
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Multi-Adjoint Lattices for Manipulating

Truth-Degrees into the FLOPER System

Pedro J. Morcilloa,2 Ginés Moreno,a,2 Jaime Penabadb,3

Carlos Vázqueza,2

a Department of Computing Systems, U. Castilla-La Mancha, Albacete (02071), Spain

b Department of Mathematics, U. Castilla-La Mancha, Albacete (02071), Spain

Abstract

FLOPER is a “Fuzzy LOgic Programming Environment for Research” developed in our research group
which currently offers running/debugging/tracing capabilities for managing programs belonging to the so-
called multi-adjoint logic approach. In this recent and flexible framework, typical Prolog clauses have been
extended with fuzzy features, including a wide repertoire of connectives for manipulating truth degrees
beyond the simple case of {true, false}. Multi-adjoint lattices capture the mathematical foundations of
this enrichment. In this paper, we report our last developments performed into the FLOPER tool, which
are devoted to put in practice the management of such structures in an easy, quite comprehensible way.

Keywords: Fuzzy Logic Programming, Truth-Degrees, Multi-adjoint Lattices, Software Tools

1 Introduction

Research in the fields of Declarative Programming and Fuzzy Logic have tradition-

ally provided programming languages and techniques with important applications

in the fields of AI, soft-computing, and so on. In particular, Logic Programming

[1] has been widely used for problem solving and knowledge representation in the

past without incorporating techniques or constructs to explicitly treat with uncer-

tainty and approximate reasoning in a natural way. To fulfill this gap, Fuzzy Logic

Programming has emerged as an interesting and still growing research area trying

to agglutinate the efforts for introducing fuzzy logic into logic programming. Dur-

ing the last decades, several fuzzy logic programming systems have been developed

[2,3,4,5,6], where the classical inference mechanism of SLD–Resolution is replaced

with a fuzzy variant which is able to handle partial truth and uncertainty.

1 Work supported by the EU, under FEDER, and the Spanish Science and Innovation Ministry (MICIN)
under grant TIN 2007-65749 and by the Castilla-La Mancha Administration under grant PII1I09-0117-4481.
2 Email: {pmorcillo,gmoreno,cvazquez}@dsi.uclm.es
3 Email: Jaime.Penabad@uclm.es

c⃝2010 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:gmoreno@dsi.uclm.es
mailto:Jaime.Penabad@uclm.es

Morcillo, Moreno, Penabad and Vázquez

This is the case of multi-adjoint logic programming [7] one of the most powerful

and promising approaches in the area. In this framework, a program can be seen

as a set of rules each one annotated by a truth degree and a goal is a query to

the system plus a substitution (initially the empty substitution, denoted by id).

Admissible steps (a generalization of the classical modus ponens inference rule) are

systematically applied on goals in a similar way to classical resolution steps in pure

logic programming, thus returning an state composed by a computed substitution

together with an expression where all atoms have been exploited. Next, during the

so called interpretive phase, (see [8]), this expression is interpreted under a given

lattice, hence returning a pair ⟨truth degree; substitution⟩ which is the fuzzy coun-

terpart of the classical notion of computed answer used in pure logic programming.

The main goal of the present paper is to present our last developments performed

on the FLOPER system [9,10] (visit http://www.dsi.uclm.es/investigacion/

dect/FLOPERpage.htm) which enables the introduction of different notions of multi-

adjoint lattices for managing truth degrees even in a single work-session without

changing a given multi-adjoint logic program and goal. Nowadays, the tool provides

facilities for executing and debugging (by generating declarative traces) such kind of

fuzzy programs, by means of two main representation (high/low-level, Prolog-based)

ways which are somehow antagonistics regarding simplicity/precision features.

The structure of the paper is as follows. Section 2 summarizes the main features

of multi-adjoint logic programming. Section 3 presents a discussion on multi-adjoint

lattices and their nice representation by using standard Prolog code, in order to

facilitate its further assimilation inside the FLOPER tool, as described in Section

4. Finally, in Section 5 we give our conclusions and some lines of future work.

2 Multi-Adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming (see

[7] for a complete formulation of this framework). In what follows, we will use the

abbreviation MALP for referencing programs belonging to this setting. We work

with a first order language, ℒ, containing variables, constants, function symbols,

predicate symbols, and several (arbitrary) connectives to increase language expres-

siveness: implication connectives (←1,←2, . . .); conjunctive operators (denoted by

&1,&2, . . .), disjunctive operators (∨1,∨2, . . .), and hybrid operators (usually de-

noted by @1,@2, . . .), all of them are grouped under the name of “aggregators”.

