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Abstract. In this paper we investigate the shift from two-valued to
many-valued logic programming, including extensions involving functo-
rial and monadic constructions for sentences building upon terms. We
will show that assigning uncertainty is far from trivial, and the place
where uncertainty should be used is also not always clear. There are a
number of options, including the use of composed monads, and replacing
the underlying category for monads with categories capturing uncer-
tainty in a more canonic way. This is indeed important concerning terms
and sentences, as classic logic programming, and also predicate logic
for that matter, is not all that clear about the distinctive characters of
terms and sentences. Classically, they are sets, and in our approach they
are categorical objects subject to being transformed e.g. by transforma-
tions between functors. Naive set-theoretic approaches, when dealing e.g.
with ‘sets of sentences’ and ‘sets of ground atoms’, may easily lead to
confusion and undesirable constructions if generalizations are performed
only as a shift from ‘set’ to ‘fuzzy set’. We present some basic results
on how adaptation of a strictly categorical framework enables us to be
very precise about the distinction between terms and sentences, where
predicates symbols become part of a signature which is kept apart from
the signature for terms. Implication will not be included in signatures,
but appears integrated into our sentence functors. Doing so we are able
to relate propositional logic to predicate logic in a more natural way.
Integration of uncertainty then becomes much more transparent.
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1 Introduction

Intuitively speaking, terms are produced by signatures such that variables and
constants are terms, and if t1, . . . , tn are terms then also ω(t1, . . . , tn) is a term,
where ω resides in the given signature. Categorically, it is well known that terms
may be produced by functors that are extendible to monads (see e.g. [7, 14]),
whereas sentences are produced by functors. Indeed, variables may be substi-
tuted by terms, but sentence variables are dubious. For example, we may have
terms P (x) and Q(y), where P and Q are predicate symbols residing in the
signature, with x and y as variables. We might now produce a sentence in some
abstract form like as a pair (P (x), Q(x)), intuitively then corresponding to “P (x)
is inferred by Q(y)” to check whether that sentence is valid or not. Here, the
‘pairing operation’ is not given in the underlying signature, but clearly appears
within a sentence constructor. This indeed reveals that substitution with sen-
tences makes no sense. The distinction between monads for representing terms
and functors only to represent sentences makes the situation concerning substi-
tution very transparent.

The overall scope of logic in this paper is that of generalized general logic
[14], extending the frameworks of institutions [13] and general logic [24]. Mor-
phisms between logics play an important role, and such morphisms are built
up of morphisms respectively between underlying signatures, terms, sentences,
and so on, all the way through all building blocks of logic. This means that the
‘set of terms’ and ‘set of sentences’ cannot be simple sets, so that we would
have straightforward mappings between them. Categorically, they are based on
functors and monads, which provides a richer algebraic structure and constraints
morphisms between logics in a more canonic way. In logic programming, informal
production of sets of terms and well-formed formulas in fact leads to confusion
concerning the borderline between terms and sentences. In [21], notation and
concepts mention ‘signature’, ‘functions’ (operators of formal universal algebra
based signatures), and ‘predicates’. In this conventional view, predicates are typ-
ically seen as different from operators in some underlying signature, and such
treatments are also ‘unsorted’, or in fact one-sorted concerning the underlying
set of terms.

In first-order logic based logic programming we are immediately confronted
with the issue of the underlying signature. Informal treatments of first-order
logic are not always clear about predicates being operator symbols or simply
relations or functions, the latter confusing semantics with syntax in a way where
the ‘semantic jacket’ acts as a ‘dress code’ for syntactic treatment of predi-
cate symbols. Even more confusing is the adoption in [21] to say that operator
symbols in signatures are ‘function symbols’, and the Boolean like operators rep-
resenting predicates are called a ‘predicate symbols’. Indeed, in [21], first-order
logic is called a ‘first order theory’ consisting of alphabet, language, and so on,
but these notion are not in harmony with the necessity to keep terms apart from
sentences. Such verbose notations and names as used in [21] are not clear about
the distinction between terms and sentences, and an alphabet is simply assumed
to contain both operator as a well as predicate symbols. This means that terms



and sentences are lumped together within that informal language description.
The use of ‘function’ in this context is obviously misleading as ω is only a syn-
tactic symbol, but its semantic counterpart is a function (in the sense of ZFC),
which in [21] is called a ‘mapping’.

