Modeling Interpretive Steps into the FLOPER Environment

Pedro J. Morcillo!, Ginés Morend, Jaime Penabad and Carlos VazqueZz
I Department of Computing Systems ah@epartment of Mathematics
High School of Computer Science Engineering, UniversityCaktilla-La Mancha, Albacete (02071), Spain

Abstract— FLOPER is a “Fuzzy LOgic Programming En- agglutinate the efforts for introducing fuzzy logic intagio
vironment for Research” trying to help the development ofprogramming. During the last decades, several fuzzy logic
applications supporting approximated reasoning and uncerprogramming systems have been developed [4], [5], [6], [7],
tain knowledge in the fields of Al, symbolic computation[8], [9], where the classical inference mechanism of SLD-
soft-computing, semantic web, declarative programmingdy anresolution is replaced with a fuzzy variant which is able to
so on. The tool, which is able to directly translate ahandle partial truth and to reason with uncertainty.
powerful kind of fuzzy logic programs belonging to the so- This is the case afnulti-adjoint logic programming10],
called “multi-adjoint logic approach” into standard Prokp  [11], [12], one of the most powerful and promising ap-
code, currently offers running/debugging/tracing capities ~ proaches in the area. In this framework, a program can be
with close connections to other sophisticated manipufatio seen as a set of rules each one annotated by a truth degree
techniques (program optimization, program specializatio and a goal is a query to the system plus a substitution
etc.) under development in our research group. In thiginitially the empty substitution, denoted by). Admissible
setting, the execution of a program is done in two separatsteps(a generalization of the classicalodus ponensifer-
phases: operational and interpretive. During the first #ag ence rule) are systematically applied on goals in a similar
“admissible steps” are systematically applied in a similar way to classical resolution steps in pure logic programming
way to classical resolution steps in pure logic programmingthus returning an state composed by a computed substitution
(LP), thus returning an expression where all atoms have beetogether with an expression where all atoms have been
exploited. This last expression is then interpreted under @&xploited. Next, during the so called interpretive phasege(
given lattice during the so called interpretive phase. Véasr [13], [14]), this expression is interpreted under a given
the operational phase has been successfully formalizétkin t lattice, hence returning a paiftruth degreesubstitution
past, more effort is needed to clarify the notion of “inteepr which is the fuzzy counterpart of the classical notion of
tive step”. In this paper, we provide a real implementationcomputed answer used in pure logic programming.
into FLOPER of a refinement of this concept which fairly On the other hand, the most common approach for an-
models at a very low level the computational behaviour ofilyzing the efficiency of a program is measurement of its
the interpretive phase aiming too to visualize the computaexecution time and memory usage. However, in order to
tional effort required to solve a goal. The resulting method(theoretically) analyze the efficiency of programs, conmpt
also puts in practice an accurate and realistic way for fetur strategies or program transformation techniques, it is- con
efficiency studies regarding our ongoing research on fuzzyenient to define abstract approaches to cost measurement.
techniques for Fold/Unfold, Partial Evaluation, Threstiet!  In particular, we are specially interested in to contrast
Tabulation, etc. the behaviour of computations performed on fuzzy pro-
grams obtained via some program transformation techniques
Keywords: Fuzzy Logic Programming, Languages and Tech-developed in our research group (see some examples of
niques for Al, Software Tools, Computational Cost Measures  fyzzy fold/unfold and partial evaluation in [15], [16], [IL7
. 13], [18], [19], as well as the fuzzy tabulation techniques
1. Introduction Ejogur[neglte[d i]n [20], [21]). ’ )
Among other purposes, researchDeclarative Program- Specially motivated by this goal, we have observed that in
ming and Fuzzy Logichas traditionally provided languages declarative programming frameworks it is usual to estimate
and programming techniques for Al, soft-computing, and sdhe computational effort needed to execute a goal in a
on. In particular,Logic Programming[1] has been widely program by simply counting the number of derivation steps
used for problem solving and knowledge representation imequired to reach their solutions. In the context of multi-
the past, with recognized influences in the field of Al [2]..[3] adjoint logic programming, we have unfortunately discov-
Nevertheless, traditional logic languages do not incafeor ered that, although this method seems to be acceptable
techniques or constructs to explicitly treat with unceri  during the operational phase, it becomes inappropriatewwhe
and approximate reasoning. considering the interpretive one, since it does not take
To fulfill this gap,Fuzzy Logic Programminbas emerged into account the possible changes in the complexities of
as an interesting and still growing research area trying tthe different kinds of fuzzy connectives involved in such



computations. giving the highest preference to the first argument, then to
The problem was faced in [22], [23] by proposing morethe second, being the third argument the least significant.