Aggregation operators are useful to describe/specify user preferences. An aggrega-

tion operator, when interpreted as a truth function, may be an arithmetic mean, a

weighted sum or in general any monotone application whose arguments are values

of a complete bounded lattice L. For example, if an aggregator @ is interpreted

as [[@]](x, y, z) = (3x + 2y + z)/6, we are giving the highest preference to the first

argument, then to the second, being the third argument the least significant. Al-

though these connectives are binary operators, we usually generalize them as func-

tions with an arbitrary number of arguments. So, we often write @(x1, . . . , xn)

instead of @(x1, . . . ,@(xn−1, xn), . . .). By definition, the truth function for an n-

ary aggregation operator [[@]] : Ln → L is required to be monotonous and fulfills

[[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.

2

Morcillo, Moreno, Penabad and Vázquez

Additionally, our language ℒ contains the values of a multi-adjoint lattice ⟨L,⪯

,←1,&1, . . . ,←n,&n⟩, equipped with a collection of adjoint pairs ⟨←i,&i⟩, where

each &i is a conjunctor which is intended to the evaluation of modus ponens [7].

More exactly, in this setting the following items must be satisfied:

∙ ⟨L,⪯⟩ is a bounded lattice, i.e. it has bottom/top elements, denoted by ⊥/⊤.

∙ Each operation &i is increasing in both arguments.

∙ Each operation←i is increasing in the first argument and decreasing in the second.

∙ If ⟨&i,←i⟩ is an adjoint pair in ⟨L,⪯⟩ then, for any x, y, z ∈ L, we have that:

x ⪯ (y ←i z) if and only if (x &i z) ⪯ y.

This last condition, called adjoint property, could be considered the most important

feature of the framework (in contrast with many other approaches) which justifies

most of its properties regarding crucial results for soundness, completeness, applica-

bility, etc. In general, L may be the carrier of any complete bounded lattice where

a L-expression is a well-formed expression composed by values and connectives of

L, as well as variable symbols and primitive operators (i.e., arithmetic symbols such

as ∗,+,min, etc...). In what follows, we assume that the truth function of any

connective @ in L is given by its corresponding connective definition, that is, an

equation of the form @(x1, . . . , xn) ≜ E, where E is a L-expression not containing

variable symbols apart from x1, . . . , xn. For instance, in what follows we will be

mainly concerned with the following classical set of adjoint pairs (conjunctors and

implications) in ⟨[0, 1],≤⟩, where labels L, G and P mean respectively L̷ukasiewicz

logic, Gödel intuitionistic logic and product logic:

&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Product

&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{

1 if y ≤ x

x otherwise
Gödel

&L(x, y) ≜ max(0, x + y − 1) ←L (x, y) ≜ min{x− y + 1, 1} L̷ukasiewicz

A rule is a formula H ←i ℬ, where H is an atomic formula (usually called

the head) and ℬ (which is called the body) is a formula built from atomic formulas

B1, . . . , Bn — n ≥ 0 —, truth values of L, conjunctions, disjunctions and aggrega-

tions. A goal is a body submitted as a query to the system. Roughly speaking, a

MALP program is a set of pairs ⟨ℛ;�⟩ (we often write “ℛ witℎ �”), where ℛ is a

rule and � is a truth degree (a value of L) expressing the confidence of a programmer

in the truth of rule ℛ. By abuse, we sometimes refer a tuple ⟨ℛ;�⟩ as a “rule”.

The procedural semantics of the multi–adjoint logic language ℒ can be thought

as an operational phase (based on admissible steps) followed by an interpretive one.