In our categorical approach, ‘alphabet’ is the underlying signature of sorts
and operators, and we are always many-sorted. In [21] the treatment is basically
one-sorted, and operators are called ‘constants’ and ‘functions’. The confusion
concerning terms and sentences also leads to technicalities involving interpreta-
tions and models. The classical treatment of models is using sets rather than
algebras, which in turns invites or even enforces [21] to say that “the identifica-
tion of a Herbrand interpretation as a subset of the Herbrand base will be made
throughout”. Strictly speaking, we do not have subsets in this case.

In this paper we will have predicates as operators, so atoms are terms,
but program clauses become sentences. Basically this means that conjunction
of predicates are still terms, but clauses involving implication is not a term,
since implication is not included as an operator in the underlying signature.
We will categorically aim at being precise so that notions like ‘ground terms’,
‘well-formed formulas’ in predicate logic, ‘predicates’ or ‘predicate symbols’, and
‘atoms’ can be explained more strictly in the categorical machinery.

Preliminary notions used in this paper appear in a working version [10], and
the categorical framework of our monad constructions appear in [7].

These monads make use of constructions in categorical algebra more broadly,
which goes back to the study of natural equivalences [5]. Monoidal closed cate-
gories emerges more or less in [4], and attained its simple and clean formulation
in [22]. This is the categorical realm of this paper, and the categorical notation
adopted in this paper is the same as in [7].

2 Traditional extensions from two-valued to many-valued
logic programming

In traditional two-valued logic, and once negation is given, implication and con-
junction are defined by one another. In the intuitionistic tradition, negation as
a basic building block is avoided, and then implication and conjunction needs
to be otherwise related, and this is done by the residuation property, which cat-
egorically is an adjoint situation, given as a Galois connection. This enables to
define negation, if negation is desired. Residuated lattices have been extensively
studied and are appealing algebraic structures for semantics of logic, and indeed
because of the tight bound between implication and conjuction.

In many-valued logic, this ‘semantic jacket’ has been adopted in several ap-
proaches. E.g. in [2], this residuated situation appears in what is called ‘implica-
tion algebras’, and later on, e.g. in [23], where the name ‘multi-adjoint’ is used
in this context. ‘Multi-adjointness’ in logic programming then refers to the use
of residuated lattices that provides the desired semantic jacket that prescribes
the behaviour of the truth values.



All this is, from the viewpoint of that semantic jacket, basically an exten-
sion of two-valued logic to many-valued logic using algebras of truth values.
The underlying language involving its terms and sentences remain traditional.
It also follows the tradition of extending propositional calculus to predicate cal-
culus, where the implication operator receives a similar semantic. Traditional
predicate logic is set-theoretic, not functorial, about its ‘set of sentences’. Many-
valued logic programming has followed that same tradition, and then the se-
mantics, which restricts to management of truth values, is adopted using this
semantic jacket provided by that residuated situation. The acronym ‘MALP’ for
multi-adjoint logic programming has then been quite widely adopted, and as
an acronym is seen as a specific version of fuzzy logic programming. ‘Adjoint-
ness’ refers to the residuated situation, and ‘multi’ to the allowance of using
particular lattices for each separate logic program. Much of this work basically
keeps the classical constructions of logic programming as they are e.g. in [21],
and many-valued extensions indeed focus on the many-valued extensions of the
truth values. It does deal with uncertainty issues, but restricted to consequences
of algebraic manipulation of truth values. It is also seen to represent ‘approxi-
mate reasoning’, which it certainly does, but as restricted to that focus on truth
values, leaving all the other bits and pieces of logic as they are in a two-valued
setting.