refined (interpretive) cost measures based on “connectiwlthough these connectives are binary operators, we ysuall

weights” which were able of counting the number of prim-generalize them as functions with an arbitrary number of

itive operators directly/indirectly appearing in the défon ~ arguments. So, we often writ@(x4,...,z,) instead of

of the connectives evaluated in each (interpretive) step of Q(z1,...,Q(z,—1,,),...). By definition, the truth func-

given derivation. Anyway, in this paper we are specially-contion for an n-ary aggregation operatp®] : L™ — L is

cerned with the approach presented in [14], which redefine®quired to be monotonous and fulfil&](T,..., T) =T,

the notion of interpretive step in order to explicitly expgan [@](L,..., L) = L.

connective definitions and evaluating primitive (arithitet Additionally, our languagel contains the values of a

operators on derivation states. The method does not atter thnulti-adjoint lattice,(L, <, +1, &, . . . , <, &»), €quipped
final set of solutions, but it has the extra ability of exhift ~ with a collection of adjoint pairs(<—;, &;), where each
the complexity of the interpretive phase in detail. &; is a conjunctor which is intended to the evaluation of

The main goal of the present paper is to present oufmodus ponenfl0]. In general L may be the carrier of any
last developments performed on the FLOPER systerdomplete bounded lattice but, for readability reasonshen t
(see [24], [25] and visitht t p: // www. dsi . ucl mes  examples we shall seleét as the set of real numbers in the
/investigaci on/dect/FLOPERpage. htm) which interval [0,1]. A L-expression is a well-formed expression
implements several kinds of interpretive steps, includingcomposed by values and connectiveg.pfis well as variable
the refined notion of “small interpretive step” we havesymbols andprimitive operators(i.e., arithmetic symbols
just commented before [14]. Nowadays, the tool providesuch asx,+,min, etc.). In what follows, we assume that
facilities for executing as well as for debugging (by the truth function of any connectiv@ in L is given by its
generating declarative traces) such kind of fuzzy programgorrespondingonnective definitionthat is, an equation of
by means of two main representation (high/low-levelthe form @(z;,...,z,) £ E, where E is a L-expression
Prolog-based) ways which are somehow antagonistifiot containing variable symbols apart from, . .., z,,.

regarding simplicity and precision features. A rule is a formulaH «; B, where H is an atomic

The structure of the paper is as follows. In Section 2tqrmyia (usually called théead and 3 (which is called the
we summarize the main features of multi-adjoint logic Pro-hody) is a formula built from atomic formulas,, . .., B,

gramming, both language syntax and procedural semantics. ,, > 0 —, truth values ofL, conjunctions, disjunctions
Section 3 presents a disc_ussion on cost measures p_rop(_)%qj aggregations. goal is a body submitted as a query to
in the past for the considered fuzzy setting, focusing inpe system. Roughly speaking, a multi-adjoint logic progra
our approach based on “small interpretive steps” which hag 4 set of pairgR; v) (we often writeR with v), whereR
been successfully implemented into the FLOPER tool, ag 3 rule andv is a truth degree(a value ofL) expressing
described in Section 4 (which contains the main importantne confidence of a programmer in the truth of the r&le

contribution of this paper). Finally, in Section 5 we giverou By abuse of language, we sometimes refer a t(fev) as
conclusions and some lines of future work. a “rule”.

; P ; ; The procedural semantics of the multi-adjoint logic lan-
2. |\/|U|'[I-Ad]0||’]t Loglc Programmlng guagez3 can be thought as an operationall phasg (based
This section summarizes the main features of multi-adjoingn admissible steps) followed by an interpretive one. In

logic programming (see [10], [11], [12] for a complete the following, C[4] denotes a formula wherd is a sub-
formulation of this framework). expression which occurs in the —possibly empty— context
We work with a first order languager, containing c[|. Moreover,C[A/A’] means the replacement df by A’
variables, constants, function symbols, predicate symbolin contextC[], whereasVar(s) refers to the set of distinct
and several (arbitrary) connectives to increase languaggriables occurring in the syntactic objegtandé[Var(s)]

expressiveness: implication connectives;( <, ...); CON-  denotes the substitution obtained frafrby restricting its
junctive operators (denoted k8, &, . ..), disjunctive op-  domain toVar(s).

