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Abstract— FLOPER is a “Fuzzy LOgic Programming En-
vironment for Research” trying to help the development of
applications supporting approximated reasoning and uncer-
tain knowledge in the fields of AI, symbolic computation,
soft-computing, semantic web, declarative programming and
so on. The tool, which is able to directly translate a
powerful kind of fuzzy logic programs belonging to the so-
called “multi-adjoint logic approach” into standard Prolog
code, currently offers running/debugging/tracing capabilities
with close connections to other sophisticated manipulation
techniques (program optimization, program specialization,
etc.) under development in our research group. In this
setting, the execution of a program is done in two separate
phases: operational and interpretive. During the first stage,
“admissible steps” are systematically applied in a similar
way to classical resolution steps in pure logic programming
(LP), thus returning an expression where all atoms have been
exploited. This last expression is then interpreted under a
given lattice during the so called interpretive phase. Whereas
the operational phase has been successfully formalized in the
past, more effort is needed to clarify the notion of “interpre-
tive step”. In this paper, we provide a real implementation
into FLOPER of a refinement of this concept which fairly
models at a very low level the computational behaviour of
the interpretive phase aiming too to visualize the computa-
tional effort required to solve a goal. The resulting method
also puts in practice an accurate and realistic way for future
efficiency studies regarding our ongoing research on fuzzy
techniques for Fold/Unfold, Partial Evaluation, Thresholded
Tabulation, etc.

Keywords: Fuzzy Logic Programming, Languages and Tech-
niques for AI, Software Tools, Computational Cost Measures

1. Introduction
Among other purposes, research inDeclarative Program-

ming and Fuzzy Logichas traditionally provided languages
and programming techniques for AI, soft-computing, and so
on. In particular,Logic Programming[1] has been widely
used for problem solving and knowledge representation in
the past, with recognized influences in the field of AI [2], [3].
Nevertheless, traditional logic languages do not incorporate
techniques or constructs to explicitly treat with uncertainty
and approximate reasoning.

To fulfill this gap,Fuzzy Logic Programminghas emerged
as an interesting and still growing research area trying to

agglutinate the efforts for introducing fuzzy logic into logic
programming. During the last decades, several fuzzy logic
programming systems have been developed [4], [5], [6], [7],
[8], [9], where the classical inference mechanism of SLD–
resolution is replaced with a fuzzy variant which is able to
handle partial truth and to reason with uncertainty.

This is the case ofmulti-adjoint logic programming[10],
[11], [12], one of the most powerful and promising ap-
proaches in the area. In this framework, a program can be
seen as a set of rules each one annotated by a truth degree
and a goal is a query to the system plus a substitution
(initially the empty substitution, denoted byid). Admissible
steps(a generalization of the classicalmodus ponensinfer-
ence rule) are systematically applied on goals in a similar
way to classical resolution steps in pure logic programming,
thus returning an state composed by a computed substitution
together with an expression where all atoms have been
exploited. Next, during the so called interpretive phase, (see
[13], [14]), this expression is interpreted under a given
lattice, hence returning a pair⟨truth degree; substitution⟩
which is the fuzzy counterpart of the classical notion of
computed answer used in pure logic programming.

On the other hand, the most common approach for an-
alyzing the efficiency of a program is measurement of its
execution time and memory usage. However, in order to
(theoretically) analyze the efficiency of programs, computing
strategies or program transformation techniques, it is con-
venient to define abstract approaches to cost measurement.
In particular, we are specially interested in to contrast
the behaviour of computations performed on fuzzy pro-
grams obtained via some program transformation techniques
developed in our research group (see some examples of
fuzzy fold/unfold and partial evaluation in [15], [16], [17],
[13], [18], [19], as well as the fuzzy tabulation techniques
documented in [20], [21]).