In the following, C[A] denotes a formula where A is a sub-expression which occurs

in the –possibly empty– context C[]. Moreover, C[A/A′] means the replacement of A

by A′ in context C[], whereas Var(s) refers to the set of distinct variables occurring

in the syntactic object s, and �[Var(s)] denotes the substitution obtained from �

by restricting its domain to Var(s).

Definition 2.1 (Admissible Step) Let Q be a goal and let � be a substitution.

The pair ⟨Q;�⟩ is a state and we denote by ℰ the set of states. Given a program

3

Morcillo, Moreno, Penabad and Vázquez

P, an admissible computation is formalized as a state transition system, whose

transition relation
AS
↝ ⊆ (ℰ × ℰ) is the smallest relation satisfying the following

admissible rules (where we always consider that A is the selected atom in Q and

mgu(E) denotes the most general unifier of an equation set E):

1) ⟨Q[A];�⟩
AS
↝ ⟨(Q[A/v&iℬ])�;��⟩, if � = mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P

and ℬ is not empty.

2) ⟨Q[A];�⟩
AS
↝ ⟨(Q[A/v])�;��⟩, if � = mgu({A′ = A}) and ⟨A′←i; v⟩ in P.

As usual, rules are taken renamed apart. We shall use the symbols
AS1
↝ and

AS2
↝

to distinguish between computation steps performed by applying one of the specific

admissible rules. Also, the application of a rule on a step will be annotated as a

superscript of the
AS
↝ symbol.

Definition 2.2 Let P be a program, Q a goal and “id” the empty substitution.

An admissible derivation is a sequence ⟨Q; id⟩
AS
↝ . . .

AS
↝ ⟨Q′; �⟩. When Q′ is

a formula not containing atoms (i.e., a L-expression), the pair ⟨Q′;�⟩, where � =

�[Var(Q)], is called an admissible computed answer (a.c.a.) for that derivation.

Example 2.3 Let P be the following MALP program:

ℛ1 : p(X) ←P &G(q(X),@aver(r(X), s(X))) with 0.9

ℛ2 : q(a) ← with 0.8

ℛ3 : r(X) ← with 0.7

ℛ4 : s(X) ← with 0.5

where the equation defining the average aggregator must obviously have the form:

@aver(x1, x2) ≜ (x1 + x2)/2. Now, we can generate the next admissible derivation

(we underline the selected atom in each step):

⟨p(X); id⟩
AS1
↝

ℛ1

⟨&P(0.9,&G(q(X1),@aver(r(X1), s(X1)))); {X/X1}⟩
AS2
↝

ℛ2

⟨&P(0.9,&G(0.8,@aver(r(a), s(a)))); {X/a,X1/a}⟩
AS2
↝

ℛ3

⟨&P(0.9,&G(0.8,@aver(0.7, s(a)))); {X/a,X1/a,X2/a}⟩
AS2
↝

ℛ4

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a,X1/a,X2/a,X3/a}⟩

So, the admissible computed answer (a.c.a.) in this case is composed by the pair:

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); �⟩, where � only referenciates bindings related with

variables in the goal, i.e., � = {X/a,X1/a,X2/a,X3/a}[Var(p(X))] = {X/a}.

If we exploit all atoms of a given goal, by applying admissible steps as much as

needed during the operational phase, then it becomes a formula with no atoms (a

L-expression) which can be then directly interpreted w.r.t. lattice L by applying

the following definition we initially presented in [8]:

Definition 2.4 (Interpretive Step) Let P be a program, Q a goal and � a sub-

stitution. Assume that [[@]] is the truth function of connective @ in the lattice

⟨L,⪯⟩ associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have that

4

Morcillo, Moreno, Penabad and Vázquez

[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive computation

as a state transition system, whose transition relation
IS
↝ ⊆ (ℰ × ℰ) is defined as

the least one satisfying: ⟨Q[@(r1, . . . , rn)];�⟩
IS
↝ ⟨Q[@(r1, . . . , rn)/rn+1];�⟩.

Definition 2.5 Let P be a program and ⟨Q;�⟩ an a.c.a., that is, Q is a goal not

containing atoms (i.e., a L-expression). An interpretive derivation is a sequence

⟨Q;�⟩
IS
↝ . . .

