot(0). andtop(1).� leq/2 models the ordering relation among all the possible pairs of truthdegrees, and obviously it is only satis�ed when it is invoked with two elementsverifying that the �rst parameter is equal or smaller than the se
ond one. So,in our example it su�
es with in
luding into �bool.pl� the fa
ts: leq(0,X).and leq(X,1).� Finally, given some fuzzy 
onne
tives of the form &label1 (
onjun
tion),
∨label2 (disjun
tion) or @label3 (aggregation) with arities n1, n2 and n3 re-spe
tively, we must provide 
lauses de�ning the 
onne
tive predi
ates�and_label1/(n1+1)�, �or_label2/(n2+1)� and �agr_label3/(n3+1)�, where theextra argument of ea
h predi
ate is intended to 
ontain the result a
hievedafter the evaluation of the proper 
onne
tive. For instan
e, in the Boolean
ase, the following two fa
ts model in a very easy way the behaviour of the
lassi
al 
onjun
tion operation: and_bool(0,_,0). and_bool(1,X,X).



member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite latti
e)bot(0). top(1). leq(X,Y) :- X=<Y.and\_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).and_godel(X,Y,Z):- pri_min(X,Y,Z).and_prod(X,Y,Z) :- pri_prod(X,Y,Z).or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).or_godel(X,Y,Z) :- pri_max(X,Y,Z).or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.Fig. 2.Multi-adjoint latti
e modeling truth degrees in the real interval [0,1℄ (�num.pl�).The reader 
an easily 
he
k that the use of latti
e �bool.pl� when working withMALP programs whose rules have the form:�A ←bool &bool(B1, . . . , Bn) witℎ 1�.... being A and Bi typi
al atoms1, su

essfully mimi
s the behaviour of 
lassi
alProlog programs where 
lauses a

omplish with the shape �A : − B1, . . . , Bn�.As a novelty in the fuzzy setting, when evaluating goals a

ording to the pro
e-dural semanti
s des
ribed in Se
tion 2, ea
h output will 
ontain the 
orrespond-ing Prolog's substitution (i.e., the 
risp notion of 
omputed answer obtained bymeans of 
lassi
al SLD-resolution) together with the maximum truth degree 1.On the other hand and following the Prolog style regulated by the previousguidelines, in �le �num.lat� we have in
luded the 
lauses shown in Figure 2.Here, we have modeled the more �exible latti
e (that we will mainly use in ourexamples, beyond the boolean 
ase) whi
h enables the possibility of workingwith truth degrees in the in�nite spa
e (note that this 
ondition disables theimplementation of the 
onsulting predi
ate �members/1�) of the real numbersbetween 0 and 1, allowing too the possibility of using 
onjun
tion and disjun
tionoperators re
asted from the three typi
al fuzzy logi
s proposals des
ribed before(i.e., the �ukasiewi
z, Gödel and produ
t logi
s), as well as a useful des
riptionfor the hybrid aggregator average.Note also that we have in
luded de�nitions for auxiliary predi
ates, whosenames always begin with the pre�x �pri_�. All of them are intended to des
ribeprimitive/arithmeti
 operators (in our 
ase +, −, ∗, /, min and max) in aProlog style, for being appropriately 
alled from the bodies of 
lauses de�ningpredi
ates with higher levels of expressivity (this is the 
ase for instan
e, of the1 Here we also assume that several versions of the 
lassi
al 
onjun
tion operation havebeen implemented with di�erent arities.



three kinds of fuzzy 
onne
tives we are 
onsidering: 
onjuntions, disjun
tionsand agreggations).Sin
e till now we have 
onsidered two 
lassi
al, fully ordered latti
es (with a�nite and in�nite number of elements, 
olle
ted in �les �bool.pl� and �num.pl�,respe
tively), we wish now to introdu
e a di�erent 
ase 
oping with a very simplelatti
e where not always any pair of truth degrees are 
omparable. So, 
onsiderthe following partially ordered multi-adjoint latti
e in the diagram below forwhi
h the 
onjun
tion and impli
ation 
onne
tives based on the Gödel intuis-tionisti
 logi
 des
ribed in Se
tion 2 
onform an adjoint pair.... but with theparti
ularity now that, in the general 
ase, the Gödel 's 
onjun
tion must beexpressed as &G(x, y) ≜ inf(x, y), where it is important to note that we mustrepla
e the use of �min� by �inf � in the 
onne
tive de�nition.
⊤