erators ¢1, Vs, . .), and hybrid operators (usually denoted g i 5 (Admissible Step):et Q be a goal and let

by “@1’@2’ ), ,‘:’1” of them_ are grouped under the NAaME _ he a substitution. The palQ; o) is astateand we denote
of “aggregators”. Aggregation operators are useful to dey . .
. . ; by £ the set of states. Given a progra® an admissible
scribe/specify user preferences. An aggregation operator o . o
; : ., computatioris formalized as a state transition system, whose
when interpreted as a truth function, may be an arith- AS , .
~5  C (€ x &) is the smallest relation

metic mean, a weighted sum or in general any monoton&@nsition relation =~ - X
application whose arguments are values of a complet%at'Sfy'ng the followingadmissible rulegwhere we always

bounded latticeL. For example, if an aggregaton is ~ consider thatd is the selected atom i and mgu(E)
interpreted as[@](z,y,z) = (3z + 2y + 2)/6, we are denotes thenost general unifieof an equation sek):



1) (QA];0) 22 ((QIA/v&;B))0:00), if 0 = (Q0) 2 ... B (00). WhenQ' =1 € L, being(L, <)
mgu({A" = A}), (A'«;B;v) in P andB is not empty. the lattice associated tB, the state(r; o) is called afuzzy
2) (Q[A]; o) 23 ((Q[A/v])0; 08, if & = mgu({A’ =  computed answeff.c.a.) for that derivation.

A}) and (A’ v) in P. Example 2.6:If we complete the previous derivation of

Example 2.3 by applying 3 interpretive steps in order to ob-
As usual, rules are taken renamed apart. We shall use tf@in the final f.c.a{0.63; {X/a}), we generate the following

symbols Ast , A2 and 2 1o distinguish between interpretive derivationD, IS
computation steps performed by applying one of the specific (&2 (0.9, &e(vL(0.8,0.6),0.7));6)  ~>
admissible rules. Also, the application of a rule on a stdp wi &p(0.9, &¢(1,0.7)); 6) S

(

be annotated as a superscript of tHe symbol. (&5(0.9,0,7); 0) 1S
Definition 2.2: Let P be a programg@ a goal and {d” the <W

empty substitution. Aradmissible derivationis a sequence R

(Q:id) 25 ... %% (Q';6). When Q' is a formula not 3. Interpretive Steps and Cost Measures
containing atoms (i.e., d-expression), the paifQ'; ), A classical, simple way for estimating the computational
whereo = 0[Var(Q)], is called anadmissible computed cost required to built a derivation, consists in counting th
answer(a.c.a.) for that derivation. number of computational steps performed on it. So, given a
Example 2.3:Let P be the following fuzzy program: derivationD, we define its:
Ri: p(X) <+ &(Vi(q(X),0.6),r(X)) with 0.9 « operational costO.(D), as the number of admissible
Ra: qla) <+ with 0.8 steps performed ib.
Rs: r(X) + with 0.7 « interpretive costZ.(D), as the number of interpretive

steps done imD.

where the labelsL, G and P mean respectively for ) ) ) o
Note that the operational and interpretive costs of deduat

tukasiewicz logic Godel intuitionistic logic and product _ _ :
logic, that is, \/L(th) mm(l 21 + 22), &1, 22) Iy D, performed in the previous section af&.(D;) = 3 and
min(z1, x2) and&p(z1, ) 2 21 * To. Z.(D1) = 3, respectively. IntuitivelyO, informs us about
Now, we can generate the following admissible derivatiorin® number of atoms exploited along a derivation. Similarly
(we underline the selected atom in each step): 7. seems to estimate the number of connectives evaluated in
a derivation. However, this last statement is not competel
(p(X); id) true: Z. only takes into account those connectives appearing
(&p(0.9, &6V (g(X1),0.6), (X 1))); {X/X1}) AS2 p, in the bodies of program rules which are replicated on states
P (VL ) ~
(&p(0.9, &6(V1.(0.8,0.6), 7(a)); { X /a, Xy /a}) A Rs