IS
↝ ⟨Q′;�⟩. When Q′ = r ∈ L, being ⟨L,⪯⟩ the lattice associated to

P, the state ⟨r;�⟩ is called a fuzzy computed answer (f.c.a.) for that derivation.

Example 2.6 If we complete the previous derivation of Example 2.3 by applying 3

interpretive steps in order to obtain the final f.c.a. ⟨0.54; {X/a}⟩, we generate the

following interpretive derivation D1:

⟨&P(0.9,&G(0.8,@aver(0.7, 0.5))); {X/a}⟩
IS
↝

⟨&P(0.9,&G(0.8, 0.6)); {X/a}⟩
IS
↝

⟨&P(0.9, 0.6); {X/a}⟩
IS
↝

⟨0.54; {X/a}⟩.

3 Truth-Degrees and Multi-adjoint Lattices in Practice

We have recently conceived a very easy way to model truth degrees lattices for

being included into the FLOPER tool. All relevant components of each lattice can

be encapsulated inside a Prolog file which must necessarily contain the definitions

of a minimal set of predicates defining the set of valid elements (including special

mentions to the “top” and “bottom” ones), the full or partial ordering established

among them, as well as the repertoire of fuzzy connectives which can be used for

their subsequent manipulation. In order to simplify our explanation, assume that

file “bool.pl” refers to the simplest notion of (a binary) adjoint lattice, thus imple-

menting the following set of predicates:

∙ member/1 which is satisfied when being called with a parameter representing a

valid truth degree. In the case of finite lattices, it is also recommend to implement

members/1 which returns in one go a list containing the whole set of truth degrees.

For instance, in the boolean case, both predicates can be simply modeled by the

Prolog facts: member(0)., member(1). and members([0,1]).

∙ bot/1 and top/1 obviously answer with the top and bottom element of the lattice,

respectively. Both are implemented into “bool.pl” as bot(0). and top(1).

∙ leq/2 models the ordering relation among all the possible pairs of truth degrees,

and obviously it is only satisfied when it is invoked with two elements verifying

that the first parameter is equal or smaller than the second one. So, in our exam-

ple it suffices with including into “bool.pl” the facts: leq(0,X). and leq(X,1).

∙ Finally, given some fuzzy connectives of the form &label1 (conjunction), ∨label2
(disjunction) or @label3 (aggregation) with arities n1, n2 and n3 respectively,

we must provide clauses defining the connective predicates “and label1/(n1+1)”,

“or label2/(n2+1)” and “agr label3/(n3+1)”, where the extra argument of each

predicate is intended to contain the result achieved after the evaluation of the

5

Morcillo, Moreno, Penabad and Vázquez

member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattice)

bot(0). top(1). leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).

and_godel(X,Y,Z):- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :-pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Fig. 1. Multi-adjoint lattice modeling truth degrees in the real interval [0,1] (file “num.pl”).

proper connective. For instance, in the boolean case, the following two facts

model in a very easy way the behaviour of the classical conjunction operation:

and bool(0, ,0). and bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl” when working with

MALP programs whose rules have the form “A ←bool &bool(B1, . . . , Bn) witℎ 1”,

being A and Bi typical atoms 4 , successfully mimics the behaviour of classical Prolog

programs where clauses accomplish with the shape “A : − B1, . . . , Bn”. As

a novelty in the fuzzy setting, when evaluating goals according to the procedural

semantics described in Section 2, each output will contain the corresponding Prolog’s

substitution (i.e., the crisp notion of computed answer obtained by means of classical

SLD-resolution) together with the maximum truth degree 1.

On the other hand and following the Prolog style regulated by the previous

guidelines, in Figure 1 we have modeled the more flexible lattice (that we will

mainly use in our examples, beyond the boolean case) which enables the possibility

of working with truth degrees in the infinite space 5 of the real numbers between 0

and 1, allowing too the possibility of using conjunction and disjunction operators

recasted from the three typical fuzzy logics described before (i.e., the L̷ukasiewicz,

Gödel and product logics), as well as an useful description for the hybrid aggregator

average. Note also we have included definitions for auxiliary predicates, whose

names always begin with the prefix “pri ”. All them are intended to describe

primitive/arithmetic operators (in our case +, −, ∗, /, min and max) in a Prolog

style, for being appropriately called from the bodies of clauses defining predicates

with higher levels of expressivity (this is the case for instance, of the three kinds of

fuzzy connectives we are considering: conjuntions, disjunctions and agreggations).