� �

⊥

member(bottom). member(alpha).member(beta). member(top).members([bottom,alpha,beta,top℄).leq(bottom,X). leq(alpha,alpha). leq(alpha,top).leq(beta,beta). leq(beta,top). leq(X,top).and_godel(X,Y,Z) :- pri_inf(X,Y,Z).pri_inf(bottom,X,bottom):-!.pri_inf(alpha,X,alpha):-leq(alpha,X),!.pri_inf(beta,X,beta):-leq(beta,X),!.pri_inf(top,X,X):-!.pri_inf(X,Y,bottom).To this end, observe in the Prolog 
ode a

ompanying the �gure above that wehave introdu
ed �ve 
lauses de�ning the new primitive operator �pri_inf/3�whi
h is intended to return the in�mum of two elements. Related with this fa
t,we must point out the following aspe
ts:� Note that sin
e truth degrees � and � (or their 
orresponding representationsas Prolog terms �alpha� and �beta� used for instan
e in the de�nition(s)of �members(s)/1�) are in
omparable then, any 
all to goals of the form�?- leq(alpha,beta).� or �?- leq(beta,alpha).� will always fail.� Fortunately, a goal of the form �?- pri_inf(alpha,beta,X).�, or alterna-tively �?- pri_inf(beta,alpha,X).�, instead of failing, su

essfully pro-du
es the desired result �X=bottom�.� Note anyway that the implementation of the �pri_inf/1� predi
ate is manda-tory for 
oding the general de�nition of �and_godel/3�.



4 The FLOPER System in A
tionAs detailed in [1, 21℄, our parser has been implemented by using the 
lassi
alDCG's (De�nite Clause Grammars) resour
e of the Prolog language, sin
e itis a 
onvenient notation for expressing grammar rules. On
e the appli
ation isloaded inside a Prolog interpreter (in our 
ase, Si
stus Prolog v.3.12.5), it showsa menu whi
h in
ludes options for loading, parsing, listing and saving fuzzyprograms, as well as for exe
uting fuzzy goals (see Figure 3).All these a
tions are based in the translation of the fuzzy 
ode into standardProlog 
ode. The key point is to extend ea
h atom with an extra argument,
alled truth variable of the form �_TVi�, whi
h is intended to 
ontain the truthdegree obtained after the subsequent evaluation of the atom. For instan
e, the�rst 
lause in our target program is translated into:p(X,_TV0) :- q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,_TV0).Moreover, the se
ond 
lause in our target program, be
omes the pure Prologfa
t �q(a,0.8)� while a fuzzy goal like �p(X)�, is translated into the pure Pro-log goal: �p(X, Truth_degree)� (note that the last truth degree variable is notanonymous now) for whi
h the Prolog interpreter returns the desired fuzzy 
om-puted answer [Truth_degree = 0.54, X = a]. The previous set of options su�
esfor running fuzzy programs (the �run� 
hoi
e also uses the 
lauses 
ontained in�num.pl�, whi
h represent the default latti
e): all internal 
omputations (in
lud-ing 
ompiling and exe
uting) are pure Prolog derivations whereas inputs (fuzzyprograms and goals) and outputs (fuzzy 
omputed answers) have always a fuzzytaste, thus produ
ing the illusion on the �nal user of being working with a purelyfuzzy logi
 programming tool.On the other hand, as showed in the down-middle, dark part of Figure 3,FLOPER has been re
ently equipped with a new option, 
alled �loadLat� forallowing the possibility of 
hanging the multi-adjoint latti
e asso
iated to a givenprogram. For instan
e, assume that �new_num.pl� 
ontains the same Prolog
ode than �num.pl� with the ex
eption of the de�nition regarding the averageaggregator. Now, instead of 
omputing the average of two truth degrees, letus 
onsider the average between the results a
hieved after applying to bothelements, the disjun
tions operators des
ribed by Gödel and �ukasiewi
z, thatis:@aver(x1, x2) ≜ (∨G(x1, x2)+∨L(x1, x2))∗0.5. The 
orresponding Prolog 
lausemodeling su
h de�nition into the �new_num.pl� �le 
ould be:agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),pri_add(Z1,Z2,Z3),pri_prod(Z3,0.5,Z).