Specially motivated by this goal, we have observed that in
declarative programming frameworks it is usual to estimate
the computational effort needed to execute a goal in a
program by simply counting the number of derivation steps
required to reach their solutions. In the context of multi-
adjoint logic programming, we have unfortunately discov-
ered that, although this method seems to be acceptable
during the operational phase, it becomes inappropriate when
considering the interpretive one, since it does not take
into account the possible changes in the complexities of
the different kinds of fuzzy connectives involved in such



computations.
The problem was faced in [22], [23] by proposing more

refined (interpretive) cost measures based on “connective
weights” which were able of counting the number of prim-
itive operators directly/indirectly appearing in the definition
of the connectives evaluated in each (interpretive) step ofa
given derivation. Anyway, in this paper we are specially con-
cerned with the approach presented in [14], which redefines
the notion of interpretive step in order to explicitly expand
connective definitions and evaluating primitive (arithmetic)
operators on derivation states. The method does not alter the
final set of solutions, but it has the extra ability of exhibiting
the complexity of the interpretive phase in detail.

The main goal of the present paper is to present our
last developments performed on the FLOPER system
(see [24], [25] and visithttp://www.dsi.uclm.es
/investigacion/dect/FLOPERpage.htm) which
implements several kinds of interpretive steps, including
the refined notion of “small interpretive step” we have
just commented before [14]. Nowadays, the tool provides
facilities for executing as well as for debugging (by
generating declarative traces) such kind of fuzzy programs,
by means of two main representation (high/low-level,
Prolog-based) ways which are somehow antagonistic
regarding simplicity and precision features.

The structure of the paper is as follows. In Section 2
we summarize the main features of multi-adjoint logic pro-
gramming, both language syntax and procedural semantics.
Section 3 presents a discussion on cost measures proposed
in the past for the considered fuzzy setting, focusing in
our approach based on “small interpretive steps” which has
been successfully implemented into the FLOPER tool, as
described in Section 4 (which contains the main important
contribution of this paper). Finally, in Section 5 we give our
conclusions and some lines of future work.

2. Multi-Adjoint Logic Programming
This section summarizes the main features of multi-adjoint

logic programming (see [10], [11], [12] for a complete
formulation of this framework).

We work with a first order language,ℒ, containing
variables, constants, function symbols, predicate symbols,
and several (arbitrary) connectives to increase language
expressiveness: implication connectives (←1,←2, . . .); con-
junctive operators (denoted by&1,&2, . . .), disjunctive op-
erators (∨1,∨2, . . .), and hybrid operators (usually denoted
by @1,@2, . . .), all of them are grouped under the name
of “aggregators”. Aggregation operators are useful to de-
scribe/specify user preferences. An aggregation operator,
when interpreted as a truth function, may be an arith-
metic mean, a weighted sum or in general any monotone
application whose arguments are values of a complete
bounded latticeL. For example, if an aggregator@ is
interpreted as[[@]](x, y, z) = (3x + 2y + z)/6, we are

giving the highest preference to the first argument, then to
the second, being the third argument the least significant.
Although these connectives are binary operators, we usually
generalize them as functions with an arbitrary number of
arguments. So, we often write@(x1, . . . , xn) instead of
@(x1, . . . ,@(xn−1, xn), . . .). By definition, the truth func-
tion for an n-ary aggregation operator[[@]] : Ln → L is
required to be monotonous and fulfills[[@]](⊤, . . . ,⊤) = ⊤,
[[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our languageℒ contains the values of a
multi-adjoint lattice,⟨L,⪯,←1,&1, . . . ,←n,&n⟩, equipped
with a collection of adjoint pairs⟨←i,&i⟩, where each
&i is a conjunctor which is intended to the evaluation of
modus ponens[10]. In general,L may be the carrier of any
complete bounded lattice but, for readability reasons, in the
examples we shall selectL as the set of real numbers in the
interval [0, 1]. A L-expression is a well-formed expression
composed by values and connectives ofL, as well as variable
symbols andprimitive operators(i.e., arithmetic symbols
such as∗,+,min, etc.). In what follows, we assume that
the truth function of any connective@ in L is given by its
correspondingconnective definition, that is, an equation of
the form @(x1, . . . , xn) ≜ E, whereE is a L-expression
not containing variable symbols apart fromx1, . . . , xn.