4 Here we also assume that several versions of the classical conjunction operation have been implemented
with different arities.
5 Note that this condition disables the implementation of the consulting predicate “members/1”.

6

Morcillo, Moreno, Penabad and Vázquez

Since till now we have considered two classical, fully ordered lattices (with a

finite and infinite number of elements, collected in files “bool.pl” and “num.pl”,

respectively), we wish now to introduce a different case coping with a very simple

lattice where not always any pair of truth degrees are comparable. So, consider

the following partially ordered multi-adjoint lattice in the diagram below for which

the conjunction and implication connectives based on the Gödel intuistionistic logic

described in Section 2 conform an adjoint pair.... but with the particularity now

that, in the general case, the Gödel ’s conjunction must be expressed as &G(x, y) ≜

inf(x, y), where it is important to note that we must replace the use of “min” by

“inf” in the connective definition.

⊤

� �

⊥

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha). leq(alpha,top).

leq(beta,beta). leq(beta,top). leq(top,top).

and godel(X,Y,Z) :- pri inf(X,Y,Z).

pri inf(bottom,X,bottom):-!.

pri inf(alpha,X,alpha):-leq(alpha,X),!.

pri inf(beta,X,beta):-leq(beta,X),!.

pri inf(top,X,X):-!.

pri inf(X,Y,bot).

To this end, observe in the Prolog code accompanying the figure above that we have

introduced five clauses defining the new primitive operator “pri inf/3” which is

intended to return the infimum of two elements. Related with this fact, we must to

point out the following aspects:

∙ Note that since truth degrees � and � (or their corresponding representations

as Prolog terms “alpha” and “beta” used for instance in the definition(s) of

“member(s)/1”) are incomparable then, any call to both “?- leq(alpha,beta).”

or “?- leq(beta,alpha).” will always fail.

∙ Fortunately, a goal of the form “?- pri inf(alpha,beta,X).”, or alternatively

“?- pri inf(beta,alpha,X).”, instead of failing, successfully produces the de-

sired result “X=bottom”.

∙ Note anyway that the implementation of the “pri inf/1” predicate is mandatory

for coding the general definition of ”and godel/3”.

4 The FLOPER System in Action

As detailed in [9], our parser has been implemented by using the classical DCG’s

(Definite Clause Grammars) resource of the Prolog language, since it is a convenient

notation for expressing grammar rules. Once the application is loaded inside a

Prolog interpreter (in our case, Sicstus Prolog v.3.12.5), it shows a menu which

7

Morcillo, Moreno, Penabad and Vázquez

Fig. 2. Example of a work session with FLOPER showing “Small Interpretive Steps” and program/goal
menus

includes options for loading, parsing, listing and saving fuzzy programs, as well as

for executing fuzzy goals (see Figure 2). All these actions are based in the translation

of the fuzzy code into standard Prolog code. The key point is to extend each atom

with an extra argument, called truth variable of the form “ TVi”, which is intended

to contain the truth degree obtained after the subsequent evaluation of the atom.

For instance, the first clause in our target program is translated into:

p(X,TV0):-q(X,_TV1),r(X,_TV2),s(X,_TV3),agr_aver(_TV2,_TV3,_TV4),

and_godel(_TV1,_TV4,_TV5),and_prod(0.9,_TV5,TV0).

Moreover, the second clause in our target program, becomes in the pure Prolog

fact “q(a, 0.8)” while a fuzzy goal like “p(X)”, is translated into the Prolog goal:

“p(X, Truth degree)” (note that the last truth degree variable is not anonymous

now) for which the Prolog interpreter returns the desired fuzzy computed answer

[Truth degree = 0.54, X = a]. The previous set of options suffices for running fuzzy

programs (the “run” choice also uses the clauses contained in “num.pl”, which

represent the default lattice): all internal computations (including compiling and

executing) are pure Prolog derivations whereas inputs (fuzzy programs and goals)

and outputs (fuzzy computed answers) have always a fuzzy taste, thus producing

the illusion of being working with a purely fuzzy logic programming tool.