of the derivation, but no those connectives recursinelgted
in the definition of other connectives. The following exampl
(&5(0.9, &6(V1 (0.8, 0. 6) 0.7):{X/a, X1/a, Xa/a}) highlights this fact.
So, the admissible computed answer (a.c.a.) in this case Exa@mple 3.1:A simplified version of ruleR,, wPose
is the pair: (&p(0.9, &q(V1(0.8,0.6),0.7)); ), whered = body only contains an aggregator symbol iR} A
{X/a,X1/a, Xz/a}Var(p(X))] = {X/a}. LX) o 01 (4(X),r(X) wih 0.9 where @z, 7,) £
If we exploit all atoms of a goal, by applying admissible &c(Vi.(z1,0.6),22). Note thatR] has exactly the same
steps as much as needed during the operational phase, tH8f2ning (interpretation) thaR,, although different syntax.

it becomes a formula with no atoms {aexpression) which " fact, both of them have the same sequence of atoms in
can be then directly interpreted w.r.t. lattiéeby applying their head and bodies. The differences are regarding the set

the following definition we initially presented in [13]: _of connectives which explicitly appear in their bodies sinc
Definition 2.4 (Interpretive Step)Let P be a program, " Ri we have moved:; andv.. (as well as valu@.6) from
Q a goal ando a substitution. Assume thdta] is the the body of the rule (se®;) to the connective definition

truth function of connectivea in the lattice (L, <) as- °f @1- Now, we use ruléRj instead ofR, for generating
the following derivationD; which returns exactly the same

ASir,

sociated toP, such that, for values,...,r,,rn41 € _
L, we have that[Q]r,...,7,) = rn41. Then, f.ca thanD.l. AST -
we formalize the notion ofinterpretive computation (p(X); id) M
as a state transition system, whose transition relation (&, (0.9, @;(q(X1),7(X1)); {X/X1}) AS2 R,
IS . ) D ’
é[@(g (€ x S); |s; ge;‘gg( as the I()e}ast o]ne> satisfying: (&5(0.9,@1(0.8, 7(a))); { X/, X1 /a}) AS2 R,
Ty Tn)|;0) > T1yeeeyTn)/Tn+1]50)- IS

Definition 2.5:Let P be a program and(Q;o) an (&2(0.9,01(0.8,0.7)); {X/a, X1 /0, X3 /a}) -

a.c.a., that is,Q is a goal not containing atoms (i.e., (&p(0.9,0.7);{X/a, X1/a, X2/a}) =5
(

a L-expression). Aninterpretive derivationis a sequence 0.63;{X/a, X1/a,X2/a})



Note that, since we have exploited the same atoms witthe essence of the notion of fuzzy computed answer: the
the same rules (except for the first steps performed withepeated application of both kinds of interpretive stepsaon
rules R; and R%, respectively) in both derivations, then given state only affects to the length of the corresponding
0.(D1) = O.(D7) = 3. However, although connectivés; derivations, but both ones lead to the same final states
andV, have been evaluated in both derivations/Jh such  (containing the corresponding fuzzy computed answers).
evaluations have not been explicitly counted as intenpeeti  Example 3.3:Recalling again the a.c.a. obtained in Ex-
steps, and consequently they have not been added to increasaple 2.3, we can reach the final fuzzy computed answer
the interpretive cost measufg. This unrealistic situation is (0.63; {X/a}) (achieved in Example 2.6 by means of inter-
reflected by the abnormal resdlt(D,) =3 > 2 =7Z.(D7):  pretive steps) by generating now the following interpretiv
as we will see later, it is important to note tHat must not  derivationD- based on “small interpretive steps” (Figure 1):
be considered an optimized version Bf, even when the (&p(0.9, &¢(VL(0.8,0.6),0.7)); {X/a}) SISt

wrong measuré€, seems to indicate the contrary. _ _
This problem was initially pointed out in [22], where a §¢(0.9, &g (min(1,0.8 + 0.6),0.7)); {X/a})
preliminary solution was proposed by assigning weights to (&g (0.9, &g(min(1,1.4),0.7)); {X/a})

( sIS2
{

connectives in concordance with the set of primitive opera- (&5(0.9, &6 (1,0.7)): {X /a}) SIs1
{
(
{

SIS2
~

tors involved in the definition of the proper connecti®eas sIS2
well as those ones recursively contained in the definitidns o ~
connectives invoked fror@. Moreover, in [23] we improved
the previous notion of “connective weight” by also takeroint
account the number of recursive calls to fuzzy connectives (0.63; { X /a})

(directly or in_directly) performed _in the definition af. _ Going back now to Example 3.1, we can rebuild the
A rather different way for facing the same problem iSinerpretive phase of DerivatioD? in terms of small

presented in [14], where instead on connective weights, Whterpretive steps, thus generating the following intetive

opt for the more “visual” method we have just implementedderivation DY Firstv. by aoolving a oS! ste
into FLOPER, based on the subsequent re-definition of the 2 stly, by applying e P

) ; . on the L-expression &p(0.9,@,(0.8,0.7)), it becomes
behaviour of the interpretive phase.

Definton 3.2 (Small Inerprtive Stepyet P be a pro- iy el g il S BT ey e
gram, Q@ a goal andsr a substitution. Assume that the (hon P y y

derivation D, we have just done above.

&p(0.9,min(1,0.7)); {X/a})
&p(0.9,0.7); {X/a})

SIS1
oy

0.9 % 0.7; {X/a}) 232

interpreted yet)L-expressions? occurs in Q, : o .

preted y ) XPpre (r1,..,7n) . Q. At this moment, it is mandatory to meditate on cost
where 2 is just a primitive operator or a connective defmedmeasures regarding derivations. D*. D andDz. First of
in the lattice (L, <) associated tdP, and r1,...,r, are 9 9 1) 2 2

all, note that the operational co&t. of all them coincides,

which is quite natural. However, whereds(D;) = 3 >

_ _ ! o b — Z.(D3%), we have now thaf.(Ds) =7 < 8 = Z.(D3).

relation 25 C ExE) is the smallest relation satisfying the 1; ! o ; >
o —_( x&) > fy g This apparent contradiction might confuse us when trying to

following small interpretive rulegwhere we always consider yacide which program ruleR; or R}) is “better”. The use

elements oflL. We formalize the notion odmall interpretive
computationas a state transition system, whose transitio

thatQ(ry,...,r,) is the selected.-expression inQ): of Definition 3.2 in derivationsD, and D3 is the key point
1) (QIQry, ..., m)];0) §,!_>S<Q[Q(T17 ...,mn)/E'l;0), if @  to solve our problem, as we are going to see. In Example
is a connective defined d@3(z1,...,z,) £ F andE’ 3.1 we justified that by simply counting the number of

is obtained from the.-expressiorE by replacing each interpretive steps performed in Definition 2.4 might progluc
variable (formal parameter); by its corresponding abnormal results, since the evaluation of connectives with

value (actual parameten);, 1 < i < n, that is, different complexities were (wrongly) measured with the
E' = E[z1/r1,...,2n/Tn]. same computational cost. Fortunately, the notion of small
2) (QIQr1, ..., )]s 0) SIS QIQr1,. .., r) o), if Q interpretive step makes _V|§|_ble in the proper der!vat|(_jn al
is a primitive operator such that, once evaluated wit'€ connectives and primitive operators appearing in the
parameters, ..., r,, produces the resuit (possm_ly r(_acurswely .nes.ted) definitions of any conn@cnv
SIS1 sis2 appearing in any derivation state. As we have seer)dn

From now, we shall use the symbolS=" and 0 e have expanded in three s+ steps the definitions of
distinguish between computation steps performed by apply- 7
g P PS D y app %ree connectives, i.e/, &¢ and &p, and we have applied

ing one of the specific “small interpretive” rules. Moreaver 1S2 i _

when we use the expressionterpretive derivationwe refer ~ four =~ steps to solve four primitive operators, that4s,

to a sequence o§mall interpretive stepgaccording to the in (twice) andx. The same computational effort as been
. " ; . . . SIs1 :

previous definition) instead of a sequence inferpretive  performed inD3, but also one more™~~ step was applied

steps(regarding Definition 2.4). Note that this fact, supposedo accomplish with the expansion of the extra connective

too a slight revision of Definition 2.5 which does not affect@,. This justifies whyZ.(D3) = 7 < 8 = Z.(D3)