As mentioned before, our scope is logic as categorical object, that is con-
structed functorially and monadically, with morphisms between respective sub-
structures in logic. Thus we do not propose to have a ‘universal logic’, and
further, logic programs in our setting is the axiom system in a particular logic.
This means e.g. that logic programs can have different inference rules, and mor-
phisms between logic programs makes no sense unless we would have morphisms
between their underlying logics, which in turn include appropriate transforma-
tions between their respective inference systems.

Resolution in these approaches eventually enters the scene, and theory devel-
opments are confronted e.g. with fixpoint issues and inference rules. This then
is mostly ad hoc as typically seen e.g. in [1, 3, 15, 19, 20, 25, 28, 34]. Essentially,
they differ in the underlying notion of uncertainty theory and vagueness theory
(probability theory, possibilistic logic, fuzzy logic and multi-valued logic) and
how uncertainty/vagueness values, associated to rules, are managed. Annotated
logic programming [17] also falls within adoption of such jackets.

Fixpoint considerations [33] are interesting in these settings, even if it can-
not be expected that the relation between fixpoints and least Herbrand models
appears as it is in a many-valued extension. Nevertheless, analyzing this fixpoint
situation [30] reveals some crucial underlying structures that are important to
consider in dealing with soundness and completeness issues. Operational and
fix-point semantics are provided also in [23], and these considerations has been
extended with a declarative semantics based on model-theory [16].

Further, there are a number of independently developed more general lan-
guage based approaches to fuzzy logic programming, where there are less con-
siderations involving first-order aspects, and more papers covering truth value



considerations only. For the first-order aspects see [18, 27] for some historically
important contributions. Categories for logic programming enters the scene in
[29] with co-equalizers seen to correspond precisely to most general unifiers. A
word of caution, however, is that co-equalizers as such do not suffice as cate-
gorical constructions when we move over to the many-valued setting. This then
affects the resolution principle as an algorithm that has been subject of fuzzifica-
tion e.g. in [1, 19, 23]. This mostly focuses on truth values more than extending
the underlying language. Similarly for fixpoint considerations, interpretations
are considered mostly as points in sets, and uncertainties are added [34]. The
fixpoint semantics framework has been enriched with a declarative semantics
based on model-theory as described in [16].

3 Signatures, terms and sentences

Throughout this paper we assume the readers are familiar with categorical con-
cepts. However, this section starts with introducing some categorical concepts
needed in the paper. Then, signatures and term monads are recalled and we in-
troduce sentences in a logic programming context. Finally, we show how fixpoints
can be considered.

3.1 Some Categorical Concepts and Notations

Let C be a category and S a set of sorts. Then, CS is a category with objects
XS = (Xs)s∈S where each Xs ∈ Ob(C). The morphisms between XS and YS are
fS : XS → YS where fS = (fs)s∈S and each fs ∈ homC(Xs, Ys). The composition
of morphisms is defined sortwise, thus, fS ◦ gS = (fs ◦ gs)s∈S .

We may sometimes need to pick an object Xs in Ob(C) when XS is given in
a form or another. For this purpose we define a functor args : CS → C such that
argsXS = Xs and argsfS = fs. Especially, when working in SetS , card(S) > 1,
we may define two emptifying functors: φS\s : SetS → SetS such that φS\sXS =
X ′S , where for all t ∈ S\{s} we have X ′t = Xt, and X ′s = ∅. Similarly we define
the functor φs : SetS → SetS as φsXS = X ′S , where for all t ∈ S\{s} we have
X ′t = ∅, and X ′s = Xs. Actions on morphisms are defined in obvious way.