On the other hand, as showed in the down-middle, dark part of Figure 2,

FLOPER has been recently equipped with a new option, called “loadLat” for al-

lowing the possibility of changing the multi-adjoint lattice associated to a given

program. For instance, assume that “new num.pl” contains the same Prolog code

than “num.pl” with the exception of the definition regarding the average aggrega-

8

Morcillo, Moreno, Penabad and Vázquez

tor. Now, instead of computing the average of two truth degrees, let us consider the

average between the results achieved after applying to both elements the disjunc-

tions of Gödel and L̷ukasiewicz, that is, @aver(x1, x2) ≜ (∨G(x1, x2) +∨L(x1, x2))/2.

A Prolog clause modeling such definition into the “new num.pl” file could be:

agr_aver(X,Y,Z):-or_godel(X,Y,Z1),or_luka(X,Y,Z2),

pri_add(Z1,Z2,Z3),pri_div(Z3,2,Z).

and now, by selecting again the “run” option (without changing the program and

goal), the system would display the new solution: [Truth degree = 0.72, X = a].

However, when trying to go beyond program execution, the previous method

becomes insufficient. In particular, observe that we can only simulate complete

fuzzy derivations (by performing the corresponding Prolog derivations based on

SLD-resolution) but we can not generate partial derivations or even apply a single

admissible step on a given fuzzy expression. This kind of low-level manipulations

are mandatory when trying to incorporate to the tool some program transformation

techniques such as those based on fold/unfold or partial evaluation we have de-

scribed in [11,12,13]. To this end, in [9] we presented a new low-level representation

for the fuzzy code which currently offers the possibility of performing debugging

actions such as tracing a FLOPER work session. For instance, after parsing the

second rule of our program, we obtain the following expression which is asserted

into the interpreter’s database as a Prolog fact and collects in detail all relevant

components of rules (composition of atoms in heads/bodies, attached weights, etc):

rule(2,head(atom(pred(q,1),[con(a)])),impl(empty),body(empty),td(0.8)).

Looking again to the darked part of Figure 2, observe in the FLOPER’s goal

menu the "tree" and "depth" options, which are useful for tracing execution trees

and fixing the maximum length allowed for their branches (initially 3), respectively.

Working with these options is crucial when the "run" choice fails: remember that

this last option is based on the generation of pure logic SLD-derivations which

might fall in loop or directly fail in some cases as the experiments of [9] show, in

contrast with the traces (based on finite, non-failed, admissible derivations) that

the "tree" option displays. As the top-middle of Figure 2 illustrates, the system

displays states on different lines, appropriately indented to distinguish the proper

relationship -parent/child/grandchild...- among nodes.

Strongly related with these last options, the “ismode” choice decides among

three levels of detail when visualizing the interpretive phase performed during the

generation of “unfolding trees”: whereas “Large” means to obtain the final result in

one go, “Medium” implements the notion of “interpretive step” according Definition

2.4 and “Small” allows to visualize in detail both the direct/indirect calls to con-

nective definitions and primitive operators performed along the whole interpretive

phase [10]. The reader can observe at the beginning of Figure 2, the aspect offered

by FLOPER when visualizing the behaviour of our running example (using our

last definition of the average aggregator) once we have choosen the last option just

commented before. In particular, observe that program rules applied on admissible

steps always precede the corresponding state (FLOPER labels the root goal with

the “virtual” program rule R0)), whereas the interpretive phase applies “small inter-

pretive steps” of kind
SIS1
↝ or

SIS2
↝ (according [10]) when expanding connective

9

Morcillo, Moreno, Penabad and Vázquez

definitions or evaluating primitive operators, respectively, on states (advise in the

figure that each primitive operators is always labeled by prefix “#”). These facts

justify why in our Prolog-based implementation of lattices, clauses defining connec-

tive predicates only perform calls to predicates of the form “and *”, “or *”, “agr *”

(useful for identifying further
SIS1
↝ steps) or “pri *” (associated to

SIS2
↝).