Fig. 3. Example of a work session with FLOPER showing �Small Interpretive Steps�and program/goal menus.and now, by sele
ting again the �run� option (without 
hanging the program andgoal), the system would display the new solution: [Truth_degree = 0.72, X = a].However, when trying to go beyond program exe
ution, the previous methodbe
omes insu�
ient. In parti
ular, observe that we 
an only simulate 
ompletefuzzy derivations (by performing the 
orresponding Prolog derivations based onSLD-resolution) but we 
an not generate partial derivations or even apply a sin-gle admissible step on a given fuzzy expression. This kind of low-level manipula-tions are mandatory when trying to in
orporate to the tool some program trans-formation te
hniques su
h as those based on fold/unfold (i.e., 
ontra
tion andexpansion of sub-expressions of a program using the de�nitions of this programor of a pre
eding one, thus generating more e�
ient 
ode) or partial evaluationwe have des
ribed in [5, 9, 12℄. For instan
e, our fuzzy unfolding transformationis de�ned as the repla
ement of a program rule ℛ : (A ←i ℬ with v) by theset of rules {A� ←i ℬ
′ with v ∣ ⟨ℬ; id⟩ →AS ⟨ℬ

′;�⟩}, whi
h obviously requiresthe implementation of me
hanisms for generating derivations of a single step,rearranging the body of a program rule, applying substitutions to its head, et
.To this end, in [21℄ we have presented a new low-level representation for thefuzzy 
ode whi
h 
urrently o�ers the possibility of performing debugging a
tionssu
h as tra
ing a FLOPER work session. The idea is 
olle
t in detail all relevant
omponents asso
iated to ea
h fuzzy rule, su
h as its number inside the program,
omposition of the atom 
onforming its head, kind of impli
ation 
onne
ting thehead and its body, details about 
onne
tives and atoms 
omposing this body



and atta
hed weight. For instan
e, after parsing the �rst rule of our program, weobtain the following expression whi
h is asserted into the interpreter's databaseas a Prolog fa
t (whi
h it is never exe
uted dire
tly, in 
ontrast with the high-level, Prolog-based representation, showed at the beginning of this se
tion):rule(1,head(atom(pred(p,1),[var('X')℄)),impl(prod),body(and(godel,2,[ atom(pred(q,1),[var('X')℄),agr(aver,2,[ atom(pred(r,1),[var('X')℄),atom(pred(s,1),[var('X')℄)℄)℄)),td(0.9)).Two more examples: substitutions are modeled by lists of terms of the form
link(V, T) where V and T 
ontains the 
ode asso
iated to an original variableand its 
orresponding (linked) fuzzy term, respe
tively, whereas a state is rep-resented by a term with fun
tor state/2. We have implemented predi
ates formanipulating su
h kind of 
ode at a very low level in order to unify expressions,
ompose substitutions, apply admisible/interpretive steps, et
...Looking again to the darked part of Figure 3, observe in the FLOPER'sgoal menu the �tree� and �depth� options, whi
h are useful for tra
ing exe
u-tion trees and �xing the maximum length allowed for their bran
hes (initially3), respe
tively. Working with these options is 
ru
ial when the �run� 
hoi
efails: remember that this last option is based on the generation of pure logi
SLD-derivations whi
h might fall in loop or dire
tly fail in some 
ases as theexperiments of [21℄ show, in 
ontrast with the tra
es (based on �nite, non-failed,admissible derivations) that the �tree� option displays. As we are going toillustrate in what follows, the system displays states on di�erent lines, appropri-ately indented to distinguish the proper relationship -parent/
hild/grand
hild...-among nodes on unfolding trees. Ea
h node 
ontains an state (
omposed by the
orresponding goal and substitution) pre
eded by the number of the programrule used by the admissible step leading to it (root nodes always labeled withthe virtual, non existing rule R0).Strongly related with these last options, the �ismode� 
hoi
e showed at thebottom of Figure 3, de
ides among three levels of detail when visualizing theinterpretive phase performed during the generation of �unfolding trees�. It is im-portant to remark that together with the possibility of introdu
ing multi-adjointlatti
es, it represents our last re
ord a
hieved in the development of the FLOPERtool. When the user sele
ts su
h 
hoi
e, three options are o�ered:



∙ �Large� means to obtain the �nal result in one go. For instan
e, for ourrunning example (with the se
ond notion of �average�) FLOPER draws:R0 <p(X),{}>R1 <&prod(0.9,&godel(q(X1),�aver(r(X1),s(X1)))),{X/X1} >R2 <&prod(0.9,&godel(0.8,�aver(r(a),s(a)))),{X/a,X1/a}>R3 <&prod(0.9,&godel(0.8,�aver(0.7,s(a)))),{X/a,X1/a,X11/a}>R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a}>result < 0.7200000000000001,{X/a,X1/a,X11/a}>
∙ �Medium� implements the notion of �interpretive step� a

