
�

Transformation Rules and Strategies for

Functional�Logic Programs �

Gin�es Moreno

Dep� Inform�atica� UCLM� ����� Albacete� Spain�

E	mail
 gmoreno�info	ab�uclm�es

This paper abstracts the contents of a Ph�D� disserta�
tion entitled �Transformation Rules and Strategies for

Functional�Logic Programs� which has been recently
defended� These techniques are based on fold�unfold
transformations and they can be used to optimize in�
tegrated �functional�logic� programs for a wide class
of applications� Experimental results shows that typ�
ical examples in the �eld of Arti�cial Intelligence are
successfully enhanced by our transformation system
Synth� The thesis presents the �rst approach of these
methods for declarative languages that integrate the
best features from functional and logic programming�

Keywords� Program Transformation	 Functional Logic
Programming	 Fold�Unfold

�� Introduction

The integration of functional and logic program�
ming languages is one of the most interesting re�
search problems in the area of declarative pro�
gramming� In order to develop useful and practical
integrated languages� it is essential to succeed in
shrinking the e�ciency gap with respect to imper�
ative languages� as is already being done for Pro�
log� To this goal� formally based� practical tools for
the analysis and transformation of functional logic
programs which are able to improve the current
implementations are a pressing need�
Program transformation aims to derive better

semantically equivalent programs� Of the great
amount of literature on program transformation�
the so�called �Rules � Strategies� approach has
been intensively exploted over the last two decades�
It has been extensively applied both in functional

�This work has been partially supported by CICYT un�
der grant TIC ����������C����� and by Acci	on Integrada
Hispano�Italiana HI�������
��

and in logic programming� This approach is com�
monly based on the construction� by means of
a strategy� of a sequence of equivalent programs
each obtained by the preceding ones using an el�
ementary transformation rule� The essential rules
are folding and unfolding� i�e�� contraction and
expansion of subexpressions of a program using
the de�nitions of this program 	or of a preced�
ing one
� Other rules which have been considered
are� for example� instantiation� de�nition introduc�
tion�elimination� and abstraction�
In this thesis� we extend this approach to an

integrated functional logic setting� We study the
semantic properties of the transformation as well
as the conditions under which the transformation
rules can be safely applied in order to preserve
the set of values and computed answer substitu�
tions for queries in both the original and the trans�
formed progmams� We also adapt the composition
and tupling strategies to our setting for appro�
priately guiding the application of transformation
rules in order to obtain e�cient programs� To the
best of our knowledge� this is the �rst formal ap�
proach of this kind of transformation systems for
functional logic programs� The work presented in
this thesis has been partially published in ���������

�� Fold�Unfold Transformations

Basically� the unfolding transformation consists
of applying a narrowing step to the rhs of a given
rule� The use of narrowing empowers the unfold
transformation by implicitly embedding the in�
stantiation rule 	the operation of the Burstall and
Darlington framework ��� which introduces an in�
stance of an existing equation
 into unfolding by
means of uni�cation� We have de�ned di�erent in�
stances of the unfolding rule by simply considering
unrestricted� strict or lazy variants of narrowing as
the underlying mechanism�

AI Communications

ISSN ��������
 IOS Press� All rights reserved



� Gin	es Moreno � Transformation Rules and Strategies for Functional�Logic Programs

In the thesis� we �rst show what are the prob�
lems with na��ve extensions of the unfolding rule
when considering unrestricted narrowing as the
language operational semantics� With such a gen�
eral semantics it results quite di�cult to preserve
the computed answers� Thus� we �rst identify the
conditions under which we can prove the sound�
ness and completeness of an unfolding rule� Then
we show a non standard and extremely useful rela�
tionship of Partial Evaluation with unfolding� We
show that a slightly modi�ed trasformation 	gen	
eralized unfolding
 can be formulated in terms of
partial evaluation�
Since the use of unrestricted narrowing to per�

form unfolding may produce an important increase
in the number of program rules� we have then in�
stantiated the general unfolding de�nition to the
case of an strict 	call	by	value
 narrowing strategy
called innermost conditional narrowing� We have
proved that the unfolding transformation preserve
the computed answers under the usual conditions
for the completeness of innermost conditional nar�
rowing� Finally� as an example application of the
unfolding technique we have de�ned an unfolding