Clearly, a functor F : C→ D may be extended to a functor FS = (F)s∈S : CS →
DS (for all s ∈ S, the functor remains the same). For example, the powerset
functor P : Set→ Set as well as the many-valued powerset functor L : Set→ Set

both determine functors on SetS , we write PS = (P)s∈S and LS = (L)s∈S . Also
functors Gs : CS → D, s ∈ S, are of interest, because we can determine a functor
G : CS → DS such that for all XS ∈ Ob(CS) we have GXS = (GsXS)s∈S . Notice
that we have now Gs = args ◦ G.

Now, assume any two functors F,G : C → D. A natural transformation τ
between F and G, denoted by τ : F→ G, assigns for each C-objectX a D-morphism
τX : FX → GX satisfying Gf◦τX = τY ◦Ff for all f ∈ homC(X,Y ). Notice that CS
is also a category, thus we may have natural transformations, between functors
on CS , for example.



Finally, we recall a monad F over a category C, which is a triple (F, η, µ),
where F : C → C is a (covariant) functor, and η : id → F and µ : F ◦ F → F are
natural transformations for which µ ◦Fµ = µ ◦µF and µ ◦Fη = µ ◦ηF = idF hold.

3.2 Signatures and the Term Monad Construction

A many-sorted signature Σ = (S,Ω) consists of a set S of sorts (or types), and
a set Ω of operators. Here S as an index set, whereas Ω may be an object in
SetS . Operators in Ωs are written as ω : s1 × · · · × sn → s.

It is convenient to use the notation Ωs1×···×sn→s for the set, as an object in
Set, of operators ω : s1 × · · · × sn → s ∈ Ωs with n given, and Ω→s for the
set of constants ω :→ s. With these notations we keep explicit track of operator
sorts as well as their arities and we consider

Ωs =
∐

s1,...,sn
n≤k

Ωs1×···×sn→s.

On algebraic structures for truth values, we mostly prefer to use quantales
as they play an important role when invoking the use of monoidal closed cate-
gories for the formal construction of signatures. Quantales fulfill the properties
of residuated lattices, and complete residuated lattices are quantales. We fur-
ther restrict to quantales Q that are commutative and unital, as this makes
the Goguen category5 Set(Q) to be a symmetric monoidal closed category and
therefore also biclosed. This Goguen category carries all structure needed for
modelling uncertainty using underlying categories for fuzzy terms over appro-
priate signatures, and as constructed by their term monads [7]. Note indeed
that the signature, as a categorical object itself, also carries uncertainty, which
is brought up partly to represent the overall uncertainties attached to fuzzy
terms. Recall that (A,α) ⊗ (B, β) = (A × B,α � β) provides the monoidal op-
eration on objects in the Goguen category. If � is the meet operator, then ⊗ is
the categorical product.

A signature (S, (Ω,α)) over Set(Q) then typically has S as a crisp set, and
α : Ω → Q then assigns uncertain values to operators. For the term monad
construction we need objects (Ωs1×···×sn→s, αs1×···×sn→s) for the operators ω :
s1×· · ·×sn → s with n given, and (Ω→s, α→s) for the constants ω :→ s. These
objects are provided by respective pullbacks using (Ω,α).

In our general term functor construction we have

Ψm,s((Xt)t∈S) = Ωs1×...×sn→s ⊗
⊗

i=1,...,n

Xsi ,

and this specializes, in the case of the Goguen category, to

Ψm,s(((Xt, δt))t∈S) = (Ωs1×...×sn→s, αs1×...×sn→s)⊗
⊗

i=1,...,n

(Xsi , δsi)

= (Ωs1×...×sn→s ×
∏

i=1,...,n

Xsi , α
s1×...×sn→s �

⊙
i=1,...,n

δsi).