A rule is a formulaH ←i ℬ, whereH is an atomic
formula (usually called thehead) andℬ (which is called the
body) is a formula built from atomic formulasB1, . . . , Bn

— n ≥ 0 —, truth values ofL, conjunctions, disjunctions
and aggregations. Agoal is a body submitted as a query to
the system. Roughly speaking, a multi-adjoint logic program
is a set of pairs⟨ℛ; v⟩ (we often writeℛ witℎ v), whereℛ
is a rule andv is a truth degree(a value ofL) expressing
the confidence of a programmer in the truth of the ruleℛ.
By abuse of language, we sometimes refer a tuple⟨ℛ; v⟩ as
a “rule”.

The procedural semantics of the multi–adjoint logic lan-
guageℒ can be thought as an operational phase (based
on admissible steps) followed by an interpretive one. In
the following, C[A] denotes a formula whereA is a sub-
expression which occurs in the –possibly empty– context
C[]. Moreover,C[A/A′] means the replacement ofA by A′

in contextC[], whereasVar(s) refers to the set of distinct
variables occurring in the syntactic objects, and�[Var(s)]
denotes the substitution obtained from� by restricting its
domain toVar(s).

Definition 2.1 (Admissible Step):LetQ be a goal and let
� be a substitution. The pair⟨Q;�⟩ is astateand we denote
by ℰ the set of states. Given a programP , an admissible
computationis formalized as a state transition system, whose

transition relation
AS
⇝ ⊆ (ℰ × ℰ) is the smallest relation

satisfying the followingadmissible rules(where we always
consider thatA is the selected atom inQ and mgu(E)
denotes themost general unifierof an equation setE):



1) ⟨Q[A];�⟩
AS
⇝ ⟨(Q[A/v&iℬ])�;��⟩, if � =

mgu({A′ = A}), ⟨A′←iℬ; v⟩ in P andℬ is not empty.

2) ⟨Q[A];�⟩
AS
⇝ ⟨(Q[A/v])�;��⟩, if � = mgu({A′ =

A}) and ⟨A′←i; v⟩ in P .

As usual, rules are taken renamed apart. We shall use the

symbols
AS1
⇝ ,

AS2
⇝ and

AS3
⇝ to distinguish between

computation steps performed by applying one of the specific
admissible rules. Also, the application of a rule on a step will

be annotated as a superscript of the
AS
⇝ symbol.

Definition 2.2: LetP be a program,Q a goal and “id” the
empty substitution. Anadmissible derivationis a sequence

⟨Q; id⟩
AS
⇝ . . .

AS
⇝ ⟨Q′; �⟩. WhenQ′ is a formula not

containing atoms (i.e., aL-expression), the pair⟨Q′;�⟩,
where � = �[Var(Q)], is called anadmissible computed
answer(a.c.a.) for that derivation.

Example 2.3:Let P be the following fuzzy program:

ℛ1 : p(X) ←P &G(∨L(q(X), 0.6), r(X)) with 0.9
ℛ2 : q(a) ← with 0.8
ℛ3 : r(X) ← with 0.7

where the labelsL, G and P mean respectively for
Łukasiewicz logic, Gödel intuitionistic logic and product
logic, that is,∨L(x1, x2) ≜ min(1, x1 + x2), &G(x1, x2) ≜
min(x1, x2) and&P(x1, x2) ≜ x1 ∗ x2.

