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Abstract

During the last years we have developed the FLOPER platform for providing a practical
support to the so-called Multi-Adjoint Logic Programming approach (MALP in brief), which
represents an extremely flexible framework into the Fuzzy Logic Programming arena. Nowa-
days, FLOPER is useful for compiling (to standard Prolog code), executing and debugging
(by drawing execution trees) MALP programs, and it is ready for being extended in the near
future with powerful transformation and optimization techniques designed in our research
group during the recent past. Our last update consists in the integration of a graphical in-
terface for a comfortable interaction with the system which allows, among other capabilities,
the use of projects for packing scripts and auxiliary definitions of fuzzy sets/connectives,
together with fuzzy programs and their associated lattices modeling truth-degrees beyond
the simpler crisp case {true; false}.
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1 Introduction

Logic programming [25] has been widely used for problem solving and knowledge representation in the
past. Nevertheless, traditional pure logic programming languages (i.e., Prolog) do not incorporate
techniques or constructs to explicitly deal with uncertainty and approximated reasoning. To overcome
this situation, during the last decades several fuzzy logic programming systems have been developed where
the classical inference mechanism of SLD-resolution is replaced with a fuzzy variant able to handle partial
truth and to reason with uncertainty, thus promoting the development of real-world applications in the
fields of artificial/computational intelligence, soft-computing, semantic web, etc. Most of these systems
implement the fuzzy resolution principle introduced by Lee in [22], such as languages Prolog-Elf [14],
F-Prolog [24], Fril [4], (S-)QLP [44, 7], RFuzzy [39] and MALP [30], being this last approach our target
goal.
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Since uncertainty and vagueness are constant elements present in most human thinking activities,
fuzzy logic programming seems to be a computing paradigm with a level of expressiveness very close to
human reasoning. Daily, we frequently deal with fuzzy predicates (not boolean, crisp ones). For instance,
a person can be quite young or not very young: the frontier between “absolutely young” and “not young
at all” is not sharp, but indefinite, fuzzy. If “John” is 18 year old, we can say that he is “young” at a
95% truth degree. If “Mary” is 70 years old, she is young at a lower truth degree. Then, the obvious
question is how do we model the concept of “truth degree”. In our system, we work with the so-called
multi-adjoint lattices to model them by providing a flexible, wide enough definition of such notion.

Informally speaking, in the multi-adjoint logic framework, a program can be seen as a set of rules
each one annotated by a truth degree, and a goal is a query to the system, i.e., a set of atoms linked
with connectives called aggregators. A state is a pair 〈Q, σ〉 where Q is a goal and σ a substitution
(initially, the identity substitution). States are evaluated in two separate computational phases. During
the operational one, admissible steps (a generalization of the classical modus ponens inference rule) are
systematically applied by a backward reasoning procedure in a similar way to classical resolution steps
in pure logic programming, thus returning a computed substitution together with an expression where
all atoms have been exploited. This last expression is then interpreted under a given lattice during what
we call the interpretive phase, hence returning a pair 〈truth degree; substitution〉 which is the fuzzy
counterpart of the classical notion of computed answer traditionally used in LP.

The main goal of this report is the detailed description of the FLOPER system which is available
from http://dectau.uclm.es/floper/. Nowadays, the tool provides facilities for executing as well as
for debugging (by generating declarative traces) such kind of fuzzy programs, thus fulfilling the gap we
have detected in the area. In order to explain the tool, we have structured this paper as follows: in
Section 2 we present the essence of MALP, including syntax, procedural semantics, and some interesting
computational cost measures defined for this programming style; the core of this paper is represented
by Section 3, which is dedicated to explain the main capabilities of the FLOPER system such as run-
ning/debugging MALP programs, managing lattices and dealing with additional fuzzy concepts; before
finalizing in Section 5, we detail in Section 4 how the use of sophisticated multi-adjoint lattices are very
useful for easily coding flexible real-world applications and obtaining low-cost traces at execution time.

2 Multi-Adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming (for a complete formulation
of this framework, see [28, 29, 30, 20]). In what follows, we use abbreviation MALP for referencing
programs belonging to this setting.

2.1 MALP Syntax

We work with a first order language, L, containing variables, constants, function symbols, predicate
symbols, and several (arbitrary) connectives to increase language expressiveness: implication connectives
(←1,←2, . . .); conjunctive operators (denoted by &1,&2, . . .), disjunctive operators (|1, |2, . . .), and hybrid
operators (usually denoted by @1,@2, . . .), all of them are grouped under the name of “aggregators”.

Aggregation operators (or aggregators) are useful to describe/specify user preferences. An aggregation
operator, when interpreted as a truth function, may be an arithmetic mean, a weighted sum or in general
any monotone application whose arguments are values of a complete bounded lattice L. For example, if
an aggregator @ is interpreted as [[@]](x, y, z) = (3x+ 2y + z)/6, we are giving the highest preference to
the first argument, then to the second, being the third argument the least significant. Although these
connectives are binary operators, we usually generalize them as functions with an arbitrary number of
arguments. So, we often write @(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By definition, the
truth function for an n-ary aggregation operator [[@]] : Ln → L is required to be monotonous and fulfills
[[@]](>, . . . ,>) = >, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice equipped with a collection
of adjoint pairs 〈←i,&i〉 (where each &i is a conjunctor which is intended to the evaluation of modus
ponens [30]) formally defined as follows.
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Definition 2.1 (Multi-Adjoint Lattice) Let (L,≤) be a lattice. A multi-adjoint lattice is a tuple
(L,≤,←1,&1, . . . ,←n,&n) such that:

1. 〈L,�〉 is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and >, respectively.

2. 〈L,�〉 is a complete lattice, i.e. for all subset X ⊂ L, there are inf(X) and sup(X).

3. >&iv = v&i> = v, ∀v ∈ L, i = 1, . . . , n.

4. Each operation &i is increasing in both arguments.

5. Each operation ←i is increasing in the first argument and decreasing in the second one.

6. If 〈&i,←i〉 is an adjoint pair in 〈L,�〉 then, for any x, y, z ∈ L, we have that:

x � (y ←i z) if and only if (x &i z) � y

This last condition, called adjoint property, could be considered the most important feature of the frame-
work (in contrast with many other approaches) which justifies most of its properties regarding crucial
results for soundness, completeness, applicability, etc.

In general, L may be the carrier of any complete bounded lattice where a L-expression is a well-formed
expression composed by values and connectives defined in L, as well as variable symbols and primitive
operators (i.e., arithmetic symbols such as ∗,+,min, etc...). In what follows, we assume that the truth
function of any connective @ in L is given by its corresponding connective definition, that is, an equation
of the form @(x1, . . . , xn) , E, where E is a L-expression not containing variable symbols apart from
x1, . . . , xn. For instance, consider the following classical set of adjoint pairs (conjunctions and implica-
tions) in 〈[0, 1],≤〉, where labels L, G and P mean respectively  Lukasiewicz logic, Gödel intuitionistic logic
and product logic (which different capabilities for modeling pessimist, optimist and realistic scenarios,
respectively):

&P(x, y) , x ∗ y ←P(x, y) , min(1, x/y) Product

&G(x, y) , min(x, y) ←G(x, y) ,

{

1 if y ≤ x
x otherwise

Gödel

&L(x, y) , max(0, x+ y − 1) ←L(x, y) , min{x− y + 1, 1}  Lukasiewicz

Moreover, the three disjunctions associated to the previous fuzzy logics are defined as follows: |P(x, y) ,
x+ y − x ∗ y, |G(x, y) , max{x, y}, and |L(x, y) , min{x+ y, 1}.

At this point, we wish to make a mention to the notion of qualification domain used in the QLP
(Qualified Logic Programming) scheme described in [44], which plays a role in that framework similar to
multi-adjoint lattices in MALP. A qualification domain is a structure 〈D,v,⊥,>, ◦〉, such that 〈D,v
,⊥,>〉 is a lattice with top (>) and bottom (⊥) elements, a partial ordering v, and where the so-called
attenuation operation “◦” is a conjunction. Now, given two elements d, e ∈ D, due means for the greatest
lower bound of d and e, whereas dte represents its least upper bound. We also write d @ e as abbreviation
of d v e&d 6= e. The attenuation operator ◦ satisfies the following constraints.