semantics consisting of a 	possibly in�nite
 set of
unconditional rules� computed as the limit of the
unfolding expansions of the initial program� We
show that this allows one to compute the set of
computed answers for a goal by syntactic uni�ca�
tion of the goal with elements in the unfolding se�
mantics�
When de�ning the unfolding rule in terms of

call	by	name variants of narrowing 	e�g�� lazy nar�
rowing ����
 we observe that � in general� the struc�
ture of the original program 	orthogonality
 is not
preserved� thus seriously restricting the applicabil�
ity of the resulting system� the transformed pro�
gram could not be further transformed and� what
is even worse� it might not even be safely exe�
cuted� as it might not satisfy the conditions for the
completeness of the considered operational mech�
anism� Fortunately� this fact is not true for the
case of needed narrowing� which is complete for
inductively sequential programs ���� Thus� we have
demonstrated that such a program structure is
preserved by an unfolding rule based on needed
narrowing which is a key point for proving its cor�
rectness as well as its e�ective use�
On the other hand the folding transformation is

intended to be the inverse of the unfolding oper�
ation� that is� an unfolding step followed by the

corresponding folding step 	and viceversa
 is ex�

pected to give back the initial program� Roughly

speaking� the folding operation consists of substi�

tuting a function call 	folding call
 for a de�nition�

ally equivalent set of calls 	folded calls
�
The de�nition of a folding transformation for

an unrestricted narrowing strategy requires condi�

tions which are too strong to preserve computed

answers� For this reason we have �rstly de�ned a
folding rule directly for innermost narrowing that

can be seen as an extension to functional logic pro�

grams of the reversible folding of ���� for logic pro�

grams� We have chosen this form of folding since

it exhibits the useful� pursued property that the
answer substitutions computed by innermost nar�

rowing are preserved through the transformation�

This de�nition has two sources of nondeterminism�

the choice of the folded calls and in the choice of
a generalization 	folding call
 of the heads of the

instantiated function de�nitions which are used to

substitute the folded calls 	this de�nition is called

�disjunctive�� since it allows the folding of multi�

ple rules
�
In order to reduce the high level of nondetermin�

ism� we have also proposed a new variant of folding

similar to the one presented by ��� where a rule is

folded by a unique rule in the same program� This
new de�nition can be seen as a �conjunctive� ver�

sion of the previous one� The main property of this

style of folding is that it is reversible since it can al�

ways be undone by an unfolding step� This greatly

simpli�es the correctness proofs �correctness of
folding follows immediately from the correctness

of unfolding�� but usually require too strong ap�

plicability conditions� such as requiring that both

the folded and the folding rules belong to the same
program� which drastically reduces the power of

the transformation�

Our last folding rule de�ned in the thesis can

be combined with the needed narrowing based un�

folding transformation and it is able to fold rules
belonging to di�erent programs 	similarly to the

one presented in ���� for logic programs
� It is more

powerful than the previous ones and the appli�

cability conditions are less restrictive� Therefore�
its use within a transformation system �when

guided by appropriate strategies� is able to pro�

duce more e�ective optimizations for lazy func�

tional logic programs�



Gin	es Moreno � Transformation Rules and Strategies for Functional�Logic Programs �

�� A Complete Transformation System

The set of rules presented so far 	together with
two ones that allow the introduction�elimination
of new function de�nitions
 constitutes the kernel
of our transformation system� These rules su�ce
for automatizing the composition strategy� How�
ever� the transformation system must be empow�
ered for achieving the tupling optimization� which
we attain by extending the transformation system
with a rule of abstraction ������ It essentially con�
sists of replacing the occurrences of some expres�
sion e in the rhs of a rule R by a fresh variable
z� adding the �local declaration� z � e within a
where expression in R� The new rules introduced
by the where�abstraction do contain extra vari�
ables in the right�hand sides 	which is explicitly
forbidden in our setting
� However� as noted in
���� this can be easily amended by using standard
�lambda lifting� techniques� Our abstraction rule
is inspired by the standard lambda lifting trans�
formation of functional programs and it allows the
abstraction of di�erent expressions in one go�
The building blocks of strategic program opti�

mizations are transformation tactics 	strategies
�
which are used to guide the process and e�ect some
particular kind of change to the program undergo�
ing transformation ����� The composition and tu�
pling strategies were originally introduced in ����
for the optimization of pure functional programs�
By using the composition strategy 	or its variants
�
one may avoid the construction of intermediate
data structures that are produced by some func�
tion and consumed as inputs by another function�
On the other hand� the tupling strategy is very
e�ective when several functions require the com�
putation of the same subexpression� in which case
we tuple together those functions� By avoiding ei�
ther multiple accesses to data structures or com�
mon subcomputations one often gets linear recur�
sive programs 	i�e�� programs whose rhs�s have at
most one recursive call
 from nonlinear recursive
programs �����
The basic rules presented so far have been imple�

mented by a prototype system Synth� It is writ�
ten in SICStus Prolog and includes a parser for the
language Curry� a modern multiparadigm declar�
ative language based on needed narrowing which
is intended to become a standard in the functional
logic community ���� It also includes a fully auto�
matic composition strategy based on some 	appar�

ently reasonable
 heuristics� We are currently ex�
tending the system in order to mechanize tupling
	e�g�� by using the analysis method of ���
�

References

��� M� Alpuente M� Falaschi C� Ferri G� Moreno and
G� Vidal� Un sistema de transformaci	on para progra�
mas multiparadigma� Revista Iberoamericana de In�
teligencia Arti�cial X������������ �����

��� M� Alpuente M� Falaschi G� Moreno and G� Vi�
dal� Safe folding�unfolding with conditional narrow�
ing� Proc� of ALP���� Southampton 	England
 pages
����� Springer LNCS ���� �����

��� M� Alpuente M� Falaschi G� Moreno and G� Vidal� A
Transformation System for Lazy Functional Logic Pro�
grams� Proc� of FLOPS���� Tsukuba 	Japan
 pages
�����
�� Springer LNCS ���� �����

��� M� Alpuente M� Falaschi G� Moreno and G� Vidal�
An Automatic Composition Algorithm for Functional
Logic Programs� Proc� of SOFSEM����� pages ����
���� Springer LNCS ��
� �����

��� S� Antoy� De�nitional trees� Proc� of ALP��� pages
�������� Springer LNCS 
�� �����

�
� R�M� Burstall and J� Darlington� A Transformation
System for Developing Recursive Programs� Journal
of the ACM ���������
� �����

��� W� Chin� Towards an Automated Tupling Strategy� In
Proc� of Partial Evaluation and Semantics�Based Pro�
gram Manipulation� ��� pages �������� ACM New
York �����

��� P� A� Gardner and J� C� Shepherdson� Unfold�fold
Transformation of Logic Programs� In J�L Lassez and
G� Plotkin editors Computational Logic� Essays in
Honor of Alan Robinson pages �
������ The MIT
Press Cambridge MA �����

��� M� Hanus H� Kuchen and J�J� Moreno�Navarro�
Curry� A Truly Functional Logic Language� In Proc�
ILPS��� Workshop on Visions for the Future of Logic
Programming pages ������ �����

���� J�J� Moreno�Navarro and M� Rodr	�guez�Artalejo�
Logic Programming with Functions and Predicates�
The language Babel� Journal of Logic Programming
������������� �����

���� A� Pettorossi and M� Proietti� Rules and Strategies for
Transforming Functional and Logic Programs� ACM
Computing Surveys �������
����� ���
�

���� D� Sands� Total Correctness by Local Improvement
in the Transformation of Functional Programs� ACM
Transactions on Programming Languages and Sys�
tems ������������� March ���
�

���� H� Tamaki and T� Sato� Unfold�Fold Transformations
of Logic Programs� In S� T�arnlund editor Proc� of
Second Int�l Conf� on Logic Programming� Uppsala�
Sweden pages ������� �����


