
To appear in EPTCS.

A Fuzzy Logic Programming Environment
for Managing Similarity and Truth Degrees (Tool System)∗

Pascual Julián-Iranzo
Department of Technologies and Information Systems

University of Castilla-La Mancha
13071 Ciudad Real (Spain)
Pascual.Julian@uclm.es

Ginés Moreno
Department of Computing Systems
University of Castilla-La Mancha

02071 Albacete (Spain)
Gines.Moreno@uclm.es

Jaime Penabad
Department of Mathematics

University of Castilla-La Mancha
02071 Albacete (Spain)

Jaime.Penabad@uclm.es

Carlos Vázquez
Department of Computing Systems
University of Castilla-La Mancha

02071 Albacete (Spain)
Carlos.Vazquez@uclm.es

FASILL (acronym of “Fuzzy Aggregators and Similarity Into a Logic Language”) is a fuzzy logic
programming language with implicit/explicit truth degree annotations, a great variety of connec-
tives and unification by similarity. FASILL integrates and extends features coming from MALP
(Multi-Adjoint Logic Programming, a fuzzy logic language with explicitly annotated rules) and
Bousi∼Prolog (which uses a weak unification algorithm and is well suited for flexible query an-
swering). Hence, it properly manages similarity and truth degrees in a single framework combining
the expressive benefits of both languages. This paper presents the main features and implementations
details of FASILL. Along the paper we describe its syntax and operational semantics and we give
clues of the implementation of the lattice module and the similarity module, two of the main building
blocks of the new programming environment which enriches the FLOPER system developed in our
research group.

Keywords: Fuzzy Logic Programming, Similarity Relations, Software Tools

1 Introduction

The challenging research area of Fuzzy Logic Programming is devoted to introduce fuzzy logic con-
cepts into logic programming in order to explicitly treat with uncertainty in a natural way. It has pro-
vided a wide variety of PROLOG dialects along the last three decades. Fuzzy logic languages can be
classified (among other criteria) regarding the emphasis they assign when fuzzifying the original uni-
fication/resolution mechanisms of PROLOG. So, whereas some approaches are able to cope with sim-
ilarity/proximity relations at unification time [3, 2, 16], other ones extend their operational principles
(maintaining syntactic unification) for managing a wide variety of fuzzy connectives and truth degrees
on rules/goals beyond the simpler case of true or false [7, 8, 13]. Our research group has been involved
in both alternatives, as reveals the design of the Bousi∼Prolog language1 [5, 6, 15], where clauses co-
habit with similarity/proximity equations, and the development of the FLOPER system2, which manages
fuzzy programs composed by rules richer than clauses [9, 12]. Our current goal for fusing both worlds

∗This work was supported by the EU (FEDER), and the Spanish MINECO Ministry (Ministerio de Economı́a y Competi-
tividad) under grant TIN2013-45732-C4-2-P.

1Two different programming environments for Bousi∼Prolog are available at http://dectau.uclm.es/bousi/.
2The tool is freely accessible from the Web site http://dectau.uclm.es/floper/.

 http://dectau.uclm.es/bousi/
 http://dectau.uclm.es/floper/

146 A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

&̇P(x,y), x∗ y |̇P(x,y), x+ y− xy Product
&̇G(x,y),min(x,y) |̇G(x,y), max(x,y) Gödel
&̇L(x,y),max(0,x+ y−1) |̇L(x,y),min(x+ y,1) Łukasiewicz

Figure 1: Conjunctions and disjunctions in [0,1] for Product, Łukasiewicz, and Gödel fuzzy logics

is somehow inspired by [1], but in our framework we admit a wider set of connectives inside the body of
programs rules. In this paper, we give a first step in our pending task from some years ago for embedding
into FLOPER the weak unification algorithm of Bousi∼Prolog.

FASILL is a first order language built upon a signature Σ, that contains the elements of a countably
infinite set of variables V , function symbols and predicate symbols with an associated arity –usually
expressed as pairs f/n or p/n where n represents its arity–, the implication symbol (←) and a set of
connectives. The language combines the elements of Σ as terms, atoms, rules and formulas. A constant
c is a function symbol with arity zero. A term is a variable, a constant or a function symbol f/n applied
to n terms t1, . . . , tn, and is denoted as f (t1, . . . , tn). We allow values of a lattice L as part of the signature
Σ. Therefore, a well-formed formula can be either:

• r, if r ∈ L

• p(t1, . . . , tn), if t1, . . . , tn are terms and p/n is an n-ary predicate. This formula is called atom.
Particularly, atoms containing no variables are called ground atoms, and atoms built from nullary
predicates are called propositional variables

• ς(F1, . . . ,Fn), if F1, . . . ,Fn are well-formed formulas and ς is an n-ary connective with truth
function ς̇ : Ln→ L

Definition 1.1 (Complete lattice). A complete lattice is a partially ordered set (L,≤) such that every
subset S of L has infimum and supremum elements. Then, it is a bounded lattice, i.e., it has bottom and
top elements, denoted by ⊥ and >, respectively. L is said to be the carrier set of the lattice, and ≤ its
ordering relation.

The lattice is equipped with a set of connectives3 including

• aggregators denoted by @, whose truth functions @̇ fulfill the boundary condition:@̇(>,>) =>,
@̇(⊥,⊥) =⊥, and monotonicity: (x1,y1)≤ (x2,y2)⇒ @̇(x1,y1)≤ @̇(x2,y2).

• t-norms and t-conorms [14] (also named conjunctions and disjunctions, that we denote by & and
|, respectively) whose truth functions fulfill the following properties:

· Commutative: &̇(x,y) = &̇(y,x) |̇(x,y) = |̇(y,x)
· Associative: &̇(x,&̇(y,z)) = &̇(&̇(x,y),z) |̇(x, |̇(y,z)) = |̇(|̇(x,y),z)
· Identity element: &̇(x,>) = x |̇(x,⊥) = x

·Monotonicity in each argument: z≤ t⇒
{

&̇(z,y)≤ &̇(t,y) &̇(x,z)≤ &̇(x, t)
|̇(z,y)≤ |̇(t,y) |̇(x,z)≤ |̇(x, t)

In this paper we use the lattice ([0,1],≤), where ≤ is the usual ordering relation on real numbers, and
three sets of connectives corresponding to the fuzzy logics of Gödel, Łukasiewicz and Product, defined
in Figure 1, where labels L, G and P mean respectively Łukasiewicz logic, Gödel logic and product logic
(with different capabilities for modeling pessimistic, optimistic and realistic scenarios.)

3Here, the connectives are binary operations but we usually generalize them with an arbitrary number of arguments.

P. Julián-Iranzo, G. Moreno, J. Penabad & C. Vázquez 147

Definition 1.2 (Similarity relation). Given a domain U and a lattice L with fixed t-norm ∧, a similarity
relation R is a fuzzy binary relation on U , that is a fuzzy subset on U ×U (namely, a mapping R :
U ×U → L), such that fulfills the following properties4:

• Reflexive: R(x,x) =>,∀x ∈U

• Symmetric: R(x,y) = R(y,x),∀x,y ∈U

• Transitive: R(x,z)≥R(x,y)∧R(y,z),∀x,y,z ∈U

Certainly, we are interested in fuzzy binary relations on a syntactic domain. We primarily define sim-
ilarities on the symbols of a signature, Σ, of a first order language. This makes possible to treat as
indistinguishable two syntactic symbols which are related by a similarity relation R. Moreover, a simi-
larity relation R on the alphabet of a first order language can be extended to terms by structural induction
in the usual way [16]:

1. let x be a variable, R̂(x,x) = R(x,x) = 1,

2. let f and g be two n-ary function symbols and let t1, . . . , tn, s1, . . . , sn be terms,

R̂(f (t1, . . . , tn),g(s1, . . . ,sn)) = R(f ,g)∧ (
∧n

i=1 R̂(ti,si))

3. otherwise, the approximation degree of two terms is zero.

Analogously for atomic formulas. Note that, following on, we shall not make a notational distintion
between the relation R and its extension R̂.

Definition 1.3 (Rule). A rule has the form A←B, where A is an atomic formula called head and B,
called body, is a well-formed formula (ultimately built from atomic formulas B1, . . . ,Bn, truth values of
L and connectives) 5. In particular, when the body of a rule is r ∈ L (an element of lattice L), this rule is
called fact and can be written as A← r (or simply A if r =>).

Definition 1.4 (Program). A program P is a tuple 〈Π,R,L〉 where Π is a set of rules, R is a similarity
relation between the elements of Σ, and L is a complete lattice.

2 Operational Semantics of FASILL

Rules in a FASILL program have the same role than clauses in PROLOG (or MALP [8, 4, 11]) programs,
that is, stating that a certain predicate relates some terms (the head) if some conditions (the body) hold.

As a logic language, FASILL inherits the concepts of substitution, unifier and most general unifier
(mgu). Some of them are extended to cope with similarities. Concretely, the most general unifier is
replaced by the concept of weak most general unifier (w.m.g.u.), following the line of Bousi∼Prolog
[5]. Roughly speaking, the weak unification algorithm states that two expressions (i.e, terms or atomic
formulas) f (t1, . . . , tn) and g(s1, . . . ,sn) weakly unify if the root symbols f and g are close with a certain
degree (i.e. R(f ,g) = r > ⊥) and each of their arguments ti and si weakly unify. Therefore, there is a
weak unifier for two expressions even if the symbols at their roots are not syntactically equals (f 6≡ g).

More technically, the weak unification algorithm we are using is a reformulation/extension of the
one which appears in [16] for arbitrary complete lattices. We formalize it as a transition system sup-
ported by a similarity-based unification relation “⇒”. The unification of the expressions E1 and E2 is

4For convenience, R(x,y), also denoted xRy, refers both the syntactic expression (that symbolizes that the elements x,y∈U
are related by R) and the truth degree µR(x,y), i.e., the affinity degree of the pair (x,y) ∈U ×U with the verbal predicate R.

5In order to subsume the syntactic conventions of MALP, in our programs we also admit weighted rules with shape “A←i
B with v”, which are internally treated as “A← (v&iB)” (this transformation preserves the meaning of rules as proved in [10]).

148 A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

obtained by a state transformation sequence starting from an initial state 〈G≡ {E1 ≈ E2}, id,α0〉, where
id is the identity substitution and α0 = > is the supreme of (L,≤): 〈G, id,α0〉 ⇒ 〈G1,θ1,α1〉 ⇒ ·· · ⇒
〈Gn,θn,αn〉. When the final state 〈Gn,θn,αn〉, with Gn = /0, is reached (i.e., the equations in the initial
state have been solved), the expressions E1 and E2 are unifiable by similarity with w.m.g.u. θn and uni-
fication degree αn. Therefore, the final state 〈 /0,θn,αn〉 signals out the unification success. On the other
hand, when expressions E1 and E2 are not unifiable, the state transformation sequence ends with failure
(i.e., Gn = Fail).

The similarity-based unification relation, “⇒”, is defined as the smallest relation derived by the
following set of transition rules (where V ar(t) denotes the set of variables of a given term t)

〈{ f (t1, . . . , tn)≈ g(s1, . . . ,sn)}∪E,θ ,r1〉 R(f ,g) = r2 >⊥
〈{t1 ≈ s1, . . . , tn ≈ sn}∪E,θ ,r1∧ r2〉

1

〈{X ≈ X}∪E,θ ,r1〉
〈E,θ ,r1〉

2
〈{X ≈ t}∪E,θ ,r1〉 X /∈ V ar(t)

〈(E){X/t},θ{X/t},r1〉
3

〈{t ≈ X}∪E,θ ,r1〉
〈{X ≈ t}∪E,θ ,r1〉

4
〈{X ≈ t}∪E,θ ,r1〉 X ∈ V ar(t)

〈Fail,θ ,r1〉
5

〈{ f (t1, . . . , tn)≈ g(s1, . . . ,sn)}∪E,θ ,r1〉 R(f ,g) =⊥
〈Fail,θ ,r1〉

6

Rule 1 decomposes two expressions and annotates the relation between the function (or predicate) sym-
bols at their root. The second rule eliminates spurious information and the fourth rule interchanges the
position of the symbols to be coped by other rules. The third and fifth rules perform an occur check of
variable X in a term t. In case of success, it generates a substitution {X/t}; otherwise the algorithm ends
with failure. It can also end with failure if the relation between function (or predicate) symbols in R is
⊥, as stated by Rule 6.

Usually, given two expressions E1 and E2, if there is a successful transition sequence, 〈{E1 ≈
E2}, id,>〉⇒? 〈 /0,θ ,r〉, then we write that wmgu(E1,E2) = 〈θ ,r〉, being θ the weak most general unifier
of E1 and E2, and r is their unification degree.

Finally note that, in general, a w.m.g.u. of two expressions E1 and E2 is not unique [16]. Cer-
tainly, the weak unification algorithm only computes a representative of a w.m.g.u. class, in the sense
that, if θ = {x1/t1, . . . ,xn/tn} is a w.m.g.u., with degree β , then, by definition, any substitution θ ′ =
{x1/s1, . . . ,xn/sn}, satisfying R(si, ti) > ⊥, for any 1 ≤ i ≤ n, is also a w.m.g.u. with approximation
degree β ′ = β ∧ (

∧n
1 R(si, ti)), where “∧′′ is a selected t-norm. However, observe that, the w.m.g.u. rep-

resentative computed by the weak unification algorithm is one with an approximation degree equal or
greater than other w.m.g.u. As in the case of the classical syntactic unification algorithm, our algorithm
always terminates returning a success or a failure.

In order to describe the procedural semantics of the FASILL language, in the following we denote
by C [A] a formula where A is a sub-expression (usually an atom) which occurs in the –possibly empty–
context C [] whereas C [A/A′] means the replacement of A by A′ in the context C []. Moreover, V ar(s)
denotes the set of distinct variables occurring in the syntactic object s and θ [V ar(s)] refers to the sub-
stitution obtained from θ by restricting its domain to V ar(s). In the next definition, we always consider
that A is the selected atom in a goal Q and L is the complete lattice associated to Π.

Definition 2.1 (Computational Step). Let Q be a goal and let σ be a substitution. The pair 〈Q;σ〉 is a
state. Given a program 〈Π,R,L〉 and a t-norm ∧ in L, a computation is formalized as a state transition

P. Julián-Iranzo, G. Moreno, J. Penabad & C. Vázquez 149

Figure 2: Screen-shot of a work session with FLOPER managing a FASILL program

system, whose transition relation is the smallest relation satisfying these rules:

1) Successful step (denoted as SS
):

〈Q[A],σ〉 A′←B ∈Π wmgu(A,A′) = 〈θ ,r〉
〈Q[A/B∧ r]θ ,σθ〉

SS

2) Failure step (denoted as FS
):

〈Q[A],σ〉 @A′←B ∈Π : wmgu(A,A′) = 〈θ ,r〉,r >⊥
〈Q[A/⊥],σ〉

FS

3) Interpretive step (denoted as IS
):

〈Q[@(r1, . . . ,rn)];σ〉 @̇(r1, . . . ,rn) = rn+1

〈Q[@(r1, . . . ,rn)/rn+1];σ〉
IS

A derivation is a sequence of arbitrary lenght 〈Q; id〉 ∗〈Q′;σ〉. As usual, rules are renamed apart.
When Q′ = r ∈ L, the state 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that derivation.

3 Implementation of FASILL in FLOPER

During the last years we have developed the FLOPER tool, initially intended for manipulating MALP
programs6. In its current development state, FLOPER has been equipped with new features in order to

6 The MALP language is nowadays fully subsumed by the new FASILL language just introduced in this paper, since, given
a FASILL program P = 〈Π,R,L〉, if R is the identity relation (that is, the one where each element of a signature Σ is only
similar to itself, with the maximum similarity degree) and L is a complete lattice also containing adjoint pairs [8], then P is a
MALP program too.

150 A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

Figure 3: An execution tree as shown by the FLOPER system

cope with more expressive languages and, in particular, with FASILL (that is freely accessible in its url
http://dectau.uclm.es/floper/?q=sim where it is possible to test/download the new prototype
incorporating the management of similarity relations. In this section we briefly describe the main features
of this tool before presenting the novelties introduced in this work.

FLOPER has been implemented in Sicstus Prolog v.3.12.5 (rounding about 1083 lines of code,
where our last update supposes approximately a 30% of the final code) and it has been recently equipped
with a graphical interface written in Java (circa 2000 lines of code). More detailed, the FLOPER sys-
tem consists in a ”.jar” java program that runs the graphical interface. This ”.jar” program calls a ”.pl”
file containing the two main independent blocks: 1) the Parsing block parses FASILL files into two
kinds of prolog code (a high level platform-independent Prolog program and a set of facts to be used by
FLOPER), and 2) the Procedural block performs the evaluation of a goal against the program, imple-
menting the procedural semantics previously described. This code is completed with a configuration file
indicating the location of the Prolog interpreter as well as some other data.

When the graphical interface is executed, it offers a menu with a set of commands grouped in four

 http://dectau.uclm.es/floper/?q=sim

P. Julián-Iranzo, G. Moreno, J. Penabad & C. Vázquez 151

submenus:

• “Program Menu”: includes options for parsing a FASILL program from a file with extension
“.fpl”, saving the generated PROLOG code to a “.pl” file, loading/parsing a pure PROLOG

program, listing the rules of the parsed program and cleaning the database.

• “Lattice Menu”: allows the user to change and show the lattice (implemented in PROLOG) associ-
ated to a fuzzy program through options lat and show, respectively.

• “Similarity Menu”: option sim allows the user to load a similarity file (with extension “.sim”,
and whose syntax is detailed further in the Similarity Module subsection) and tnorm sets the
conjunction to be used in the transitive closure of the relation.

• “Goal Menu”: by choosing option intro the user introduces the goal to be evaluated. Option tree
draws the execution tree for that goal whereas leaves only shows the set of fuzzy computed answer
contained on it, and depth is used for fixing its maximum depth.

The syntax of FASILL presented in Section 1 is easily translated to be written by a computer. As
usual in logic languages, variables are written as identifiers beginning by an upper case character or
an underscore “ ”, while function and predicate symbols are expressed with identifiers beginning by a
lower case character, and numbers are literals. Terms and atoms have the usual syntax (the function or
predicate symbol, if no nullary, is followed by its arguments between parentheses and separated by a
colon). Connectives are labeled with their name immediately after. The implication symbol is written
as “<-”, and each rule ends with a dot. Additionally it is possible to include pure PROLOG expressions
inside the body of a rule by encapsuling them between curly brackets “{}”, and PROLOG clauses together
with FASILL rules between the dollar symbol “$”.

In the recent years we have equipped the tool with a graphical interface (written in Java) for allowing
a friendship interaction with the user, as seen in Figure 2. The graphical interface shows three areas.
The leftmost one draws the project tree (grouping each category of file into its own directory). In the
right part, the upper area displays the selected file of the tree and the lower one shows the code and the
solutions of executing a goal. This interface groups files into projects which include a set of fuzzy files
(.fpl), PROLOG files (.pl), similarity files (.sim), script files -containing a list of commands to be
executed consecutively- (.vfs) and just one lattice file (.lat). When executing a goal, the tool considers
the whole program merged from the set of files, thus obtaining only one fuzzy program, one similarity
relation, one lattice and one PROLOG file.

The lattice module. Lattices are described in a .lat file using a language that is a subset of PROLOG

where the definition of some predicates are mandatory, and the definition of aggregations follows a
certain syntax. The mandatory predicates are member/1, that identifies the elements of the lattice, bot/1
and top/1, that stand for the infimum and supremum elements of the lattice, and leq/2, that implements
the ordering relation. Predicate members/1, that returns in a list all the elements of the lattice, is only
required if it is finite. Connectives are defined as predicates whose meaning is given by a number of
clauses. The name of the predicate has the form and label, or label or agr label whether it implements
a conjunction, a disjunction or an aggregator, where label is an identifier of that particular connective
(this way one can define several conjunctions, disjunctions and other kind of aggregators instead of only
one). The arity of the predicate is n+1, where n is the arity of the connective that it implements, so its
last parameter is a variable to be unified with the value resulting of its evaluation.

?− agr label(r1, . . . ,rn,R).
R = r.

}
if @label(r1, . . . ,rn) = r

152 A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

Example 1. For instance, the following clauses show the PROLOG program modeling the lattice of the
real interval [0,1] with the usual ordering relation and connectives (conjunction and disjunction of the
Product logic, as well as the average aggregator):

member(X):- number(X), 0=<X, X=<1. leq(X,Y):- X=<Y.

and_prod(X,Y,Z) :- Z is X*Y. bot(0).

or_prod(X,Y,Z) :- U1 is X*Y, U2 is X+Y, Z is U2-U1. top(1).

agr_aver(X,Y,Z) :- U1 is X+Y, Z is U1/2.

The similarity module. We describe now the main novelty performed in the tool, that is the ability
to take into account a similarity relation. The similarity relation R is loaded from a file with extension
.sim through option sim. The relation is represented following a concrete syntax:

〈Relation〉 ::= 〈Sim〉 〈Relation〉 | 〈Sim〉
〈Sim〉 ::= 〈Id f 〉[‘/’ 〈Intn〉] ‘∼’ 〈Idg〉[‘/’ 〈Intn〉] ‘=’ 〈r〉 ‘.’ | ‘∼’ ‘tnorm’ ‘=’ 〈tnorm〉

The Sim option parses expressions like “ f ∼ g = r”, where f and g are propositional variables or con-
stants and r is an element of L. It also copes with expressions including arities, like “ f/n ∼ g/n = r”
(then, f and g are function or predicate symbols). In this case, both arities have to be the same. It is
also possible to explicit, through a line like “∼ tnorm = 〈label〉” the conjunction to be used further in
the construction of the transitive closure of the relation. Internally FLOPER stores each relation as a
fact r in an ad hoc module sim as r(f/n,g/n,r), where n = 0 if it has not been specified (that is, the
symbol is considered as a constant). The .sim file contains only a small set of similarity equations that
FLOPER completes by performing the reflexive, symmetric and transitive closure. The first one simply
consists of the assertion of the fact r(A,A,>). The symmetric closure produces, for each r(a,b,r), the
assertion of its symmetric entry r(b,a,r) if there is not already some r(b,a,r′) where r ≤ r′ (in this case
r(a,b,r) will be rewritten as r(a,b,r′) when considering r(b,a,r)). The transitive closure is computed by
the next algorithm7, where ∧ stands for the conjunction specified by the directive “tnorm”, and “assert”
and “retract” are self-explainable and defined as in PROLOG:

Transitive Closure
forall r(A,B,r1) in sim

forall r(B,C,r2) in sim

r = r1∧ r2
if r(A,C,r′) in sim and r′ < r

retract r(A,C,r′) from sim

retract r(C,A,r′) from sim

end if
if r(A,C,r′) not in sim

assert r(A,C,r) in sim

assert r(C,A,r) in sim

end if
end forall

end forall

It is important to note that, it is not relevant if the user provides (apparently) inconsistent similarity
equations, since FLOPER automatically changes the user values by the appropriate approximation de-

7 It is important to note that this algorithm must be executed right after performing the symmetric, reflexive closure.

P. Julián-Iranzo, G. Moreno, J. Penabad & C. Vázquez 153

grees in order to preserve the properties of a similarity. For instance, if a user provides a set of equations
such as, a ∼ b = 0.8, b ∼ c = 0.6 and a ∼ c = 0.3, after the application of our algorithm for the con-
struction of a similarity, results in the set of equations a ∼ b = 0.8, b ∼ c = 0.6 and a ∼ c = 0.6, which
positively preserves the transitive property8.

Example 2. In order to illustrate the enhanced expressiveness of FASILL, consider the program 〈Π,R,L〉
(where L is the real interval [0,1] and ≤ is the usual ordering relation on real numbers), that models the
concept of good hotel, that is, an elegant hotel that is very close to a metro entrance, as seen in Figure
2. Here, we use an average aggregator defined as @̇avg(x, y) , (x+ y)/2, whereas very is a linguistic
modifier implemented as well as an aggregator (with arity 1) with truth function @̇very x, x2. The sim-
ilarity relation R states that elegant is similar to vanguardist, and metro to bus and (by transitivity) to
taxi:

~tnorm = godel metro ~ bus = 0.5.

elegant/1 ~ vanguardist/1 = 0.6. bus ~ taxi = 0.4.

We also state that the t-norm to be used in the transitive closure is the conjunction of Gödel (i.e., the
infimum between two elements). With respect to this program (the set of rules from Figure 2, the lat-
tice [0,1] with the usual ordering relation and the similarity relation just described before), the goal
good hotel(X) produces two fuzzy computed answers: <0.4, X/ritz> and <0.38, X/hydropolis>.
Each one corresponds to the leaves of the tree9 depicted in Figure 2. Note that for reaching these solu-
tions, a failure step was performed in the derivation of the left-most branch, whereas in the right-most
one (and this is the crucial novelty w.r.t. previous versions of the FLOPER tool) there exist two success-
ful steps exploiting the similarity relation which firstly relates elegant and vanguardist and secondly
(by transitivity) metro and taxi when solving atom close(hydropolis,metro), which illustrates the flex-
ibility of our system.

Ending this section, it is worthy to say that our approach differs from the one presented in [1] since
they employ a combination of transformation techniques to first extract the definition of a predicate “∼”,
simulating weak unification in terms of a set of complex program rules that extends the original program.
Finally, this predicate “∼” is reduced to a built-in proximity/similarity unification operator (in this case
not implemented by rules and very close to the implementation of our weak unification algorithm) that
highly improves the efficiency of their previos programming systems.

4 Conclusions and Future Work

This work was concerned with the last enrichment performed on our FLOPER system to cope with
similarity relations. In [5, 4, 11] we provide some advances in the design of declarative semantics
and/or correctness properties regarding the development of fuzzy logic languages dealing with similar-
ity/proximity relations (Bousi∼Prolog) or highly expressive lattices modeling truth degrees (MALP).
As a matter of future work we want to establish that analogous –but reinforced– features also hold in the
twofold integrated fuzzy language FASILL whose syntax, procedural principle (based on weak -instead
of syntactic- unification for managing similarity relations) and implementation details were described
along this paper.

8 For simplicity we have omitted the equations obtained during the construction of the reflexive, symmetric closure.
9Each state contains its corresponding goal and substitution components and they are drawn inside yellow ovals. Compu-

tational steps, colored in blue, are labeled with the program rule they exploit in the case of successful steps or the annotation
“R0” in the case of failure steps (observe that, “R0” is a simple notation and do not correspond with any existing rule). Finally,
the blue circles annotated with the word “is”, correspond to interpretive steps.

154 A Fuzzy Logic Programming Environment for Managing Similarity and Truth Degrees

References
[1] R. Caballero, M. Rodrı́guez-Artalejo & C. Romero-Dı́az (2014): A Transformation-based implementation for

CLP with qualification and proximity. Theory and Practice of Logic Programming 14(1), pp. 1–63. Available
at http://dx.doi.org/10.1017/S1471068412000014.

[2] F. A. Fontana (2002): Likelog for flexible query answering. Soft Computing 7(2), pp. 107–114.
[3] F. Formato, G. Gerla & M.I. Sessa (2000): Similarity-based Unification. Fundamenta Informaticae 41(4),

pp. 393–414.
[4] P. Julián-Iranzo, G. Moreno & J. Penabad (2009): On the Declarative Semantics of Multi-Adjoint Logic Pro-

grams. In: Proc. of 10th Intl Work-Conference on Artificial Neural Networks (Part I), IWANN’09, Springer
Verlag, LNCS 5517, pp. 253–260. Available at http://dx.doi.org/10.1007/978-3-642-02478-8_32.

[5] P. Julián-Iranzo & C. Rubio-Manzano (2009): A declarative semantics for Bousi∼Prolog. In: Proc. of 11th
International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP’09,
ACM, pp. 149–160. Available at http://doi.acm.org/10.1145/1599410.1599430.

[6] P. Julián-Iranzo & C. Rubio-Manzano (2010): An efficient fuzzy unification method and its implementation
into the Bousi∼Prolog system. In: Proc. of the 2010 IEEE International Conference on Fuzzy Systems, IEEE,
pp. 1–8. Available at http://dx.doi.org/10.1109/FUZZY.2010.5584193.

[7] M. Kifer & V.S. Subrahmanian (1992): Theory of generalized annotated logic programming and its applica-
tions. Journal of Logic Programming 12, pp. 335–367.

[8] J. Medina, M. Ojeda-Aciego & P. Vojtáš (2004): Similarity-based Unification: a multi-adjoint approach.
Fuzzy Sets and Systems 146, pp. 43–62.

[9] P.J. Morcillo, G. Moreno, J. Penabad & C. Vázquez (2010): A Practical Management of Fuzzy Truth
Degrees using FLOPER. In: Proc. of 4nd. Intl. Symposium on Rule Interchange and Applications,
RuleML’10, Springer Verlag, LNCS 6403, pp. 20–34. Available at http://dx.doi.org/10.1007/

978-3-642-16289-3_4.
[10] G. Moreno, J. Penabad & C. Vázquez (2013): Relaxing the Role of Adjoint Pairs in Multi-adjoint Logic Pro-

gramming. In I. Hamilton & J. Vigo-Aguiar, editors: Proc. of 13th International Conference on Mathematical
Methods in Science and Engineering, CMMSE’13 (Volume III), pp. 1156–1167.

[11] G. Moreno, J. Penabad & C. Vázquez (2014): Fuzzy Sets for a Declarative Description of Multi-adjoint
Logic Programming. In: Proc. of the 9th International Conference on Rough Sets and Current Trends in Soft
Computing, RSCTC 2014, Springer Verlag, LNCS 8536, pp. 71–82. Available at http://dx.doi.org/10.
1007/978-3-319-08644-6_7.

[12] G. Moreno & C. Vázquez (2014): Fuzzy Logic Programming in Action with FLOPER. Journal of Software
Engineering and Applications 7, pp. 237–298. Available at http://dx.doi.org/10.4236/jsea.2014.
74028.

[13] S. Muñoz-Hernández, V. Pablos Ceruelo & H. Strass (2011): RFuzzy: Syntax, semantics and implementation
details of a simple and expressive fuzzy tool over Prolog. Information Sciences 181(10), pp. 1951–1970.
Available at http://dx.doi.org/10.1016/j.ins.2010.07.033.

[14] H. T. Nguyen & E. A. Walker (2006): A First Course in Fuzzy Logic. Chatman & Hall, Boca Ratón, Florida.
Third edition.

[15] C. Rubio-Manzano & P. Julián-Iranzo (2014): A Fuzzy linguistic prolog and its applications. Journal
of Intelligent and Fuzzy Systems 26(3), pp. 1503–1516. Available at http://dx.doi.org/10.3233/
IFS-130834.

[16] M.I. Sessa (2002): Approximate reasoning by similarity-based SLD resolution. Theoretical Computer Sci-
ence 275(1-2), pp. 389–426. Available at http://dx.doi.org/10.1016/S0304-3975(01)00188-8.

http://dx.doi.org/10.1017/S1471068412000014
http://dx.doi.org/10.1007/978-3-642-02478-8_32
http://doi.acm.org/10.1145/1599410.1599430
http://dx.doi.org/10.1109/FUZZY.2010.5584193
http://dx.doi.org/10.1007/978-3-642-16289-3_4
http://dx.doi.org/10.1007/978-3-642-16289-3_4
http://dx.doi.org/10.1007/978-3-319-08644-6_7
http://dx.doi.org/10.1007/978-3-319-08644-6_7
http://dx.doi.org/10.4236/jsea.2014.74028
http://dx.doi.org/10.4236/jsea.2014.74028
http://dx.doi.org/10.1016/j.ins.2010.07.033
http://dx.doi.org/10.3233/IFS-130834
http://dx.doi.org/10.3233/IFS-130834
http://dx.doi.org/10.1016/S0304-3975(01)00188-8