ording De�nition 3[10℄ whi
h in our 
ase produ
es the pi
ture (note here that those states produ
esduring the interpretive phase are pre
eded by the word �is� instead of the num-ber of a program rule, sin
e no rules are exploited in this 
ase in 
ontrast withadmissible steps):R0 <p(X),{}>R1 <&prod(0.9,&godel(q(X1),�aver(r(X1),s(X1)))),{X/X1}>R2 <&prod(0.9,&godel(0.8,�aver(r(a),s(a)))),{X/a,X1/a}>R3 <&prod(0.9,&godel(0.8,�aver(0.7,s(a)))),{X/a,X1/a,X11/a}>R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a}>is <&prod(0.9,&godel(0.8,0.85)),{X/a,X1/a,X11/a,_16/a}>is <&prod(0.9,0.8),{X/a,X1/a,X11/a,_16/a}>is <0.7200000000000001,{X/a,X1/a,X11/a,_16/a}>
∙ �Small� allows to visualize in detail both the dire
t/indire
t 
alls to 
onne
tivede�nitions and primitive operators performed along the whole interpretive phase(see [22, 24℄). The reader 
an observe at the beginning of Figure 3, the aspe
to�ered by FLOPER when visualizing in detail the behaviour of our runningexample, where the set of �small interpretive steps� are (we omit here the initialfourth states- asso
iated to admissible steps- sin
e they 
oin
ide with our twolast illustrations above):...R4 <&prod(0.9,&godel(0.8,�aver(0.7,0.5))),{X/a,X1/a,X11/a,_16/a}>sis1 <&prod(0.9,&godel(0.8,#prod(#add(|godel(0.7,0.5),|luka( ..sis1 <&prod(0.9,&godel(0.8,#prod(#add(#max(0.7,0.5),|luka(0.7.sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,|luka(0.7,0.5)), ..sis1 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(#add(0.7, ...sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(1.2,1)), ...sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,1),0.5))), .....sis2 <&prod(0.9,&godel(0.8,#prod(1.7,0.5))), {X/a,X1/a ..sis2 <&prod(0.9,&godel(0.8,0.85)), {X/a,X1/a,X11/a, ....sis1 <&prod(0.9,#min(0.8,0.85)), {X/a,X1/a,X11/a, .....sis2 <&prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>sis1 <#prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>sis2 <0.7200000000000001, {X/a,X1/a,X11/a,_16/a}>



Fig. 4. Building a graphi
al interfa
e for FLOPER.Observe in this last 
ase that during the interpretive phase we apply �smallinterpretive steps� of kind →SIS1 or →SIS2 (a

ording to [24℄). The intuitiveidea is that, whereas a→SIS1 step �expands� a 
onne
tive de�nition on the nextstate, the role of evaluating primitive operators is played by→SIS2 steps. Noti
ein the �gure that ea
h primitive operators is always labeled by pre�x �#�). Thesefa
ts justify why in our Prolog-based implementation of multi-adjoint latti
es,
lauses de�ning 
onne
tive predi
ates only perform 
alls to predi
ates of theform �and_*�, �or_*�, �agr_*� (useful for identifying further →SIS1 steps) or�pri_*� (asso
iated to →SIS2 steps).5 Con
lusions and Future WorkThe experien
e a
quired in our resear
h group regarding the design of te
hniquesand methods based on fuzzy logi
 in 
lose relationship with the so-
alled multi-adjoint logi
 programming approa
h ([10, 5, 9, 11, 12, 7, 8, 22, 23℄), has motivatedour interest for putting in pra
ti
e all our developments around the design of theFLOPER environment [21, 24℄. Our philosophy is to friendly 
onne
t this fuzzyframework with Prolog programmers: our system, apart for being implementedin Prolog, also translates the fuzzy 
ode to 
lassi
al 
lauses (in two di�erentrepresentations) and, what is more, in this paper we have also shown that a



wide range of latti
es modeling powerful and �exible notions of truth degreesalso admit a ni
e rule-based 
hara
terizations into Prolog.Apart for our ongoing e�orts devoted to providing FLOPER with a graphi
alinterfa
e as illustrated in Figure 42, nowadays we are espe
ially interested in ex-tending the tool with testing te
hniques for automati
ally 
he
king that latti
esmodeled a

ording the Prolog-based method established in this paper, verify therequirements of our fuzzy setting (with spe
ial mention to the adjoint property).For the future, we have in mind to provide an interfa
e with rules written inFuzzy-RuleML and other fuzzy languages like the ones presented in [26, 13℄ (theXSB system supports GAP).Referen
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