5 Objects in the Goguen category are pairs (A,α), where α : A→ Q is a mapping.



The inductive steps start with T1
Σ,s =

∐
m∈Ŝ Ψm,s, and, for ι > 1, proceeds with

TιΣ,sXS =
∐

m∈Ŝ Ψm,s(Tι−1Σ,tXStXt)t∈S), and TιΣ,sfS =
∐

m∈Ŝ Ψm,s(Tι−1Σ,tfStft)t∈S).
This then allows us to define the functors TιΣ by TιΣXS = (TιΣ,sXS)s∈S, and

TιΣfS = (TιΣ,sfS)s∈S. There is a natural transformation Ξι+1
ι : TιΣ → Tι+1

Σ such

that (TιΣ)ι>0 is an inductive system of endofunctors with Ξι+1
ι as its connecting

maps. The inductive limit F = ind lim−→TιΣ exists, and the final term functor

TΣ is TΣ = F t idSetS . We also have TΣXS = (TΣ,sXS)s∈S, and TΣ is strictly
not idempotent, but only “idempotent like”, as there is a natural isomorphism
between TΣTΣ and TΣ .

For more detail concerning this term construction, see [7].

3.3 Sentences in a Logic Programming Context

Let then Σ0 = (S0, Ω0) be a signature over Set, and TΣ0
be the term monad

over SetS0
. For the variables in XS0

, the set of terms TΣ0
XS0

, as an object of
SetS0

, then correspond to the ‘terms’, and similarly TΣ0
∅S0

will be the set of
so called ‘ground terms’ in the sense of [21].

In order to introduce predicates as operators in a separate signature, and then
composing that resulting ‘predicate’ functor with the term functor, we assume
that Σ contains a sort bool, which does not appear in connection with any
operator in Ω, i.e., we set S = S0∪{bool}, bool 6∈ S0, and Ω = Ω0. This means
that TΣ,boolXS = Xbool, and for any substitution σS : XS → TΣXS , we have
σbool(x) = x for all x ∈ Xbool. The composition of the ‘predicate’ functor with
TΣ is intuitively expected to be the desired ‘predicates as terms’ functor.

We can now also separate propositional logic from predicate logic, and also
decide whether or not to include negation. The key effect in doing this arrange-
ment is that implication becomes ‘sentential’ where as conjunction (and nega-
tion, if included) produces terms from terms.

To proceed towards this goal, let ΣPL = (SPL, ΩPL) be the underlying two-
valued propositional logic signature, where SPL = S, and ΩPL = {F, T :→
bool,& : bool × bool → bool,¬ : bool → bool} ∪ {Pi : si1 × · · · × sin →
bool | i ∈ I, sij ∈ S}. Similarly as bool leading to no additional terms, except
for additional variables being terms when using Σ, the sorts in SPL, other than
bool, will lead to no additional terms except variables. Adding predicates as
operators even if they produce no terms seems superfluous at first sight, but the
justification is seen when we compose these term functors with TΣ .

In the many-valued case we would have some sort lat, so that A(lat) = L,
the underlying set of a complete lattice L. Now, L could indeed more specifically
be a residuated lattice, when conjunction is desired to be residuated with the
implication operator (in the lattice), or a quantale, justifying the use of monoidal
closed subcategories. The choice of the lattice or quantale is typically justified
by the application context.

It is important also to notice indeed that it is possible to include the both
sorts bool and lat in the same signature, if one needs to distinguish the two-
valued case from the many-valued case also on the syntactic level.



In the many-valued propositional logic signature Σmv
PL = (SmvPL, Ω

mv
PL) con-

stants clearly map algebraically to uncertainty values. In what follows we will
not explicitly distinguish between Σmv and Σ, so whenever we write Σ, the
underlying lattice representing the algebra may be two-valued or many-valued.
We now introduce the notation ΣPL\¬ for the signature where the operator ¬
is removed, and ΣPL\¬,& for the signature where both ¬ and & are removed.

The ZFC-set of ‘terms’ over Σ may now be given by⋃
s∈S

(TΣ,s ◦ φ
S\bool)XS ,

and now the ZFC-set of propositional logic formulas are⋃
s∈S

(args ◦ TΣPL ◦ φ
bool)XS = (argbool ◦ TΣPL ◦ φ

bool)XS .

We use the expression args ◦ TΣPL instead of TΣPL,s for convenience. Note how

(argbool ◦ TΣPL\¬,&
◦ φbool)XS = {F, T}.

Sentences, i.e., formulas in propositional logic are now obviously given by the
functor

SenPL = argbool ◦ TΣPL ◦ φ
bool,

and sentences in ‘Horn clause logic’ can now be given by the functor

SenHCL = (argbool)2 ◦ (((TΣPL\¬,&
◦ TΣ)× (TΣPL\¬

◦ TΣ)) ◦ φS\bool)

= (argbool)2 ◦ ((TΣPL\¬,& × TΣPL\¬) ◦ TΣ ◦ φ
S\bool)

Note that SenHCLXS is an object in Set, and therefore the pair (h, b) ∈ SenHCLXS ,
as a sentence representing the ‘Horn clause’, means that h is an ‘atom’ and b is
a conjunction of ‘atoms’. Further, (h, T) is a ‘fact’, (F, b) is a ‘goal clause’, and
(F, T) is a ‘failure’.

This obviously relates to similar approaches for using sentence functors in
other logics. Intuitively, the identity functor is the sentence functor for lambda
terms as ‘sentences’ in λ-calculus, and id2 is the sentence functor for equations
as ‘sentences’ in equational logic [9].

Before proceeding, now note a fundamental appearance of the residuated
situation. The quantale, as a residuated lattice, uses the residuation at least for
the underlying signature to work properly in the setting of monoidal biclosed
categories, but is in no way at that point necessarily related to ‘implication’ as
appearing in Horn clauses. In our treatment we therefore clearly show where
and how residuation can be introduced. Indeed, residuation as possibly used for
uncertainty consideration in terms has nothing to do with residuation related
properties as possible used for uncertainty on sentence level.

We are now in a position to introduce variable substitutions. Indeed, because
we have a monad TΣ = (TΣ , η, µ), we may now perform a variable substitution



σS : φS\boolXS → TΣφ
S\boolYS , that is, variables φS\boolXS are subsituted by

terms TΣφ
S\boolYS . The substitution is defined sortwise σS = (σs)s∈S such that

σs : args(φS\boolXS)→ TΣ,sφ
S\boolYS . We have the following:

µ ◦ TΣσS : TΣφ
S\boolXS → TΣφ

S\boolYS

σheadS = TΣPL\¬,&(µ ◦ TΣσS) : (TΣPL\¬,&
◦ TΣ)φS\boolXS

→ (TΣPL\¬,&
◦ TΣ)φS\boolYS

σbodyS = TΣPL\¬(µ ◦ TΣσS) : (TΣPL\¬
◦ TΣ)φS\boolXS

→ (TΣPL\¬
◦ TΣ)φS\boolYS

(σheadS , σbodyS ) = (TΣPL\¬,& × TΣPL\¬)(µ ◦ TΣσS) :

((TΣPL\¬,&×TΣPL\¬)◦TΣ)φS\boolXS → ((TΣPL\¬,&×TΣPL\¬)◦TΣ)φS\boolYS

Finally,

σHC = (σheadbool , σ
body
bool ) : SenHCLXS → SenHCLYS

Notice that σheadS , σbodyS and (σheadS , σbodyS ) are morphisms in SetS but σHC is
a morphism in Set.

It is now clear that a candidate for the underlying category can be the Goguen
category Set(Q). Further, and as will be explored in subsequent papers, replace-
ment of TΣ with the composed functor Q ◦ TΣ [12], provides another style of
fuzzy extension.