5 Conclusions and Future Work

The experience acquired in our research group regarding the design of techniques/me-

thods based on fuzzy logic in close relationship with the so-called multi-adjoint logic

programming approach ([8,11,12,13,14]), has motivated our interest for putting in

practice all our developments around the design of the FLOPER environment [9,10].

Our philosophy is to friendly connect this fuzzy framework with Prolog program-

mers: our system, apart for being implemented in Prolog, also translates the fuzzy

code to classical clauses (in two different representations) and, what is more, in this

paper we have also shown that a wide range of lattices modeling truth degrees also

admit nice characterizations into Prolog. Nowadays we are extending FLOPER

with testing techniques for automatically checking that lattices modeled in this way

verify the requirements of our fuzzy setting (specially, the adjoint property).

References

[1] J. Lloyd, Foundations of Logic Programming. Springer-Verlag, Berlin, 1987, second edition.

[2] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth, Fril- Fuzzy and Evidential Reasoning in Artificial
Intelligence. John Wiley & Sons, Inc., 1995.

[3] S. Guadarrama, S. Muñoz, and C. Vaucheret, “Fuzzy Prolog: A new approach using soft constraints
propagation,” Fuzzy Sets and Systems, vol. 144, no. 1, pp. 127–150, 2004.

[4] M. Ishizuka and N. Kanai, “Prolog-ELF Incorporating Fuzzy Logic,” in Proceedings of the 9th Int.
Joint Conference on Artificial Intelligence, IJCAI’85, A. K. Joshi, Ed. Morgan Kaufmann, 1985, pp.
701–703.

[5] M. Kifer and V. Subrahmanian, “Theory of generalized annotated logic programming and its
applications.” Journal of Logic Programming, vol. 12, pp. 335–367, 1992.

[6] P. Vojtáš, “Fuzzy Logic Programming,” Fuzzy Sets and Systems, vol. 124, no. 1, pp. 361–370, 2001.

[7] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “Similarity-based Unification: a multi-adjoint approach,”
Fuzzy Sets and Systems, vol. 146, pp. 43–62, 2004.

[8] P. Julián, G. Moreno, and J. Penabad, “Operational/Interpretive Unfolding of Multi-adjoint Logic
Programs,” Journal of Universal Computer Science, vol. 12, no. 11, pp. 1679–1699, 2006.

[9] P. Morcillo and G. Moreno, “Programming with Fuzzy Logic Rules by using the FLOPER Tool,” in Proc
of the 2nd. Rule Representation, Interchange and Reasoning on the Web, International Symposium,
RuleML 2008, Orlando, FL, USA, October 30-31, N. Bassiliades, G. Governatori, and A. Paschke, Eds.
Springer Verlag, LNCS 3521, 2008, pp. 119–126.

[10] P. J. Morcillo, G. Moreno, J. Penabad, and C. Vázquez, “Modeling interpretive steps into the FLOPER
environment,” in Proceedings of the 12th International Conference on Artificial Intelligence, ICAI
2010, July 12-15, 2010, Las Vegas (Nevada), USA. CSREA Press (accepted for publication), 2010.

[11] J. Guerrero and G. Moreno, “Optimizing fuzzy logic programs by unfolding, aggregation and folding,”
Electronic Notes in Theoretical Computer Science, vol. 219, pp. 19–34, 2008.

[12] P. Julián, G. Moreno, and J. Penabad, “On Fuzzy Unfolding. A Multi-adjoint Approach,” Fuzzy Sets
and Systems, vol. 154, pp. 16–33, 2005.

[13] ——, “An Improved Reductant Calculus using Fuzzy Partial Evaluation Techniques,” Fuzzy Sets and
Systems, vol. 160, pp. 162–181, 2009, doi: 10.1016/j.fss.2008.05.006.

[14] P. Julián, J. Medina, G. Moreno, and M. Ojeda, “Efficient thresholded tabulation for fuzzy query
answering,” Studies in Fuzziness and Soft Computing (Foundations of Reasoning under Uncertainty),
vol. 249, pp. 125–141, 2010.

10

	Introduction
	Multi-Adjoint Logic Programming
	Truth-Degrees and Multi-adjoint Lattices in Practice
	The FLOPER System in Action
	Conclusions and Future Work
	References