1. ◦ is associative, commutative and monotonic w.r.t. v.

2. ∀d ∈ D : d ◦ > = d.

3. ∀d ∈ D : d ◦ ⊥ = ⊥.

4. ∀d, e ∈ D/{⊥,>} : d ◦ e @ e.

5. ∀d, e1, e2 ∈ D : d ◦ (e1 u e2) = d ◦ e1 u d ◦ e2.

Note that the required properties in QLP and MALP are rather close, but instead of the last distributive
law just pointed out in claim 5, in our setting we use the adjoint property (claim 6 in Definition 2.1).
Translations between both worlds can be frequently performed, as occurs for instance with the simple
boolean qualification domain B = ([0, 1],≤, 0, 1,&), whose shape as a multi-adjoint lattice looks like
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〈[0, 1],≤,←,&〉, where & is de boolean conjunction and ← its adjoint implication (i.e., the usual bi-
valuated logic implication). Something similar occurs with the qualification domain of Van Emden’s
uncertainty values used in QLP, U = ([0, 1],≤, 0, 1,×), which is equivalent to the multi-adjoint lattice
(in which most of our examples are interpreted) described above, as well as with the so-called weights
domain W = (R ∪ ∞,≥,∞, 0,+), whose detailed explanation is delayed to Section 4 (where we will
present powerful extensions and applications related with debugging tasks into the MALP framework).

In general, any qualification domain (D,�,⊥,>, ◦) whose attenuation operation ◦ conforms an adjoint-
pair with a given implication operation ←◦, can be expressed as the multi-adjoint lattice 〈D,�,←◦, ◦〉.
Anyway, we wish to finish this brief comparison by highlighting that the variety of connectives definable
in multi-adjoint lattices is clearly much greater than those appearing in qualification domains (where for
a given program, all rules must always use the same attenuation operator), which justifies the higher
expressive power of MALP w.r.t. QLP.

Continuing now with the description of the multi-adjoint logic programming approach, a MALP rule
is a formula H ←i B, where H is an atomic formula (usually called the head) and B (which is called
the body) is a formula built from atomic formulas B1, . . . , Bn (n ≥ 0 ), truth values of L, conjunctions,
disjunctions and aggregations. Rules whose body is > or equivalently, rules without body (or with empty
body) are called facts. A goal is a body submitted as a query to the system.

Roughly speaking, a MALP program is a set of pairs 〈R; v〉 (we often write “R with v”), where R
is a rule and v is a truth degree (a value of L) expressing the confidence of a programmer in the truth of
rule R. By abuse of language, we sometimes refer a tuple 〈R; v〉 as a “rule”. As an example, in Figure 1
we show a MALP program whose rules define fuzzy predicates modeling degrees of youth (“y”), heritage
(“h”) and education (“e”), as well as the confidence level (“c”) on people for repaying a loan. Note that
the seventh rule models this last notion by considering young persons having good heritage or education
degrees. In what follows, we are going to explain the procedural principle of MALP programs, whose
application to goal “c(X)” w.r.t. our program, will assign truth degrees 0.772 (i.e, a credibility of 77.2%)
and 0.38 (or 38% of confidence level) to “mary” and “peter”, respectively.

2.2 MALP Procedural Semantics

The procedural semantics of the multi–adjoint logic language L can be thought of as an operational phase
(based on admissible steps) followed by an interpretive one. In the following, C[A] denotes a formula where
A is a sub-expression which occurs in the –possibly empty– context C[]. Moreover, C[A/A′] means the
replacement of A by A′ in context C[], whereas Var(s) refers to the set of distinct variables occurring in
the syntactic object s, and θ[Var(s)] denotes the substitution obtained from θ by restricting its domain
to Var(s).

Definition 2.2 (Admissible Step) Let Q be a goal and let σ be a substitution. The pair 〈Q;σ〉 is a
state and we denote by E the set of states. Given a program P, an admissible computation is formalized

as a state transition system, whose transition relation
AS
; ⊆ (E × E) is the smallest relation satisfying

the following admissible rules (where we always consider that A is the selected atom in Q and mgu(E)
denotes the most general unifier of an equation set E [21]):

1) 〈Q[A];σ〉
AS
; 〈(Q[A/v&iB])θ;σθ〉, if θ = mgu({A′ = A}), 〈A′←iB; v〉 in P and B is not empty.

2) 〈Q[A];σ〉
AS
; 〈(Q[A/v])θ;σθ〉, if θ = mgu({A′ = A}) and 〈A′←i; v〉 in P.

3) 〈Q[A];σ〉
AS
; 〈(Q[A/⊥]);σ〉, if there is no rule in P whose head unifies with A.

Note that the second case could be subsumed by the first one, after expressing each fact 〈A′←i; v〉
as a program rule of the form 〈A′←i>; v〉. Also, the third case is introduced to cope with (possible)
unsuccessful admissible derivations. As usual, rules are taken renamed apart. We shall use the symbols
AS1
; ,

AS2
; and

AS3
; to distinguish between computation steps performed by applying one of the specific

admissible rules. Also, the application of a rule on a step will be annotated as a superscript of the
AS
;

symbol.
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Multi-adjoint logic program P1:

R1 : y(peter) with 0.4
R2 : y(mary) with 0.8
R3 : h(peter) with 0.9
R4 : h(mary) with 0.3
R5 : e(peter) with 0.5
R6 : e(mary) with 0.95
R7 : c(X) ←p (h(X) |P e(X)) &P y(X) with 1

Derivation D1:
Admissible derivation

〈c(X); id〉
AS1
;

R7

〈&P(1,&P(|P(h(X1), e(X1)), y(X1))); {X/X1}〉
AS2
;

R3

〈&P(1,&P(|P(0.9, e(peter)), y(peter))); {X/peter,X1/peter}〉
AS2
;

R5

〈&P(1,&P(|P(0.9, 0.5), y(peter))); {X/peter,X1/peter}〉
AS2
;

R1

〈&P(1,&P(|P(0.9, 0.5), 0.4)); {X/peter,X1/peter}〉

Interpretive derivation

〈&P(1,&P(|P(0.9, 0.5), 0.4)); {X/peter}〉
IS
;

〈&P(1,&P(0.95, 0.4)); {X/peter}〉
IS
;

〈&P(1, 0.38); {X/peter}〉
IS
;

〈0.38; {X/peter}〉.

Figure 1: MALP program with admissible/interpretive derivations for goal “c(X)”

Definition 2.3 Let P be a program, Q a goal and “id” the empty substitution. An admissible derivation

is a sequence 〈Q; id〉
AS
; . . .

AS
;〈Q′; θ〉. When Q′ is a formula not containing atoms (i.e., a L-expression),

the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called an admissible computed answer (a.c.a.) for that deriva-
tion.

Example 2.4 In Figure 1 we illustrate an admissible derivation (note that the selected atom in each step
appears underlined), where the admissible computed answer (a.c.a.) is composed by the pair:
〈&P(1,&P(|P(0.9, 0.5), 0.4)); θ〉 where θ only refers to bindings related with variables in the goal, i.e.,
θ = {X/peter,X1/peter}[Var(c(X))] = {X/peter}

If we exploit all atoms of a given goal, by applying enough admissible steps, then it becomes a formula
with no atoms (a L-expression) which can be interpreted w.r.t. lattice L by applying the following
definition we initially presented in [18]:

Definition 2.5 (Interpretive Step) Let P be a program, Q a goal and σ a substitution. Assume that
[[@]] is the truth function of connective @ in the lattice 〈L,�〉 associated to P, such that, for values
r1, . . . , rn, rn+1 ∈ L, we have that [[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive

computation as a state transition system, whose transition relation
IS
; ⊆ (E × E) is defined as the least

one satisfying: 〈Q[@(r1, . . . , rn)];σ〉
IS
; 〈Q[@(r1, . . . , rn)/rn+1];σ〉.

Definition 2.6 Let P be a program and 〈Q;σ〉 an a.c.a., that is, Q does not contain atoms (i.e., it is a

L-expression). An interpretive derivation is a sequence 〈Q;σ〉
IS
; . . .

IS
;〈Q′;σ〉. When Q′ = r ∈ L, being

〈L,�〉 the lattice associated to P, the state 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that
derivation.
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Example 2.7 If we complete the previous derivation of Example 2.4 by applying 3 interpretive steps in
order to obtain the final f.c.a. 〈0.38; {X/peter}〉, we generate the interpretive derivation shown in Figure
1.

2.3 Interpretive Steps and Cost Measures

A classical, simple way for estimating the computational cost required to built a derivation, consists in
counting the number of computational steps performed on it. So, given a derivation D, we define its:

• operational cost, OC(D), as the number of admissible steps performed in D.

• interpretive cost, IC(D), as the number of interpretive steps done in D.

Note that the operational and interpretive costs of derivation D1 performed in Figure 1 are OC(D1) = 4
and IC(D1) = 3, respectively. Intuitively, OC informs us about the number of atoms exploited along a
derivation. Similarly, IC seems to estimate the number of connectives evaluated in a derivation. However,
this last statement is not completely true: IC only takes into account those connectives appearing in
the bodies of program rules which are replicated on states of the derivation, but no those connectives
recursively nested in the definition of other connectives. The following example highlights this fact.

Example 2.8 A simplified version of rule R7, whose body only contains an aggregator symbol is:

R∗

7 : c(X) ←p @1(h(X), e(X), y(X)) with 1

where @1 is defined as @1(x1, x2, x3) , &P(|P(x1, x2), x3). Note that R∗
7 has exactly the same meaning

(interpretation) than R7, although different syntax. In fact, both ones have the same sequence of atoms
in their head and bodies. The differences are regarding the set of connectives which explicitly appear in
their bodies since in R∗

7 we have moved &P and |P from the body of the rule (see R7) to the connective
definition of @1. Now, we use rule R∗

7 instead of R7 for generating the following derivation D∗
1 which

returns exactly the same f.c.a than D1:

〈c(X); id〉
AS1
;

R7

〈&P(1,@1(h(X1), e(X1)y(X1))); {X/X1}〉
AS2
;

R3

〈&P(1,@1(0.9, e(peter), y(peter))); {X/peter,X1/peter}〉
AS2
;

R5

〈&P(1,@1(0.9, 0.5, y(peter))); {X/peter,X1/peter}〉
AS2
;

R1

〈&P(1,@1(0.9, 0.5, 0.4)); {X/peter,X1/peter}〉
IS
;

〈&P(1, 0.38); {X/peter}〉
IS
;

〈0.38; {X/peter}〉
Note that, since we have exploited the same atoms with the same rules (except for the first steps performed
with rules R7 and R∗

7, respectively) in both derivations, then OC(D1) = OC(D
∗
1) = 4. However, although

connectives &P and |P have been evaluated in both derivations, in D∗
1 such evaluations have not been explic-

itly counted as interpretive steps, and consequently they have not been added to increase the interpretive
cost measure IC. This unrealistic situation is reflected by the abnormal result IC(D1) = 3 > 2 = IC(D

∗
1).

It is important to note that R∗
7 must not be considered an optimized version of R7, even when the wrong

measure IC seems to indicate the contrary.

This problem was initially pointed out in [19], where a preliminary solution was proposed by assigning
weights to connectives in concordance with the set of primitive operators involved in the definition of
the proper connective @ as well as those ones recursively contained in the definitions of connectives
invoked from @. Moreover, in [34] we improved the previous notion of “connective weight” by also taken
into account the number of recursive calls to fuzzy connectives (directly or indirectly) performed in the
definition of @.

A rather different way for facing the same problem is presented in [33], where instead on connective
weights, we opt for the more “visual” method we have just implemented into FLOPER, based on the
subsequent re-definition of the behaviour of the interpretive phase.

6



Ginés Moreno, Carlos Vázquez

Definition 2.9 (Small Interpretive Step) Let P be a program, Q a goal and σ a substitution. Assume
that the (non interpreted yet) L-expression Ω(r1, . . . , rn) occurs in Q, where Ω is just a primitive operator
or a connective defined in the lattice 〈L,�〉 associated to P, and r1, . . . , rn are elements of L. We
formalize the notion of small interpretive computation as a state transition system, whose transition

relation
SIS
; ⊆ (E × E) is the smallest relation satisfying the following small interpretive rules (where we

always consider that Ω(r1, . . . , rn) is the selected L-expression in Q):

1) 〈Q[Ω(r1, . . . , rn)];σ〉
SIS
; 〈Q[Ω(r1, . . . , rn)/E

′];σ〉, if Ω is a connective defined as Ω(x1, . . . , xn)
, E and E′ is obtained from the L-expression E by replacing each variable (formal parameter) xi

by its corresponding value (actual parameter) ri, 1 ≤ i ≤ n, that is, E′ = E[x1/r1, . . . , xn/rn].

2) 〈Q[Ω(r1, . . . , rn)];σ〉
SIS
; 〈Q[Ω(r1, . . . , rn)/r];σ〉, if Ω is a primitive operator such that, once evaluated

with parameters r1, . . . , rn, produces the result r.

From now on, we shall use the symbols
SIS1
; and

SIS2
; to distinguish between computation steps performed

by applying one of the specific “small interpretive” rules. Moreover, when we use the expression inter-
pretive derivation, we refer to a sequence of small interpretive steps (according to the previous definition)
instead of a sequence of interpretive steps (regarding Definition 2.5). Note that this fact supposes too
a slight revision of Definition 2.6 which does not affect the essence of the notion of fuzzy computed an-
swer: the repeated application of both kinds of small interpretive steps on a given state only affects to
the length of the corresponding derivations, but both ones lead to the same final states (containing the
corresponding fuzzy computed answers).

Example 2.10 Recalling again the a.c.a. obtained in Example 2.4, we can reach the final fuzzy computed
answer 〈0.38; {X/peter}〉 (achieved in Example 2.7 by means of interpretive steps) by generating now the
following interpretive derivation D2 based on “small interpretive steps” (Definition 2.9):

〈&P(1,&P(|P(0.9, 0.5), 0.4)); {X/peter}〉
SIS1
;

〈&P(1,&P((0.9 + 0.5)− (0.9 ∗ 0.5), 0.4)); {X/peter}〉
SIS2
;

〈&P(1,&P(1.4− (0.9 ∗ 0.5), 0.4)); {X/peter}〉
SIS2
;

〈&P(1,&P(1.4− 0.45, 0.4)); {X/peter}〉
SIS2
;

〈&P(1,&P(0.95, 0.4)); {X/peter}〉
SIS1
;

〈&P(1, 0.95 ∗ 0.4); {X/peter}〉
SIS2
;

〈&P(1, 0.38); {X/peter}〉
SIS1
;

〈1 ∗ 0.38; {X/peter}〉
SIS2
;

〈0.38; {X/peter}〉

Going back now to Example 2.8, we can rebuild the interpretive phase of Derivation D∗
1 in terms of small

interpretive steps, thus generating the following interpretive derivation D∗
2. Firstly, by applying a

SIS1
;

step on the L-expression &P(1,@1(0.9, 0.5, 0.4)), it becomes &P(1,&P(|P(0.9, 0.5), 0.4)), and from here, the
interpretive derivation evolves exactly in the same way as derivation D2 we have just done above.

At this moment, it is mandatory to meditate on cost measures regarding derivations D1, D
∗
1 , D2 and D∗

2 .
First of all, note that the operational cost OC of all them coincides, which is quite natural. However,
whereas IC(D1) = 3 > 2 = IC(D

∗
1), we have now that IC(D2) = 8 < 9 = IC(D

∗
2). This apparent

contradiction might confuse us when trying to decide which program rule (R7 or R∗
7) is “better”. The use

of Definition 2.9 in derivations D2 and D∗
2 is the key point to solve our problem, as we are going to see. In

Example 2.8 we justified that by simply counting the number of interpretive steps performed in Definition
2.5 might produce abnormal results, since the evaluation of connectives with different complexities were
(wrongly) measured with the same computational cost. Fortunately, the notion of small interpretive
step makes visible in the proper derivation all the connectives and primitive operators appearing in the
(possibly recursively nested) definitions of any connective appearing in any derivation state. As we have

seen, in D2 we have expanded in three
SIS1
; steps the definitions of three connectives, i.e. |P, and &P twice,

7
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and we have applied five
SIS2
; steps to solve five primitive operators, that is, +, −, and ∗ (three times).

The same computational effort as been performed in D∗
2 , but also one more

SIS1
; step was applied to

accomplish with the expansion of the extra connective @1. This justifies why IC(D2) = 8 < 9 = IC(D
∗
2)

and contradicts the wrong measures of Example 2.8: the interpretive effort developed in derivations D1

and D2 (both using the program rule R7), is slightly lower than the one performed in derivations D∗
1 and

D∗
2 (which used rule R∗

7), and not the contrary.
The accuracy of our new way for measuring and performing interpretive computations seems to be

crucial when comparing the execution behaviour of programs obtained by transformation techniques
such as the fold/unfold framework we describe in [17, 11]. In this sense, instead of measuring the
absolute cost of derivations performed in a program, we are more interested in the relative gains/lost
of efficiency produced on transformed programs. For instance, by applying the so-called “aggregation
operation” described in [11] we can transform rule R7 into R∗

7 and, in order to proceed with alternative
transformations (fold,unfold, etc.) if the resulting program degenerates w.r.t. the original one (as occurs
in this case), we need an appropriate cost measure as the one proposed here to help us for taken decisions.
This fact has capital importance for discovering drastic situations which can appear in degenerated
transformation sequences such as the generation of highly nested definitions of aggregators. For instance,
assume the following sequence of connective definitions: @100(x1, x2) , @99(x1, x2), @99(x1, x2) ,

@98(x1, x2), . . . , and finally @1(x1, x2) , x1 ∗ x2. When trying to solve two expression of the form
@99(0.9, 0.8) and @1(0.9, 0.8), cost measures based on number of interpretive steps ([18]) and weights of
interpretive steps ([19]) would assign 1 unit of interpretive cost to both derivations. Fortunately, our new

approach is able to clearly distinguish between both cases, since the number of
SIS1
; steps performed in

each one is rather different (100 and 1, respectively).

3 The “Fuzzy LOgic Programming Environment for Research”

FLOPER

As shown in the web page http://dectau.uclm.es/floper/ designed in our research group for freely
accessing FLOPER -see also references [32, 36, 35, 37, 31, 38]- during the last years we have been involved
in the development of this tool for alivingMALP programs (which can be easily loaded into the system by
means of plain-text files with extension “.fpl”). For example, our previous illustrative program included
into file “P1.fpl”, contains the following rules where, note for instance that the fuzzy connectives for
implication, disjunction and conjunction symbols belonging to the product logic are respectively referred
as “<prod”, “|prod” and “&prod”:

y(peter) with 0.4.

y(mary) with 0.8.

h(peter) with 0.9.

h(mary) with 0.3.

e(peter) with 0.5.

e(mary) with 0.95.

c(X) <prod (h(X) |prod e(X)) &prod y(X) with 1.

Figure 2: MALP program P1 loaded into FLOPER

In order to simplify the task of coding fuzzy logic programs, our tool is able to parse MALP rules with
‘syntactic sugar” trying to look as conservative extensions of Prolog clauses:

• Since the weight of a rule can be omitted if it coincides with the > element of the corresponding
lattice then, a rule like ‘p(X) with 1.” can be simply expressed as “p(X).”.

• When the concrete implication symbol connecting the body and head of a given a rule be irrelevant,
we can write “<-” instead of using a particular label “<logic”, since FLOPER will choose an
arbitrary implication (i.e., the last one found when textually exploring the lattice stored into the
system) for this rule. So, “p(X) <- q(X).” is a valid rule.
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• Something similar occurs (but even without the need of “-”) for connectives used in the bodies
of program rules, thus implying that “p(X) <- q(X) & r(X).” is a valid rule for any conjunction
operator. At this point, it is important to remark that the last rule in Figure 2 (we assume that
the connectives belonging to the product logic are the last ones defined into the lattice stored into
FLOPER ) can be highly simplified to the following shape: “c(X) <- (h(X) | e(X)) & y(X).”.

• We can also include Prolog clauses between “$$” symbols, for instance “$p(X):-!,var(X).$”,
and moreover, it is possible too to insert pure Prolog code between “{}” symbols into the body
of a fuzzy logic MALP rule, as occurs with “p([H|T]) <- {Y is H+1} q(Y) & p(T).”.

Once the application is loaded inside any standard Prolog interpreter (like SWI or Sicstus -which is
our case, by using v3.12.5-), it shows the menu shown in Figure 3. The parser has been implemented

Figure 3: Running FLOPER into any standard Prolog platform

by using the classical DCG’s (Definite Clause Grammars) resource of the Prolog language, since it is a
convenient notation for expressing grammar rules. Via the “parse” option, it is possible to load a “.fpl”
file for which FLOPER generates two different Prolog representations of the fuzzy code, as we will
describe in sub-sections 3.1 and 3.2. Such code will cohabit with the set of clauses introduced by the user
(together the Prolog-based definition of the associated lattice that we will describe in sub-section 3.3)
via the “load” option for consulting pure Prolog files (“.pl”). The system is equipped too with choices
for saving and listing such rules as well as the “clean” option for removing all clauses from the FLOPER
database.
The remaining menus are useful for executing goals and displaying evaluation trees, as well as for managing
multi-adjoint lattices, as we are going to explain in what follows helped by the graphical interface recently
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Figure 4: The graphical interface of FLOPER

developed for FLOPER and shown in Figure 4, which allows the comfortable use of “projects” in order
to manage files with the following different purposes:

• several “.fpl” files can contain the set of MALP rules implementing a single MALP program,

• the set of clauses modeling its (unique) associated multi-adjoint lattice must be included into a file
with obvious extension “.pl”,

• additional Prolog code (for representing linguistic modifiers/variables, etc) can be also attached
in different “.pl” files and

• several “script” files could be useful for executing in one go more than one of the set of commands
we are going to explain in this section, as illustrated in the following example:

ord: intro.

arg: c(X).

ord: ismode.

arg: s.

ord: tree.

ord: leaves.

ord: run.

3.1 Running Programs

In order to fully execute a goal, FLOPER employs the high-level representation of the MALP program
compiled via the “parse” option. The key point of this Prolog code is to extend each atom of the
program with an extra argument, called truth variable, of the form TVi, which is intended to contain
the truth degree obtained after the subsequent evaluation of the atom. In the case of a fact, the extra
argument obviously contains its weight. For instance, “p(X) with 0.5” is simply translated into the
Prolog fact “p(X, 0.5)”.
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Fuzzy connectives are represented as predicates defined in the lattice associated to the program.
For instance, the role of “&godel” is played by the Prolog predicate “and godel”. Since the fuzzy
connective “&godel” is a binary operation, then its associated predicate “and godel” has arity three:
two parameters plus the result, returned in the third argument TV.

When compiling MALP rules, the last atom called in the body of the translated clause is the adjoint
conjunction, which is intended to combine the truth degree of the body and the weight of the rule, in
order to propagate the final truth degree to the head. For instance, given a MALP rule like “p(X) <prod

q(X,Y) &godel r(Y) with 0.8”, the resulting translated Prolog clause would look like “p(X, TV0)

:- q(X,Y, TV1), r(Y, TV2), and godel( TV1, TV2, TV3), and prod(0.8, TV3, TV0)”.
In order to execute a fuzzy program stored in a “.fpl” file , FLOPER needs firstly to load and compile

it by using the “parse” option. Internally, while FLOPER analyzes the content of the file (following the
DCG specification of the MALP syntax) it also generates two different Prolog representations of the
fuzzy code: the high level representation coincides with a set of executable Prolog clauses as we have
just described, while the low level representation allows FLOPER to draw execution trees as we will see
in the next subsection.

Here we have an example of using the “parse” option, where note that FLOPER lists the content
of any previously loaded “.pl” file (none in our case), the parsed MALP program and the generated
Prolog code.

>> parse.

File to parse: ‘P1.fpl’.

No loaded files.

ORIGINAL FUZZY-PROLOG CODE:

y(peter) with 0.4.

y(mary) with 0.8.

h(peter) with 0.9.

h(mary) with 0.3.

e(peter) with 0.5.

e(mary) with 0.95.

c(X) <prod (h(X) |prod e(X)) &prod y(X) with 1.

GENERATED PROLOG CODE:

y(peter,0.4).

y(mary,0.8).

h(peter,0.9).

h(mary,0.3).

e(peter,0.5).

e(mary,0.95).

c(X,TV0):-h(X,_TV1),e(X,_TV2),lat:or_prod(_TV1,_TV2,_TV3),

y(X,_TV4),lat:and_prod(_TV3,_TV4,_TV5),

lat:and_prod(1,_TV5,TV0).

While parsing, FLOPER creates a file tmp fuzzy-prolog.pl to allocate the generated Prolog code, in
order to allow the possibility of saving it afterwards into a new file by using the “save” option.

One important feature is that translated connectives (like “lat:and prod/3”) are prefixed by “lat:”,
which means that the Prolog interpreter will search their definitions in the “lat” module, a different
name-space designed to avoid name collisions. The resulting Prolog code can be executed in any
Prolog engine, with the only requirement that the associated lattice must be loaded in the corresponding
module. This can be easily achieved with the following two goals:

?- lat:consult(lattice.pl).

?- consult(program.fpl).

Moreover, goals are introduced in FLOPER by choosing the “intro” option and they suffer a very
similar translation process to program rules. So, it is easy to see that a fuzzy goal like “y(X) &godel
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h(peter)”, is translated into the pure Prolog goal “y(X, TV1),h(peter, TV2), and godel( TV1,

TV2, Truth degree)” (note that the last truth degree variable is not anonymous now) for which the
Prolog interpreter returns the two desired fuzzy computed answers after selecting the “run” option (see
Figure 4) :

[Truth_degree=0.4, X=peter]

[Truth_degree=0.8, X=mary]

3.2 Execution Trees

Apart from the compilation method to Prolog code commented before, we have conceived a new low-
level representation for the fuzzy code which is useful for building execution trees with any level of
depth and offering too debugging (tracing) capabilities. For instance, after parsing the last rule of our
program, we obtain the following expression (which is “asserted” into the database of the interpreter as
a Prolog fact, but it is never executed directly, in contrast with the previous Prolog-based, high-level
representation of the fuzzy code) whose components have obvious meanings:

Figure 5: FLOPER drawing an execution tree

rule(7,

head(atom(pred(c,1),[var(’X’)])),

impl(prod),

body(and(prod,2,[or(prod,2,[atom(pred(h,1),[var(’X’)]),

atom(pred(e,1),[var(’X’)])]),

atom(pred(y,1),[var(’X’)])])),

td(1)).

FLOPER is equipped with three options related with tracing tasks. Option “tree” draws the execution
tree (which collects a different derivation from the root to each leaf) of a goal w.r.t. a program. Option
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“depth” fixes the maximum length allowed for their branches (initially 3). And, finally, option “ismode”
fixes the detail level of the interpretive phase associated to each derivation in the tree.

Figure 6: Comparing different modes of performing the interpretive phase

So, let us consider again the MALP program of our running example. For goal “y(X) &godel

h(peter)”, FLOPER displays the tree showed in Figure 5. In this screen-shot, we find two represen-
tations of the same tree: the middle-up window shows the proper graphic which is easy to understand
and manipulate (by moving nodes, showing only skeletons of trees, etc.), while the marked text in the
middle-down window represents the same tree in plain text. In this last case, each line contains a state
(composed by the corresponding goal and substitution) preceded by the number of the program rule

used by the admissible step leading to it (root nodes and nodes obtained via
AS3
; are always labeled

with the virtual, non existing rule R0), and nodes belonging to the same branch appear in different lines
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appropriately indented to help the readability of the tree (which only contain two different branches in
our case). Generated trees can be saved in “.jpg”, “.txt” and “xml” formats.

Moreover, FLOPER allows the user to choose the level of information given by the interpretive phase
in the execution tree through option “ismode”. We can choose among the following three modes:

• large: This mode omits the entire interpretive phase, offering only the final leaf (if exists) of each
branch.

• medium: Performs classical interpretive steps according Definition 2.5, in order to evaluate each
expression of the goal till finding the final solution.

• small: This mode applies our improved notion of small interpretive step provided in Definition 2.9,
which is very useful for visualizing the more or less complexity (distinguishing between connective
calls and primitive operators evaluation) of connectives exploited during the interpretive phase.
Figure 6 shows that the shorter the step is, the larger tree is generated.

To finish this block, we are going to illustrate now with a very simple example that the new options
are crucial when the “run” choice fails: remember that this last option is based on the generation of pure
logic SLD-derivations which might fall in loop or directly fail when finding non defined atoms, in contrast
with the traces (based on finite, non- failed, admissible/interpretive derivations) that the “tree” option
displays. So, consider the following MALP program:

p(a) with 0.8.

p(X) <prod p(s(s(s(X)))) with 0.9.

p(b) with 0.6.

where the first and last rules indicate that a goal like “p(X)” admits two solutions, but the second
rule would be responsible of introducing an infinite branch between the leaves associated to both fuzzy
computed answers in the corresponding execution tree. Moreover, if we plan to run a more complex goal
like “q(X) @aver p(X)” (where, obviously, the used connective refers to the average aggregator), we find
a second problem related now with an undefined atom. In contrast with Prolog, in our fuzzy setting

the evaluation of “q(X)” doesn’t fail, since FLOPER proceeds with an
AS3
; step according Definition

2.2, and hence, it is possible to find the two desired fuzzy computed answers for that goal, as shown in
the execution tree of Figure 7. By choosing option “leaves”, the system displays the content of the two
fully evaluated leaves “<0.4,{X/a}>” and “<0.3,{X/b}>”, as desired.

As we have seen, the generation of traces based on execution trees, contribute to increase the power
of FLOPER by providing debugging capabilities which allow us to discover solutions for queries even
when the pure Prolog compilation-execution process becomes insufficient.

3.3 Managing Lattices

We have conceived a very easy way to model lattices of truth degrees for being included into the FLOPER
tool. All relevant components of each lattice can be encapsulated inside a Prolog file which must nec-
essarily contain the definitions of a minimal set of predicates defining the set of valid elements (including
special mentions to the “top” and “bottom” ones), the full or partial ordering established among them,
as well as the repertoire of fuzzy connectives which can be used for their subsequent manipulation. In
order to simplify our explanation, assume that file “bool.pl” refers to the simplest notion of (a binary)
adjoint lattice, thus implementing the following set of predicates:

• member/1 which is satisfied when being called with a parameter representing a valid truth degree.
In the case of finite lattices, it is also recommended to implement members/1which returns in one go
a list containing the whole set of truth degrees. For instance, in the Boolean case, both predicates
can be simply modeled by the Prolog facts: member(0)., member(1). and members([0,1]).

• bot/1 and top/1 obviously answer with the top and bottom element of the lattice, respectively.
Both are implemented into “bool.pl” as bot(0). and top(1).
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Figure 7: Tree with an infinite branch and a
AS3
; step

• leq/2 models the ordering relation among all the possible pairs of truth degrees, and obviously it
is only satisfied when it is invoked with two elements verifying that the first parameter is equal or
smaller than the second one. So, in our example it suffices with including into “bool.pl” the facts:
leq(0,X). and leq(X,1).

• Finally, given some fuzzy connectives of the form &label1 (conjunction), |label2 (disjunction) or
@label3 (aggregation) with arities n1, n2 and n3 respectively, we must provide clauses defining the
connective predicates “and label1/(n1+1)”, “or label2/(n2+1)” and “agr label3/(n3+1)”, where the
extra argument of each predicate is intended to contain the result achieved after the evaluation of
the proper connective. For instance, in the Boolean case, the following two facts model in a very easy
way the behaviour of the classical conjunction operation: and bool(0, ,0). and bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl” when working with MALP programs whose
rules have the form “A ←bool &bool(B1, . . . , Bn) with 1”, being A and Bi typical atoms1, suc-
cessfully mimics the behaviour of classical Prolog programs where clauses accomplish with the shape
“A : − B1, . . . , Bn”. As a novelty in the fuzzy setting, when evaluating goals according to the proce-
dural semantics described in Section 2.1, each output will contain the corresponding substitution (i.e.,
the crisp notion of computed answer obtained by means of classical SLD-resolution in Prolog) together
with the maximum truth degree 1.

On the other hand and following the Prolog style regulated by the previous guidelines, in file
“num.pl” we have included the clauses shown in Figure 8. Here, we have modeled the more flexible
lattice (that we will mainly use in our examples, beyond the boolean case) which enables the possibility
of working with truth degrees in the infinite space (note that this condition disables the implementation
of the consulting predicate “members/1”) of real numbers between 0 and 1, allowing too the possibility of
using conjunction and disjunction operators recasted from the three typical fuzzy logics described before
(i.e., the  Lukasiewicz, Gödel and product logics), as well as a useful description for the hybrid aggregator
average.

1Here we also assume that several versions of the classical conjunction operation have been implemented with different

arities.
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member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattice)

bot(0). top(1). leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).

and_godel(X,Y,Z):- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 8: Multi-adjoint lattice modeling truth degrees in the real interval [0,1] (“num.pl”)

Note also that we have included definitions for auxiliary predicates, whose names always begin
with prefix “pri ”. All of them are intended to describe primitive/arithmetic operators (in our case
+, −, ∗, /, min and max) in a Prolog style, for being appropriately called from the bodies of clauses
defining predicates with higher levels of expressiveness (this is the case for instance, of the three kinds of
fuzzy connectives we are considering: conjunctions, disjunctions and agreggations).

Since till now we have considered two classical, fully ordered lattices (with a finite and infinite number
of elements, collected in files “bool.pl” and “num.pl”, respectively), we wish now to introduce a different
case coping with a very simple lattice where not always any pair of truth degrees are comparable. So,
consider the partially ordered multi-adjoint lattice in Figure 9 for which the conjunction and implication
connectives based on the Gödel logic described in Section 2.1 conform an adjoint pair but with the
particularity now that, in the general case, the Gödel ’s conjunction must be expressed as &G(x, y) ,

inf(x, y), where it is important to note that we must replace the use of “min” by “inf” in the connective
definition. To this end, observe in the Prolog code accompanying Figure 9 that we have introduced
five clauses defining the new primitive operator “pri inf/3” which is intended to return the infimum of
two elements. Related with this fact, we must point out the following aspects:

• Note that since truth degrees α and β -or their corresponding representations as Prolog terms
“alpha” and “beta” used for instance in the definition(s) of “members(s)/1”- are not comparable,
any call to “leq(alpha,beta)” or “leq(beta,alpha)” will always fail.

• However, goals “pri inf(alpha,beta,X)” and “pri inf(beta,alpha,X)”, instead of failing, suc-
cessfully produces the desired result “X=bottom”.

• Note anyway that the implementation of the “pri inf/1” predicate is mandatory for coding the
general definition of “and godel/3”.

As a final example, we can also define the so called Borel algebra based on the union of intervals (where
for instance B([0, 1]) is the union of intervals between 0 and 1 [46, 39]) as a Prolog program for being
used into FLOPER as follows:

• A member of this algebra is a list of pairs representing disjoined intervals.

• The top element is the point 1 (interval from 1 to 1), and the bottom one is the point 0 (interval
from 0 to 0).

• A union of intervals, U , is less or equal than other union of intervals U ′ if for each I ∈ U , there
exists another interval I ′ ∈ U ′, such that I ⊆ I ′.
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>

α β

⊥

member(bottom). member(alpha).

member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha).

leq(beta,beta). leq(X,top).

and godel(X,Y,Z) :- pri inf(X,Y,Z).

pri inf(bottom,X,bottom):-!.

pri inf(alpha,X,alpha):-leq(alpha,X),!.

pri inf(beta,X,beta):-leq(beta,X),!.

pri inf(top,X,X):-!.

pri inf(X,Y,bottom).

Figure 9: Partially ordered lattice with four elements

member([i(X,Y)]) :- number(X),number(Y),X=<Y.

member([i(X,Y),i(Z,T)|U]) :- number(X),number(Y),number(Z),

X=<Y, Y < Z,member([i(Z,T)|U]).

bot([i(0,0)]). top([i(1,1)]).

leq([X1,X2|X],Y) :- existsGreater(X1,Y),leq([X2|X],Y).

leq([X1],Y) :- existsGreater(X1,Y).

existsGreater(i(Xb,Xt),[i(Yb,Yt)|Y]) :- Yb=<Xb, Xt=<Yt,!.

existsGreater(X,[_|Y]) :- existsGreater(X,Y).

3.4 Linguistic modifiers and linguistic variables

Another interesting feature of FLOPER is its ability for managing linguistic modifiers and linguistic
variables in a very easy way. A linguistic modifier can be seen as an aggregator such that, when applied
to a fuzzy expression, it alters its final truth degree. Some examples of well known modifiers are “very”
and “roughly”, where the first one tends to return a lower truth degree, and the second one, a higher
truth degree. Since the concept of modifier is dependent of a concrete lattice, its definition should appear
inside the Prolog file containing the proper multi-adjoint lattice loaded into FLOPER . For instance,
in the typical lattice 〈[0, 1],≤〉 used in previous examples, we could define some modifiers by means of
the following usual formulae:

modifier formula implementation
extremely extremely(x) = x4 agr extremely(X,TV0) : − TV0 is X ∗X ∗X ∗X.
very very(x) = x2 agr very(X,TV0) : − TV0 is X ∗X.
moreorless moreless(x) = x1/2 agr moreless(X,TV0) : − TV0 is sqrt(X).

roughly roughly(x) = x1/4 agr roughly(X,TV0) : − TV0 is sqrt(sqrt(X)).

With these modifiers, now we could update the program of Figure 1 to increase the difficulty for obtaining
a credit in crisis times. The only rule to be modified is the seventh one, whose new shape could look like:
R∗

7 : c(X) ←p @very((h(X) |P e(X)) &P y(X)) with 1. Linguistic modifiers increase the expresiveness
of the fuzzy language and as said before, they have to be defined as part of the lattice associated to the
MALP program in the current project.

On the other hand, linguistic variables allow us to represent linguistic symbols defined by means of
fuzzy sets. A linguistic variable is characterized by a tuple 〈x, T, U,G,M〉, where x is the name of the
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Figure 10: Linguistic modifiers

variable, T the set of linguistic symbols or terms of x, U the universe where x is defined, G represents
a syntactic rule to generate linguistic terms, and M is a semantic rule for assigning to each linguistic
symbol t its fuzzy set M(t). For instance, we can represent the linguistic variable distance, with values
{near, far away} defined over the universe [0,+∞) in kilometers, as shown in Figure 11. We can
implement this variable into a Prolog file defining a fuzzy predicate for each symbol. The arguments
are an input variable (D) giving the crisp distance, and an output variable (TV) returning the degree of
membership of the input variable to the fuzzy set. Then, it is possible to load this Prolog program into
the current project of FLOPER , in order to use such definitions in the corresponding MALP program.

Figure 11: Linguistic variable “distance” with terms “near” and “far away”

near(D,1) :- D=<100.

near(D,TV):- 100<X, X=<500, TV is (500-X)/400.

near(D,0) :- 500<D.

far_away(D,0) :- D=<100.

far_away(D,TV):- 100<X, X=<500, TV is (X-100)/400.

far_away(D,1) :- 500<D.

In the following example, we design a touristic application to compute the best destination for vacations.
The database includes some cities and relevant information relating them (kind of weather, good sights,
distance from our hometown). It is clear that some of this information has a very fuzzy taste, so the
choice of a fuzzy language is desirable. We can fuzzify the crisp distance using the linguistic variable
defined above as follows.

nice_weather(madrid) with 0.8.

nice_weather(istanbul) with 0.7.
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nice_weather(moscow) with 0.2.

nice_weather(sydney) with 0.5.

many_sights(madrid) with 0.6.

many_sights(istanbul) with 0.7.

many_sights(moscow) with 0.2.

many_sights(sydney) with 0.6.

crisp_distance(madrid, 250).

crisp_distance(istanbul, 3700).

crisp_distance(moscow, 4200).

crisp_distance(sydney, 18000).

good_destination(X) <- @roughly(crisp_distance(X,D) & near(D))

@aver

@very(nice_weather(X) & many_sights(X)).

Note that the use too of linguistic modifiers in the last MALP rule means that we give little importance
to the distance since we are more interested on weather and sights. Now, for goal good destination(X),
the execution of the previous program into FLOPER returns the following results (meaning that the
best destination, according to our specification, is Madrid, followed by far by Istanbul and Sydney, while
Moscow scores 0):

[Truth_degree=0.0,X=moscow]

[Truth_degree=0.005000000000000009,X=sydney]

[Truth_degree=0.07999999999999996,X=istanbul]

[Truth_degree=0.5245698525097306,X=madrid]

Note that, with the current definition of fuzzy predicates ‘near’ and ‘far away’, no matter how we reduce
the importance of distance since, if it is over 500 kilometers, it will always be near with 0 truth degree,
and if it is under 100 kilometers, it will be far with 0 truth degree. If our perception of distance changes,
these notions will become useless. To fix that, we can define them with non-linear rules like the following
ones, which show that FLOPER is flexible enough to deal with fuzzy predicates defined (in Prolog)
by means of non-linear arithmetic expressions:

near(D,TV) :- TV is 250/(D+250).

far(D,TV) :- TV is 1 - 250/(D+250).

Figure 12: Linguistic variable “distance” with flexible versions of “near” and “far away”
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4 Extending Lattices and Declarative Traces

This section presents different methods to gain expressiveness when designing a MALP program by
manipulating its associated lattice. The main technique consists on agglutinating several lattices in order
to obtain the Cartesian product of them, which is also a multi-adjoint lattice [31]. Once this is done, a
new functionality emerges for obtaining declarative traces (when evaluating goals) at a very low cost.

Theorem 4.1 If L1, . . . , Ln are a finite number of multi-adjoint lattices, then its Cartesian product
L = L1 × · · · × Ln is also a multi-adjoint lattice.

In order to simplify our explanation, but without lost of generality, we only consider two multi-adjoint
lattices (L1,≤1,&1,←1) and (L2,≤2,&2,←2), each one equipped with just a single adjoint pair. Then,
L = L1 × L2 has lattice structure with an ordering relation induced in the product from (L1,≤1) and
(L2,≤2) as follows:

(x1, y1) ≤ (x2, y2)⇔ x1 ≤1 x2, y1 ≤2 y2

Moreover, being >1 = sup(L1), ⊥1 = inf(L1), >2 = sup(L2) and ⊥2 = inf(L2), we have that (>1,>2) =
sup(L) and (⊥1,⊥2) = inf(L) which implies that the Cartesian product L is a bounded lattice if both
L1 and L2 are also bounded lattices. Analogously, L1 × L2 is a complete lattice if L1 and L2 verify too
the same property. Finally, from the adjoint pairs (&1,←1) and (&2,←2) in L1 and L2, respectively, it
is possible to define the following connectives in L:

(x1, y1)&(x2, y2) , (x1&1x2, y1&2y2)

(x1, y1)← (x2, y2) , (x1 ←1 x2, y1 ←2 y2)

for which it is easy to justify that they conform an adjoint pair in L1×L2 (thus satisfying, in particular,
the adjoint property). In a similar way, it is also possible to define new connectives (conjunctions,
disjunctions and aggregators) in the Cartesian product L1×L2 from the corresponding pairs of operators
defined in L1 and L2.
FLOPER is able to deal with Cartesian products of multi-adjoint lattices by acting on the “member/1”

predicate, which accept as argument any object which belong to a lattice. Some examples of simple
“member/1” definitions are:

• member(X) :- number(X), X=<1, X>=0: [0,1] interval

• member([X|L]): lists

• member(info(X,Y)): pairs

The very intuitive way to obtain Cartesian product of lattices is to use Prolog functions with arity 2
(indeed, the cartesian product of n lattices can be represented using functions with arity n). In order
to implement a cartesian product of lattices in a Prolog file, we define “member/1” predicate whose
parameter is a term headed with a function symbol, for instance: member(f(X,Y)) :- check1(X),

check2(Y). Of course, predicates “leq/2”, “top/1”, “bot/1” and connectives have to be defined following
the same criterium in order to implement the concrete Cartesian product of lattices.

Before showing an example of Cartesian product modeled in FLOPER , let us consider again the so
called domain of weight values W used in the QLP (Qualified Logic Programming framework of [44, 7, 43],
whose elements are intended to represent proof costs, measured as the weighted depth of proof trees. As
explained in Section 2, W can be seen as lattice (N ∪ {∞},≥), where ≥ is the reverse of the usual
numerical ordering (with ∞ ≥ d for any d ∈ N) and thus, the bottom elements is ∞ and the top
element is 0 (and not vice versa). Note that in this lattice the arithmetic operation “+” plays the
role of a conjunction (it is easy to prove that in this setting such definition of & verifies the properties
required by t-norms [40]). Moreover, we can obtain the residual implication of the “+” t-norm, defined
as y ← z , sup{t ∈ W : t+ z ≤ y}, which in this particular case acquires the following shape:

y ← z ,

{

y − z, if z ≥ y

0, if y > z
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So, the reader can easily check that (+,←) conforms an adjoint pair in (N ∪ {∞},≥), thus accomplish-
ing with Definition 2.1 in Section 2, which implies that W is in fact a multi-adjoint lattice. A valid
implementation of W lattice presents the following definitions:

member(X) :- number(X). member(infty).

leq(infty,X). leq(X,Y):-X>=Y.

top(0). bot(infty).

and_plus(X,infty,infty). and_plus(infty,X,infty). and_plus(X,Y,Z):-Z is X+Y.

In order to associate the latticeW to our program P1, we have to change the weights of each rule by valid
truth degrees belonging to the new lattice. For instance, rule “y(peter) with 0.4” would be rewritten
as “y(peter) with 1” (the underlying idea is that “the use of each program rule in a derivation implies
the application of one admissible step”), resulting in a new program, PW . By using the “lat” option of
FLOPER , we can built a project which associates lattice W to program PW and now, for goal “c(X)”,
we can generate an admissible derivation similar to the one seen in Figure 1, but ending now with
〈&P(info(1,&P(|P(1, 1), 1)), {X/peter}〉. Since: &P(1,&P(|P(1, 1), 1)) = +(1,+(+(1, 1), 1))) = 4, the final
fuzzy computed answer or f.c.a. 〈4; {X/peter}〉 indicates that goal “c(X)” holds when X is peter, as
proved after applying 4 admissible steps.

On the other hand, since we have said that V is the multi-adjoint lattice ([0, 1],≤) based on real
numbers in the unit interval used along this paper (which is equipped with three adjoint pairs modeling
implication and conjunction symbols collected from the  Lukasiewicz logic, Gödel intuitionistic logic and
product logic) then, in the Cartesian product V × W we will find the top and bottom elements (1, 0)
and (0,∞), respectively, as well as the following definitions of conjunction operations (among other
connectives) whose names are mirroring to extensions of the product logic and  Lukasiewicz logic:

(v1, w1) &P+ (v2, w2) , (v1 ∗ v2, w1 + w2)

(v1, w1) &L+ (u2, w2) , (max(0, v1 + v2 − 1), w1 + w2)

Moreover, we can also conceive a more powerful lattice expressed as the Cartesian product of V (see Figure
8) andW . Now, each element includes two components, coping with truth degrees and cost measures. In
order to be loaded into FLOPER , we must define in Prolog the new lattice, whose elements could be
expressed as data terms of the form “info(Fuzzy Truth Degree, Cost Number Steps)”. Some of the
required predicates are:

member(info(X,W)):-number(X), 0=<X,X=<1,(W=infty,!; number(W),1=<W).

leq(info(X1,W1),info(X2,W2)):-X1 =< X2, (W1=infty,!; number(W2), W2 =< W1).

bot(info(0,infty)). top(info(1,1)).

and_prod(info(X,W1),info(Y,W2),info(Z,W3)) :- pri_prod(X,Y,Z),pri_add(W1,W2,W3).

pri_add(infty,_,infty). pri_add(_,infty,infty).

pri_add(X,Y,Z) :- number(X), number(Y), Z is X+Y.

Finally, if the weights assigned to the rules of our example are “info(0.4,1)” for R1, “info(0.8,1)” for
R2, “info(0.9,1)” for R3 and so on, then we would obtain the desired f.c.a. 〈info(0.38, 4); {X/peter}〉
for goal “c(X)”, with the obvious meaning that we need 4 admissible steps to prove that the query is
true at a 38% degree when X is “peter”.

One step beyond, we will also see that if instead of the number of computational steps, we are interested
in knowing more detailed data about the set of program rules and connective definitions evaluated for
obtaining each solution then, instead of W it will be mandatory to use a new lattice S based on strings
or labels (i.e., sequences of characters) for generating the Cartesian product V × S. In [38] we show not
only that S is a complete multi-adjoint lattice, but also that the concatenation of strings, usually called
“append” in many programming languages, plays the role of a conjunction connective in such lattice.
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member(info(X,Y)):-number(X),0=<X,X=<1,atom(Y). top(info(1,’’)).

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-

pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),

pri_app(Dat1,’&PROD.’,Dat2),pri_app(Dat2,DatPROD,Z2).

pri_prod(X,Y,Z,’#PROD.’):-Z is X * Y.

pri_app(X,Y,Z) :-name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).

append([],X,X). append([X|Xs],Y,[X|Zs]):-append(Xs,Y,Zs).

.....

Figure 13: Multi-adjoint lattice modeling truth degrees with labels

In order to be loaded into FLOPER , we need to define again the new lattice as a Prolog program,
whose elements will be terms of the form “info(Fuzzy Truth Degree, Label)” as shown in Figure 13
(we only list some representative clauses).
Here, we see that when implementing for instance the conjunction operator of the Product logic, in
the second component of our extended notion of “truth degree”, we have appended the labels of its
arguments with label ’&PROD.’ (see clauses defining and prod, pri app and append). Of course, in the
fuzzy program to be run, we must also take into account the use of labels associated to the program rules,
as occurs with the following example:

p(X) <prod &godel(q(X),@aver2(r(X),s(X))) with info(0.9,’RULE1.’).

q(a) with info(0.8,’RULE2.’).

r(X) with info(0.7,’RULE3.’).

s(X) with info(0.5,’RULE4.’).

where we have used in the first rule aggregator “@aver2” (intended to compute the average between the
results achieved by applying two different disjunction operations on the parameters) defined in Prolog

as:

agr_aver2(X,Y,info(Za,Zb)) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),

agr_aver(Z1,Z2,info(Za,Zc)),

pri_app(Zc,’@AVER2.’,Zb).

Now, the reader can easily test that, after executing goal “p(X)”, we obtain the following fuzzy com-
puted answer which includes the desired declarative trace containing the sequence of program-rules and

connective-calls (mirroring
AS
; and

SIS1
; steps, according definitions 2.2 and 2.9, respectively) evaluated

till finding the final solution:

>> run.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.

@AVER2.|GODEL.|LUKA.

@AVER.&GODEL.&PROD.), X=a]

With a very little extra effort, we can extend the previous lattice to have into account also the exploited

primitive operators during the interpretive phase, thus simulating
SIS2
; steps (see again Definition 2.9).

We simply need to include a label in the Prolog definition of each primitive operator in order to identify
it (for instance, ”#PROD” refers to the product primitive operator).

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-

pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),

pri_app(Dat1,’&PROD.’,Dat2),pri_app(Dat2,DatPROD,Z2).

pri_prod(X,Y,Z,’#PROD.’) :- Z is X * Y.
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Figure 14: Obtaining declarative traces on fuzzy computed answers

As shown in Figure 14, the result of executing again goal “p(X)” is:

>> run.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.

@AVER2.|GODEL.#MAX.|LUKA.

#ADD.#MIN.@AVER.#ADD.#DIV.

&GODEL.#MIN.&PROD.#PROD.), X=a]

In this fuzzy computed answer we obtain both the truth value (0.72) and substitution (X = a) associated
to our goal, but also the sequence of program rules exploited when applying admissible steps as well as
the proper fuzzy connectives evaluated during the interpretive phase, also detailing the set of primitive
operators (of the form #label) they call.

To finish this section, we wish to mention the real-world application we have recently developed
by using the FLOPER tool, where the key point is the use again of a lattice based on the Cartesian
product of two previous lattices, but whose second component, instead of strings, considers lists. In
[1, 2, 3], we present both an interpreter and a debugger for a fuzzy variant of the XPath language, which
admits new commands with a fuzzy taste for flexibly accessing XML documents, automatically generating
alternative queries to retrieve more information, etc. The application can be freely downloaded and even
tested on-line (see Figure 15) through http://dectau.uclm.es/fuzzyXPath/. Moreover, in [5] and [47]
we present our last applications recently developed with FLOPER which connect with the challenging
fields of SAT/SMT and cloud computing, respectively.

5 Conclusions

In the recent past, several fuzzy extensions of the popular pure logic language Prolog have been designed
in order to incorporate on its core new expressive resources for dealing with uncertainty in a natural way.
However, real tools for putting in practice the power of such languages are not always available to a
wide audience. To reduce this gap, the experience acquired in our research group regarding the design
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Figure 15: Screen-shot of an on-line work session with the XPath debugger

of techniques and methods based on fuzzy logic in close relationship with the so-called multi-adjoint
logic programming approach, has motivated our interest for putting in practice all our developments
around the design of the FLOPER environment, which offers comfortable resources for programmers
trained in declarative languages. In a first stage, we have showed that our tool is able to execute MALP

programs via a “transparent compilation process” to standard Prolog code which, to the best of our
knowledge, constitutes the first initiative to put in practice the integral development of this kind of fuzzy
programs. Going on deeper, we have next proposed a second compilation way which produces a low-level
representation of the fuzzy code, thus enabling the possibility of drawing “derivation trees” (which offer
too debugging/tracing tasks) and opening the door to new program manipulation techniques such as
fold/unfold-based program optimization, program specialization by partial evaluation, etc... in which we
are working nowadays after being formally matured in our research group. Moreover, our tool offers the
possibility of managing in a single pack, i.e. “project”, fuzzy programs with its associated multi-adjoint
lattices modeled in Prolog, together with additional clauses and scripts helping to manage and increase
the power of this programming tool. Our philosophy is to friendly connect this fuzzy framework with
Prolog programmers since our system (which can be easily installed on top of many Prolog platforms)
translates the fuzzy code to classical clauses, admits the definition of sophisticated lattices for modeling
advanced notions of truth degrees collecting proof traces on fuzzy computed answers and simplifies the
implementation of modern, real-world applications where fuzzy logic plays an important role. As an
example, our system has recently served us for developing a real-world application devoted to the flexible
management of XML documents by means of a fuzzy variant of the popular XPath language. We are
nowadays introducing new thresholding techniques inspired by [16, 15] for addressing in our framework the
well-known “top-k ranking problem” (i.e. determining the top k answers to a query without computing
the -usually wider, possibly infinite- whole set of solutions [6, 8, 12, 9, 27, 45, 23, 26, 42, 10, 13]).
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[2] J.M. Almendros-Jiménez, A. Luna, and G. Moreno. Annotating Fuzzy Chance Degrees when De-
bugging Xpath Queries. In Advances in Computational Intelligence - Proc of the 12th International
Work-Conference on Artificial Neural Networks, IWANN 2013 (Special Session on Fuzzy Logic and
Soft Computing Application), Tenerife, Spain, June 12-14, pages 300–311. Springer Verlag, LNCS
7903, Part II, 2013.
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