3.4 Algebras, models and fixpoints

In the two-valued case, A(bool) is often {false, true}, so that A(F) = false and
A(T) = true. Further, A(&) : A(bool) × A(bool) → A(bool), is expected to
be defined by the usual ‘truth table’. Further A(s0) is usually denoted by D so
that the semantics for a (syntactic) n-ary operator ω : s0 × · · · × s0 → s0 is an
n-ary operation (function) A(ω) : Dn → D. Generally speaking, a many-sorted
algebra is not a traditional algebra, not even a tuple of traditional algebras,
since an operator ω may touch many sorts and then the semantics of ω is not
an n-ary function on some set. For example, we may assign for a signature
ΣPL = (SPL, ΩPL) a pair, the ‘many-sorted algebra’, (TΣPLXS , (A(ω))ω∈ΩPL),
where Xs = ∅ if s 6= bool. Then, (

⋃
s∈S(args ◦ TΣPL)XS , (F, T,&,¬)) serves as

a traditional Boolean algebra, when certain equational laws are given.



For a finite set of program clauses Γ = {(h1, b1), . . . , (hn, bn)} ⊆ SenHCLXS ,
based on Σ and ΣPL, we assign a SetS object

(UΓ )S = TΣ∅S = (TΣ,s∅S)s∈S

where TΣ,s∅S is the set of all ground terms of type s, and indeed TΣ,bool∅S = ∅.
Note how

⋃
s∈S(UΓ )s corresponds to the traditional and unsorted view of the

Herbrand universe as a ZFC-set.
We are also interested in the Set-object

BΓ = (argbool ◦ TΣPL\¬,&
◦ TΣ) ∅S

corresponding to the Herbrand base in the traditional sense [21].
Herbrand interpretations of a program Γ are subsets I ⊆ BΓ , that is, I ∈

PBΓ .
For sake of convenience, when dealing with the immediate consequences op-

erator for the fixpoint considerations, we will need the Herbrand expression base

B&
Γ = (argbool ◦ TΣPL\¬

◦ TΣ) ∅S .

Note that a Herbrand interpretation I canonically extends to a Herbrand
expression interpretation I& ⊆ B&

Γ . Similarly, when I ∈ LBΓ , one might ex-
tend I to Herbrand fuzzy expression interpretation I& (semantically) as fol-
lows: for an element b ∈ B&

Γ of the form b = b1& · · ·&bn we have I&(b) =∧
{I(b1), . . . , I(bn)} and for an atom element b ∈ B&

Γ , I&(b) = I(b). However,
it is questionable to call I ∈ LBΓ to an interpretation.

Note that in this paper we avoid describing the informal passage [21] from
‘interpretation’ to ‘Herbrand interpretation’, which categorically means describ-
ing the shift from algebras to term algebras. The Herbrand interpretation is the
‘ground term algebra’ [21] in the universal algebra sense. This is the TΣ-algebra,
rather than the Σ-algebra which corresponds to ‘interpretation’, and in all case
we are ‘ground’ in the sense of the variable sets in the tuples being empty sets.

The extension to the many-valued case is now a question about composing
with the many-valued powerset functor L with term functors, producing a style
of “logic with fuzzy” or having the term functors work over the Goguen category,
producing a style of “fuzzy logic”. It should therefore not be looked at simply
from the viewpoint of replacing the functor P to L with L as the underlying
complete lattice, and extending the Herbrand interpretations to Herbrand fuzzy
interpretations of a program Γ by I ∈ LBΓ . We will here look more into the first
situation, as the “squeezing in” of L can indeed be done in two ways. Either we
annotate it “outside”, as mentioned above, with sentences in such a ‘annotated
fuzzy Horn clause logic’ can be given by the sentence functor L ◦ SenHCL and
then proceed to produce interpretations for fuzzy sets of predicates

LBΓ = (L ◦ argbool ◦ TΣPL\¬,&
◦ TΣ) ∅S .