and contradicts the wrong measures of Example 3.1: thtand prod(X,Y,Z) :— Z is X * Y". Moreover, the second
interpretive effort developed in derivatioi® and D» (both  clause in our target program, becomes in the pure Prolog fact
using the program rul®;), is slightly lower than the one “q(a,0.8)" while a fuzzy goal like p(X) &godel r(a)”,
performed in derivation®; and D3 (which used ruleRy), is translated into the Prolog goalp(X,_TV1),r(a,_TV2),
and not the contrary. and_godel(_TV1, TV2, Truth degree)” (note that the last
The accuracy of our new way for measuring and periruth degree variable is not anonymous now) for which the
forming interpretive computations seems to be crucial wherolog interpreter returns the two desired fuzzy computed
comparing the execution behaviour of programs obtained bgnswer[Truth_degree = 0.63,X = a].
transformation techniques such as the fold/unfold framtewo  The previous set of options suffices for running fuzzy
we describe in [15], [17]. In this sense, instead of meagurinprograms: all internal computations (including compiling
the absolute cost of derivations performed in a program, wand executing) are pure Prolog derivations whereas inputs
are more interested in the relative gains/lost of efficigmoy  (fuzzy programs and goals) and outputs (fuzzy computed
duced on transformed programs. For instance, by applyingnswers) have always a fuzzy taste, which produces the
the so-called “aggregation operation” described in [17] wellusion on the final user of being working with a purely
can transform rulék; into R} and, in order to proceed with fuzzy logic programming tool. However, when trying to go
alternative transformations (fold,unfold, et...) if thesulting  beyond program execution, the previous method becomes
program degenerates w.r.t. the original one (as occurs imsufficient. In particular, observe that we can only sintella
this case), we need an appropriate cost measure as the amnplete fuzzy derivations (by performing the correspogdi
proposed here to help us for taken decisions. This fact harolog derivations based on SLD-resolution) but we can not
capital importance for discovering drastic situations chhi generate partial derivations or even apply a single adbiessi
can appear in degenerated transformation sequences suchstep on a given fuzzy expression. This kind of low-level
the generation of highly nested definitions of aggregatorananipulations are mandatory when trying to incorporate to
For instance, assume the following sequence of connectiibe tool some program transformation techniques such as
definitions: @gg(z1,22) £ Qgg(x1,72), Qgg(x1,22) £  those based on fold/unfold (i.e., contraction and expansio
Qog(z1,2),..., and finally @, (1, z2) £ z; * zo. When  of sub-expressions of a program using the definitions of
trying to solve two expression of the forfilg (0.9,0.8) and  this program or of a preceding one, thus generating more
@;(0.9,0.8), cost measures based on number of interpretivefficient code) or partial evaluation we have described in
steps ([13]) and weights of interpretive steps ([22]) would[17], [15], [19]. For instance, our fuzzy unfolding trans-
assign 1 unit of interpretive cost to both derivations. Forformation is defined as the replacement of a program rule
tunately, our new approach is able to clearly distinguisiR : (A +; B with v) by the set of rules{Ac <+

between both cases, since the number ofs- steps B’ With v | (B;id) —as (B';0)}, which obviously requires
performed in each one is rather different (100 and 1theimplementation of mechanisms for generating derinatio

respectively). of a single step, rearranging the body of a program rule,
applying substitutions to its head, etc.
4. The FLOPER System in Action In [25], we conceived a new low-level representation for

the fuzzy code which currently offers the possibility of
As detailed in [24], [25], our parser has been implementegerforming debugging actions such as tracing a FLOPER
by using the classical DCG'Definite Clause Grammays Work session. For instance, after parsing the first rule of
resource of the Prolog language, since it is a convenierfiur program, we obtain the following expression (which is
notation for expressing grammar rules. Once the applicatio’asserted” into the interpeter’s database as a Prolog: fact)
is loaded inside a Prolog interpreter (in our case, SiCStUS ;| e(1, head(aton(pred(p,1),[var(’ X)])),

Prolog v.3.12.5), it shows a menu which includes options i nplication(prod),

for loading, parsing, listing and saving fuzzy programs, as bOdy(a”Fg??f’SL'azrz

well as for executing fuzzy goals (see Figure 1). All these [ aton(pred(q, 1), [var(’ X')]),
actions are based in the translation of the fuzzy code into truth_degree(0.6)]),
standard Prolog code. The key point is to extend each atom aton(pred(r, 1), [var(" X )1)1)).

. . truth_d 0.9)).
with an extra argument, callegluth variable of the form ruth_degree(0.9))

_TV;, which is intended to contain the truth degree obtainedwo more examples: substitutions are modeled by lists of
after the subsequent evaluation of the atom. For instancéerms of the formlink(V,T) whereV and T contains the

the first clause in our target program is translated inggX;,  code associated to an original variable and its correspond-
TVO) :— q(X,_TV1),or_luka(_TV1,0.6, TV2),r(X,_TV3), ing (linked) fuzzy term, respectively, whereas an state is
and_godel(_TV2, _TV3,_TV4), and prod(0.9, _TV4, TV0)”", represented by a term with functartate/2. We have
where some definitions of “aggregator predicates” areimplemented predicates for manipulating such kind of code
“and_godel(X,Y,Z) — (X =<Y,Z=X;X>Y,Z=Y)"and at a very low level in order to unify expressions, compose
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Parse/load a fuzzy prolog file (.fpl)
Parse/load/save a fuzzy prolog file.
Consult a prolog file (.pl).

Displays the last loaded clauses.
Clean the database

ook kR ok GOAL MENU ok %k ko ok ok
Introduce a new goal (between quotes).
Execute a goal completely
Set the maximum level of execution trees
Generate a partial execution tree
Select kind of interpretive steps .
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Fig. 1
EXAMPLE OF A WORK SESSION WITHFLOPERSHOWING“SMALL INTERPRETIVESTEPS' AND THE PROGRAMGOAL MENUS

substitutions, apply admisible/interpretive steps, etc. o Lar ge: means to obtain the final result in one go.

As showed in the down-middle, dark part of Figure 1, « Medi um implements the notion of “interpretive step”
FLOPER is equipped with two options, calléd ree" according Definition 2.4 [13].
and " dept h", for tracing execution trees and fixing the « Shal | : performs “small interpretive steps” on deriva-
maximum length allowed for their branches (initial), tions following Definition 3.2 [14].
respectively. Working with these options is crucial whea th The reader can observe at the beginning of Figure 1, the
"run" choice fails: remember that this last option is basedaspect offered by FLOPER when visualizing in detail the
on the generation of pure logic SLD-derivations which mightbehaviour of our running example when choosing the last
fall in loop or directly fail in some cases as the experiment®ption we have just commented before. It is easy to see
of [25] show, in contrast with the traces (based on finitethe correspondences with Examples 2.3 (note that, although
non-failed, admissible derivations) that ther ee" option  program rules applied on admissible steps always precede
displays. the corresponding state, FLOPER labels the root goal with

Regarding the last option snode” showed at the bot- the “virtual” program ruleR0) and 3.3 (advise that each
tom of Figure 1, it is important to remark that it repre- Primitive operators is always labeled with the ma#j.
sents our last record achieved in the development of th .
FLOPER tool. When the user selects such choice, he/sl-s- Conclusions and Future Work
can decide among three levels of detail when visualizing the Declarative programming languages are extensively used
interpretive phase performed during the generation of “unin solving Al problems. In recent years, we have observed a
folding trees” (the system displays states on differergdin growing interest for including expressive resources based
appropriately indented to distinguish the proper relaiop  fuzzy logic in order to increase the impact of both research
-parent/child/grandchild...- among nodes): communities. Encouraged by the experience acquired in our



research group regarding the design of techniques, todls anm.1]
applications related with the so-called multi-adjoint itbg
approaCh ([17]1 [15]1 [13]1 [22]1 [19]1 [20]1 [21]! [25]1 HJ’ [12]
[23]), in this paper we were concerned with the design and
real implementation of good cost measures for computation[%]
performed in such flexible fuzzy logic programming frame-
work.

We have highlighted the fact that the usual method of'4]
counting the number of computational steps performed in
a derivation, might produce wrong results when estimating
the computational effort developed in the interpretiveggha (1]
of a multi-adjoint derivation. The problem emerges when
considering connectives on the body of program rules whosigs]
definitions also invoke other connectives. Although in [22]
[23] two solutions were proposed under the point of view of
“connective weights”, in this paper we have been concerned
with the more visual answer given in [14] (based on a low17]
level re-definition of the notion of interpretive step) whic
has been finally implemented in our experimental FLOPER18]
prototype.

In the near future, we plan to exploit in practice its accu-
racy when proving the efficiency of the fuzzy fold/unfold, [19]
partial evaluation, reductant calculus and tresholdedltab
tion techniques developed in our research group ([17],,[13]2
[18], [19], [21], [26], [27]).
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