Now, we can generate the following admissible derivation
(we underline the selected atom in each step):

⟨p(X); id⟩
AS1
⇝ ℛ1

⟨&P(0.9,&G(∨L(q(X1), 0.6), r(X1))); {X/X1}⟩
AS2
⇝ ℛ2

⟨&P(0.9,&G(∨L(0.8, 0.6), r(a))); {X/a,X1/a}⟩
AS2
⇝ ℛ3

⟨&P(0.9,&G(∨L(0.8, 0.6), 0.7)); {X/a,X1/a,X2/a}⟩

So, the admissible computed answer (a.c.a.) in this case
is the pair:⟨&P(0.9,&G(∨L(0.8, 0.6), 0.7)); �⟩, where� =
{X/a,X1/a,X2/a}[Var(p(X))] = {X/a}.
If we exploit all atoms of a goal, by applying admissible
steps as much as needed during the operational phase, then
it becomes a formula with no atoms (aL-expression) which
can be then directly interpreted w.r.t. latticeL by applying
the following definition we initially presented in [13]:

Definition 2.4 (Interpretive Step):Let P be a program,
Q a goal and� a substitution. Assume that[[@]] is the
truth function of connective@ in the lattice ⟨L,⪯⟩ as-
sociated toP , such that, for valuesr1, . . . , rn, rn+1 ∈
L, we have that [[@]](r1, . . . , rn) = rn+1. Then,
we formalize the notion of interpretive computation
as a state transition system, whose transition relation
IS
⇝ ⊆ (ℰ × ℰ) is defined as the least one satisfying:

⟨Q[@(r1, . . . , rn)];�⟩
IS
⇝ ⟨Q[@(r1, . . . , rn)/rn+1];�⟩.

Definition 2.5: Let P be a program and⟨Q;�⟩ an
a.c.a., that is,Q is a goal not containing atoms (i.e.,
a L-expression). Aninterpretive derivationis a sequence

⟨Q;�⟩
IS
⇝ . . .

IS
⇝ ⟨Q′;�⟩. WhenQ′ = r ∈ L, being⟨L,⪯⟩

the lattice associated toP , the state⟨r;�⟩ is called afuzzy
computed answer(f.c.a.) for that derivation.

Example 2.6:If we complete the previous derivation of
Example 2.3 by applying 3 interpretive steps in order to ob-
tain the final f.c.a.⟨0.63; {X/a}⟩, we generate the following
interpretive derivationD1:

⟨&P(0.9,&G(∨L(0.8, 0.6), 0.7)); �⟩
IS
⇝

⟨&P(0.9,&G(1, 0.7)); �⟩
IS
⇝

⟨&P(0.9, 0, 7); �⟩
IS
⇝

⟨0.63; �⟩.

3. Interpretive Steps and Cost Measures
A classical, simple way for estimating the computational

cost required to built a derivation, consists in counting the
number of computational steps performed on it. So, given a
derivationD, we define its:

∙ operational cost, Oc(D), as the number of admissible
steps performed inD.

∙ interpretive cost, ℐc(D), as the number of interpretive
steps done inD.

Note that the operational and interpretive costs of derivation
D1 performed in the previous section areOc(D1) = 3 and
ℐc(D1) = 3, respectively. Intuitively,Oc informs us about
the number of atoms exploited along a derivation. Similarly,
ℐc seems to estimate the number of connectives evaluated in
a derivation. However, this last statement is not completely
true:ℐc only takes into account those connectives appearing
in the bodies of program rules which are replicated on states
of the derivation, but no those connectives recursivelynested
in the definition of other connectives. The following example
highlights this fact.

Example 3.1:A simplified version of ruleℛ1, whose
body only contains an aggregator symbol is:ℛ∗

1 :
p(X) ←P @1(q(X), r(X)) with 0.9 where @1(x1, x2) ≜
&G(∨L(x1, 0.6), x2). Note thatℛ∗

1 has exactly the same
meaning (interpretation) thanℛ1, although different syntax.
In fact, both of them have the same sequence of atoms in
their head and bodies. The differences are regarding the set
of connectives which explicitly appear in their bodies since
in ℛ∗

1 we have moved&G and∨L (as well as value0.6) from
the body of the rule (seeℛ1) to the connective definition
of @1. Now, we use ruleℛ∗