A fuzzy interpretation in this case is then just a mapping I : BΓ → L, and
uncertainties arising from terms and substitutions remain unaffected. On the



other hand, we may go “inside” to produce the substitution fuzzy Horn clause
logic with the sentence functor

SenSFHCL = (argbool)2 ◦ ((TΣPL\¬,& × TΣPL\¬) ◦ LS ◦ TΣ ◦ φ
S\bool)

so that ground predicates over fuzzy sets of terms is the set

BL
Γ = (argbool ◦ TΣPL\¬,&

◦ LS ◦ TΣ) ∅S

with the corresponding extension BL,&
Γ being defined in the obvious way. The

resulting fuzzy sets of ground predicates then comes about from considering the
swapper

ς : TΣPL\¬,&
◦ LS → LS ◦ TΣPL\¬,&

which is given in [6] for the many-sorted case, and in [11] for the one-sorted
case. Indeed we can use argboolςTΣ∅S : BL

Γ → LBΓ . Note also how LBL
Γ would

correspond to a Herbrand base like the set with uncertainty considerations both
for the sets of clauses, as well as sets of terms.

Moving to fixpoints, we first consider crisp ground term substitution, that is,
a SetS-morphism σS : XS → TΣ∅S . By the previous discussion, this induces
a morphism σHC : SenHCLXS → SenHCL∅S . We can now define a mapping
$ : LBΓ → LBΓ , where the underlying lattice L for the many-valued powerset
functor L is a complete lattice, by

$(I)(σheadbool (h)) =
∨

(h,b)∈Γ

I&(σbodybool (b)).

When (h, b) ∈ BΓ × BΓ is such that (h, b) 6∈ RσHC (the range of σHC), then
$(I)(h) = I(h) and $(I)(b) = I(b).

Clearly, $ is monotonic, and it is now well-known that $ has the least and
greatest fixpoints.

This, however, is a simpler approach to fuzzy models, as substitutions re-
main crisp. For fuzzy ground term substitution, that is, a SetS-morphism of the
form σL

S : XS → LSTΣ∅S , corresponding σL,head
S and σL,body

S mappings can be
provided with LS “inside”.

A mapping $L : LBL
Γ → LBL

Γ , considering the effect of substitutions with
fuzzy sets of terms, can now, using argboolςTΣ∅S : BL

Γ → LBΓ , be considered in
various forms, e.g., as

$L(I)(σL,head
bool (h)) = (

∨
t∈BΓ

(argboolςTΣ∅S (h))(t)) ∧ IL,&(σL,body
bool (b)).

In this case, $L is also monotonic.



4 Conclusions

What is Logic? Logic is a structure containing signatures, terms, sentences, struc-
tured sets of sentences, entailments, algebras, satisfactions, axioms, theories and
proof calculi. Signature have sorts (types) and operators, and algebras provide
the meaning of the signature. All terms are constructed (syntactically) using
operators in the signature, and sentences have terms as building blocks. Entail-
ment is the relation between the structured sets of sentences, representing what
we already know, and sentences representing knowledge we are trying to arrive
at. Satisfaction is the semantic counterpart to entailment providing the notion
of valid conclusions. Axioms prescribe what we take for granted at start, and
act as the logic program. Inference rules say how we can jump to conclusions in
a chain of entailments.

Further, unsortedness and many-sortedness are clearly different, and so are
crisp and fuzzy cases. Moreover, we should distinguish between “fuzzy logic
programming”, which requires considerations of underlying categories [8], from
“logic programming with fuzzy”, which is more about composing with term
monads using Set as the underlying category [12].

Fuzzy considerations in logic are then indeed similarly related to structures
which contain fuzzy signatures, fuzzy terms, fuzzy sentences, fuzzy structured
sets of sentences, fuzzy entailments, fuzzy algebras, fuzzy satisfactions, fuzzy
axioms, fuzzy theories and fuzzy proof calculi.

Details related to generalized general logic appear in [14], and further devel-
opments in particular related to sentence constructions will appear in [9].
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