1 instead ofℛ1 for generating
the following derivationD∗

1 which returns exactly the same
f.c.a thanD1:
⟨p(X); id⟩

AS1
⇝ ℛ

∗

1

⟨&P(0.9,@1(q(X1), r(X1)); {X/X1}⟩
AS2
⇝ ℛ2

⟨&P(0.9,@1(0.8, r(a))); {X/a,X1/a}⟩
AS2
⇝ ℛ3

⟨&P(0.9,@1(0.8, 0.7)); {X/a,X1/a,X2/a}⟩
IS
⇝

⟨&P(0.9, 0.7); {X/a,X1/a,X2/a}⟩
IS
⇝

⟨0.63; {X/a,X1/a,X2/a}⟩



Note that, since we have exploited the same atoms with
the same rules (except for the first steps performed with
rules ℛ1 and ℛ∗

1, respectively) in both derivations, then
Oc(D1) = Oc(D

∗
1) = 3. However, although connectives&G

and∨L have been evaluated in both derivations, inD∗
1 such

evaluations have not been explicitly counted as interpretive
steps, and consequently they have not been added to increase
the interpretive cost measureℐc. This unrealistic situation is
reflected by the abnormal resultℐc(D1) = 3 > 2 = ℐc(D

∗
1):

as we will see later, it is important to note thatℛ∗
1 must not

be considered an optimized version ofℛ1, even when the
wrong measureℐc seems to indicate the contrary.

This problem was initially pointed out in [22], where a
preliminary solution was proposed by assigning weights to
connectives in concordance with the set of primitive opera-
tors involved in the definition of the proper connective@ as
well as those ones recursively contained in the definitions of
connectives invoked from@. Moreover, in [23] we improved
the previous notion of “connective weight” by also taken into
account the number of recursive calls to fuzzy connectives
(directly or indirectly) performed in the definition of@.

A rather different way for facing the same problem is
presented in [14], where instead on connective weights, we
opt for the more “visual” method we have just implemented
into FLOPER, based on the subsequent re-definition of the
behaviour of the interpretive phase.

Definition 3.2 (Small Interpretive Step):Let P be a pro-
gram,Q a goal and� a substitution. Assume that the (non
interpreted yet)L-expressionΩ(r1, . . . , rn) occurs inQ,
whereΩ is just a primitive operator or a connective defined
in the lattice ⟨L,⪯⟩ associated toP , and r1, . . . , rn are
elements ofL. We formalize the notion ofsmall interpretive
computationas a state transition system, whose transition

relation
SIS
⇝ ⊆ (ℰ×ℰ) is the smallest relation satisfying the

following small interpretive rules(where we always consider
thatΩ(r1, . . . , rn) is the selectedL-expression inQ):

1) ⟨Q[Ω(r1, . . . , rn)];�⟩
SIS
⇝ ⟨Q[Ω(r1, . . . , rn)/E

′];�⟩, if Ω
is a connective defined asΩ(x1, . . . , xn) ≜ E andE′

is obtained from theL-expressionE by replacing each
variable (formal parameter)xi by its corresponding
value (actual parameter)ri, 1 ≤ i ≤ n, that is,
E′ = E[x1/r1, . . . , xn/rn].

2) ⟨Q[Ω(r1, . . . , rn)];�⟩
SIS
⇝ ⟨Q[Ω(r1, . . . , rn)/r];�⟩, if Ω

is a primitive operator such that, once evaluated with
parametersr1, . . . , rn, produces the resultr.

From now, we shall use the symbols
SIS1
⇝ and

SIS2
⇝ to

distinguish between computation steps performed by apply-
ing one of the specific “small interpretive” rules. Moreover,
when we use the expressioninterpretive derivation, we refer
to a sequence ofsmall interpretive steps(according to the
previous definition) instead of a sequence ofinterpretive
steps(regarding Definition 2.4). Note that this fact, supposes
too a slight revision of Definition 2.5 which does not affect

the essence of the notion of fuzzy computed answer: the
repeated application of both kinds of interpretive steps ona
given state only affects to the length of the corresponding
derivations, but both ones lead to the same final states
(containing the corresponding fuzzy computed answers).

Example 3.3:Recalling again the a.c.a. obtained in Ex-
ample 2.3, we can reach the final fuzzy computed answer
⟨0.63; {X/a}⟩ (achieved in Example 2.6 by means of inter-
pretive steps) by generating now the following interpretive
derivationD2 based on “small interpretive steps” (Figure 1):

⟨&P(0.9,&G(∨L(0.8, 0.6), 0.7)); {X/a}⟩
SIS1
⇝

⟨&P(0.9,&G(min(1, 0.8 + 0.6), 0.7)); {X/a}⟩
SIS2
⇝

⟨&P(0.9,&G(min(1, 1.4), 0.7)); {X/a}⟩
SIS2
⇝

⟨&P(0.9,&G(1, 0.7)); {X/a}⟩
SIS1
⇝

⟨&P(0.9,min(1, 0.7)); {X/a}⟩
SIS2
⇝

⟨&P(0.9, 0.7); {X/a}⟩
SIS1
⇝

⟨0.9 ∗ 0.7; {X/a}⟩
SIS2
⇝

⟨0.63; {X/a}⟩
Going back now to Example 3.1, we can rebuild the
interpretive phase of DerivationD∗

1 in terms of small
interpretive steps, thus generating the following interpretive

derivation D∗
2 . Firstly, by applying a

SIS1
⇝ step

on the L-expression&P(0.9,@1(0.8, 0.7)), it becomes
&P(0.9,&G(∨L(0.8, 0.6), 0.7)), and from here, the
interpretive derivation evolves exactly in the same way as
derivationD2 we have just done above.

At this moment, it is mandatory to meditate on cost
measures regarding derivationsD1, D

∗
1 , D2 andD∗

2 . First of
all, note that the operational costOc of all them coincides,
which is quite natural. However, whereasℐc(D1) = 3 >
2 = ℐc(D

∗
1), we have now thatℐc(D2) = 7 < 8 = ℐc(D

∗
2).

This apparent contradiction might confuse us when trying to
decide which program rule (ℛ1 or ℛ∗

1) is “better”. The use
of Definition 3.2 in derivationsD2 andD∗

2 is the key point
to solve our problem, as we are going to see. In Example
3.1 we justified that by simply counting the number of
interpretive steps performed in Definition 2.4 might produce
abnormal results, since the evaluation of connectives with
different complexities were (wrongly) measured with the
same computational cost. Fortunately, the notion of small
interpretive step makes visible in the proper derivation all
the connectives and primitive operators appearing in the
(possibly recursively nested) definitions of any connective
appearing in any derivation state. As we have seen, inD2

we have expanded in three
SIS1
⇝ steps the definitions of

three connectives, i.e.∨L,&G and&P, and we have applied

four
SIS2
⇝ steps to solve four primitive operators, that is,+,

min (twice) and∗. The same computational effort as been

performed inD∗
2 , but also one more

SIS1
⇝ step was applied

to accomplish with the expansion of the extra connective
@1. This justifies why ℐc(D2) = 7 < 8 = ℐc(D

∗
2)



and contradicts the wrong measures of Example 3.1: the
interpretive effort developed in derivationsD1 andD2 (both
using the program ruleℛ1), is slightly lower than the one
performed in derivationsD∗

1 andD∗
2 (which used ruleℛ∗

1),
and not the contrary.

The accuracy of our new way for measuring and per-
forming interpretive computations seems to be crucial when
comparing the execution behaviour of programs obtained by
transformation techniques such as the fold/unfold framework
we describe in [15], [17]. In this sense, instead of measuring
the absolute cost of derivations performed in a program, we
are more interested in the relative gains/lost of efficiencypro-
duced on transformed programs. For instance, by applying
the so-called “aggregation operation” described in [17] we
can transform ruleℛ1 intoℛ∗

1 and, in order to proceed with
alternative transformations (fold,unfold, et...) if the resulting
program degenerates w.r.t. the original one (as occurs in
this case), we need an appropriate cost measure as the one
proposed here to help us for taken decisions. This fact has
capital importance for discovering drastic situations which
can appear in degenerated transformation sequences such as
the generation of highly nested definitions of aggregators.
For instance, assume the following sequence of connective
definitions:@100(x1, x2) ≜ @99(x1, x2), @99(x1, x2) ≜
@98(x1, x2), . . . , and finally@1(x1, x2) ≜ x1 ∗ x2. When
trying to solve two expression of the form@99(0.9, 0.8) and
@1(0.9, 0.8), cost measures based on number of interpretive
steps ([13]) and weights of interpretive steps ([22]) would
assign 1 unit of interpretive cost to both derivations. For-
tunately, our new approach is able to clearly distinguish

between both cases, since the number of
SIS1
⇝ steps

performed in each one is rather different (100 and 1,
respectively).

4. The FLOPER System in Action
As detailed in [24], [25], our parser has been implemented

by using the classical DCG’s (Definite Clause Grammars)
resource of the Prolog language, since it is a convenient
notation for expressing grammar rules. Once the application
is loaded inside a Prolog interpreter (in our case, Sicstus
Prolog v.3.12.5), it shows a menu which includes options
for loading, parsing, listing and saving fuzzy programs, as
well as for executing fuzzy goals (see Figure 1). All these
actions are based in the translation of the fuzzy code into
standard Prolog code. The key point is to extend each atom
with an extra argument, calledtruth variable of the form
TVi, which is intended to contain the truth degree obtained

after the subsequent evaluation of the atom. For instance,
the first clause in our target program is translated into: “p(X,
TV0) :– q(X, TV1), or luka( TV1, 0.6, TV2), r(X, TV3),
and godel( TV2, TV3, TV4), and prod(0.9, TV4, TV0)”,
where some definitions of “aggregator predicates” are:
“and godel(X, Y, Z) :– (X =< Y, Z = X; X > Y, Z = Y)” and

“and prod(X, Y, Z) :– Z is X ∗ Y”. Moreover, the second
clause in our target program, becomes in the pure Prolog fact
“q(a, 0.8)” while a fuzzy goal like “p(X) &godel r(a)”,
is translated into the Prolog goal: “p(X, TV1), r(a, TV2),
and godel( TV1, TV2, Truth degree)” (note that the last
truth degree variable is not anonymous now) for which the
Prolog interpreter returns the two desired fuzzy computed
answer[Truth degree = 0.63, X = a].

The previous set of options suffices for running fuzzy
programs: all internal computations (including compiling
and executing) are pure Prolog derivations whereas inputs
(fuzzy programs and goals) and outputs (fuzzy computed
answers) have always a fuzzy taste, which produces the
illusion on the final user of being working with a purely
fuzzy logic programming tool. However, when trying to go
beyond program execution, the previous method becomes
insufficient. In particular, observe that we can only simulate
complete fuzzy derivations (by performing the corresponding
Prolog derivations based on SLD-resolution) but we can not
generate partial derivations or even apply a single admissible
step on a given fuzzy expression. This kind of low-level
manipulations are mandatory when trying to incorporate to
the tool some program transformation techniques such as
those based on fold/unfold (i.e., contraction and expansion
of sub-expressions of a program using the definitions of
this program or of a preceding one, thus generating more
efficient code) or partial evaluation we have described in
[17], [15], [19]. For instance, our fuzzy unfolding trans-
formation is defined as the replacement of a program rule
ℛ : ⟨A ←i ℬ with v⟩ by the set of rules{A� ←i

ℬ′ with v ∣ ⟨ℬ; id⟩ →AS ⟨ℬ
′;�⟩}, which obviously requires

the implementation of mechanisms for generating derivations
of a single step, rearranging the body of a program rule,
applying substitutions to its head, etc.

In [25], we conceived a new low-level representation for
the fuzzy code which currently offers the possibility of
performing debugging actions such as tracing a FLOPER
work session. For instance, after parsing the first rule of
our program, we obtain the following expression (which is
”asserted” into the interpeter’s database as a Prolog fact):

rule(1, head(atom(pred(p,1),[var(’X’)])),
implication(prod),
body(and(godel,2,

[or(luka,2,
[ atom(pred(q,1),[var(’X’)]),

truth_degree(0.6)]),
atom(pred(r,1),[var(’X’)])])),

truth_degree(0.9)).

Two more examples: substitutions are modeled by lists of
terms of the formlink(V, T) whereV and T contains the
code associated to an original variable and its correspond-
ing (linked) fuzzy term, respectively, whereas an state is
represented by a term with functorstate/2. We have
implemented predicates for manipulating such kind of code
at a very low level in order to unify expressions, compose
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substitutions, apply admisible/interpretive steps, etc.

As showed in the down-middle, dark part of Figure 1,
FLOPER is equipped with two options, called"tree"
and "depth", for tracing execution trees and fixing the
maximum length allowed for their branches (initially3),
respectively. Working with these options is crucial when the
"run" choice fails: remember that this last option is based
on the generation of pure logic SLD-derivations which might
fall in loop or directly fail in some cases as the experiments
of [25] show, in contrast with the traces (based on finite,
non-failed, admissible derivations) that the"tree" option
displays.

Regarding the last option “ismode” showed at the bot-
tom of Figure 1, it is important to remark that it repre-
sents our last record achieved in the development of the
FLOPER tool. When the user selects such choice, he/she
can decide among three levels of detail when visualizing the
interpretive phase performed during the generation of “un-
folding trees” (the system displays states on different lines,
appropriately indented to distinguish the proper relationship
-parent/child/grandchild...- among nodes):

∙ Large: means to obtain the final result in one go.
∙ Medium: implements the notion of “interpretive step”

according Definition 2.4 [13].
∙ Small: performs “small interpretive steps” on deriva-

tions following Definition 3.2 [14].
The reader can observe at the beginning of Figure 1, the
aspect offered by FLOPER when visualizing in detail the
behaviour of our running example when choosing the last
option we have just commented before. It is easy to see
the correspondences with Examples 2.3 (note that, although
program rules applied on admissible steps always precede
the corresponding state, FLOPER labels the root goal with
the “virtual” program ruleR0) and 3.3 (advise that each
primitive operators is always labeled with the mark#).

5. Conclusions and Future Work
Declarative programming languages are extensively used

in solving AI problems. In recent years, we have observed a
growing interest for including expressive resources basedon
fuzzy logic in order to increase the impact of both research
communities. Encouraged by the experience acquired in our



research group regarding the design of techniques, tools and
applications related with the so-called multi-adjoint logic
approach ([17], [15], [13], [22], [19], [20], [21], [25], [14],
[23]), in this paper we were concerned with the design and
real implementation of good cost measures for computations
performed in such flexible fuzzy logic programming frame-
work.

We have highlighted the fact that the usual method of
counting the number of computational steps performed in
a derivation, might produce wrong results when estimating
the computational effort developed in the interpretive phase
of a multi-adjoint derivation. The problem emerges when
considering connectives on the body of program rules whose
definitions also invoke other connectives. Although in [22],
[23] two solutions were proposed under the point of view of
“connective weights”, in this paper we have been concerned
with the more visual answer given in [14] (based on a low
level re-definition of the notion of interpretive step) which
has been finally implemented in our experimental FLOPER
prototype.

In the near future, we plan to exploit in practice its accu-
racy when proving the efficiency of the fuzzy fold/unfold,
partial evaluation, reductant calculus and tresholded tabula-
tion techniques developed in our research group ([17], [13],
[18], [19], [21], [26], [27]).
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